JPS62165363A - High dielectric strength power integrated circuit - Google Patents

High dielectric strength power integrated circuit

Info

Publication number
JPS62165363A
JPS62165363A JP61004991A JP499186A JPS62165363A JP S62165363 A JPS62165363 A JP S62165363A JP 61004991 A JP61004991 A JP 61004991A JP 499186 A JP499186 A JP 499186A JP S62165363 A JPS62165363 A JP S62165363A
Authority
JP
Japan
Prior art keywords
potential
layer
film
type
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61004991A
Other languages
Japanese (ja)
Other versions
JP2547729B2 (en
Inventor
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61004991A priority Critical patent/JP2547729B2/en
Publication of JPS62165363A publication Critical patent/JPS62165363A/en
Application granted granted Critical
Publication of JP2547729B2 publication Critical patent/JP2547729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a power IC rated 1,000V or higher by a method wherein a depletion layer is created in a part of the surface of a substrate when a high voltage is applied and a high resistance thin film is provided on that part with an insulating film between and the potential of the one end of the high resistance film is made to be equal to the potential of a one conductivity type region which forms a junction is which a depletion layer is created and the potential of the other end of the high resistance film is made to be equal to be potential of an opposite conductivity type region which forms the junction. CONSTITUTION:An n<+> type layer 12 is formed on a high resistance p<-> type substrate 10. A high resistance n<+> type layer 11 is formed on the layer 12 and the substrate 10. Then n<+> type drain layers 13 which are contacted with the buried n<+> type layer 12 and isolation diffused layers 14 formed by diffusion. After that, a thick oxide film is formed over the whole surface and the thick oxide film is removed only from the parts where a gate oxide film 25 and a base diffused layer 19 are to be formed. After the gate oxide film 25 is formed, polycrystalline silicon is deposited and removed except necessary parts. The p-type base diffused region 19 and an n<+> type source diffused region 20 are formed by using the remaining polycrystalline silicon as a mask. Further, the whole surface is covered with an insulating film and contact holes for the respective layers are formed and Al electrodes 16, 17, 25 and 26 are formed. After amorphous silicon is deposited on them, the whole surface is covered with an insulating film and wirings 21 and 22 are formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高耐圧パワー集積回路(IC)に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to high voltage power integrated circuits (ICs).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、500 V以上の耐圧をもち、大きなパワーを取
り出せる高耐圧パワーICは非常に難しいとされて来た
。その理由の−っは、単体の素子では生じない配線の問
題が生じることと、一つの表面に大きな電圧差のある端
子が共存することである。
Conventionally, it has been considered extremely difficult to create a high-voltage power IC that has a breakdown voltage of 500 V or more and can extract a large amount of power. The reasons for this are that wiring problems occur that would not occur with a single element, and that terminals with large voltage differences coexist on one surface.

MOSFETの例の第6図を用いて説明する。第5図で
、10は高抵抗P−基板、11は高抵抗エビ層、12は
n土塊め込み、13はn層へのコンタクトのためのn十
拡散層、14は素子分離のためのP−拡散層、19はP
ベース拡散層、20はn ソース層18はゲートポリシ
リコン電極、16.17はソース、ドレイン電極である
。ここで−っ目の問題は、ソース電極の配線21がドレ
イン層13の上を通過したり、ドレイン電極の配線22
がアイソレーションの拡散層14の上を通っていること
である。ソース配線の直下のn一層11には反転層や空
乏層が出来やすく、その電位はソース電極の電位と近く
なっている。このため配線21の直下に高電位となるド
レイン拡散層があると、そのnn+接合に高電界が生じ
てしまう。一方ドレイン配線層22の直下は反対に空乏
化しにくくなっているので、この下にアイソレージ目ン
の拡散層14があるとP+n−の接合に高電圧が印加さ
れた場合空乏層の伸びが抑制されてしまうので高耐圧を
実現できない。このため通常は酸化膜15を厚くしてこ
れを防いでいたが、この方法では500V以上の高耐圧
パワーICの実現は難しい。
This will be explained using FIG. 6, which shows an example of a MOSFET. In Fig. 5, 10 is a high-resistance P-substrate, 11 is a high-resistance shrimp layer, 12 is an n soil lump embedded, 13 is an n-diffusion layer for contacting the n layer, and 14 is a P-substrate for element isolation. - Diffusion layer, 19 is P
A base diffusion layer 20, an n source layer 18 a gate polysilicon electrode, and 16 and 17 a source and drain electrode. The second problem here is that the wiring 21 of the source electrode passes over the drain layer 13, or the wiring 21 of the drain electrode
passes over the isolation diffusion layer 14. An inversion layer and a depletion layer are likely to be formed in the n-layer 11 directly under the source wiring, and the potential thereof is close to the potential of the source electrode. Therefore, if there is a drain diffusion layer having a high potential directly under the wiring 21, a high electric field will be generated at the nn+ junction. On the other hand, since the area directly under the drain wiring layer 22 is difficult to deplete, if there is an isolation diffusion layer 14 under this layer, the extension of the depletion layer is suppressed when a high voltage is applied to the P+n- junction. Therefore, high voltage resistance cannot be achieved. For this reason, this is usually prevented by thickening the oxide film 15, but with this method it is difficult to realize a high breakdown voltage power IC of 500V or more.

第2にP HI3とn一層11の作るPn接合の耐圧は
ゲート電極18がフィールドプレートの役目をしている
が、このようなフィールドプレート構造ではフィールド
プレートの端又はPn接合の曲率の小さい所に電界が集
中してしまい、50()7以上のWNJEEを出すこと
はきわめてむずかしい。第6図のようにガードリングを
用いれば良いが、これではソースとドレインの間が長く
なり、一つの素子の占める面積が増大してしまい、単位
面積あたりの素子のオン抵抗が増大してしまう欠点があ
る。
Second, the breakdown voltage of the Pn junction formed by the PHI3 and the n-layer 11 is determined by the gate electrode 18 acting as a field plate, but in such a field plate structure, the breakdown voltage of the Pn junction formed by the PHI3 and the n-layer 11 is The electric field is concentrated and it is extremely difficult to achieve a WNJEE of 50()7 or higher. A guard ring could be used as shown in Figure 6, but this would lengthen the distance between the source and drain, increasing the area occupied by one element and increasing the on-resistance of the element per unit area. There are drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような困難を解決するためになされたも
ので100OV以上のパワーICを可能としたものであ
る。
The present invention was made in order to solve the above-mentioned difficulties, and enables a power IC of 100 OV or more.

〔発明の概要〕[Summary of the invention]

本発明は高電圧が印加された場合に空乏層が基板表面に
生ずる部分に絶縁膜を介して高抵抗の薄膜をおき、この
膜の一端の電位を空乏層の生じた接合を形成する一導伝
型の領域の電位と等しくし、他端の膜の電位を反対導伝
型と等しくなしたことを特徴とする2つ以上の素子を集
積した高耐圧パワーICである。具体的に第1図を用い
て説明する。第5図と異っている点は、高抵抗膜23、
絶縁膜24を形成し、この上に配線21.22を設けて
いることである。高抵抗薄膜は両端の電位がアース電位
(ソース電位)とドレイン電位に固定され、ドレインが
高W!田になった時には、高抵抗膜23に微小電流が流
れ、を位傾斜ができる。この電位傾斜は上にある配線の
影響をうけないので、下にある基板の表面に配線の影響
が及ぶことはない。更に一般にこのような高抵抗膜を設
けると、接合の耐圧が向上する。これは高抵抗薄膜に電
位傾斜が生じているために第2図に示すように高抵抗膜
によってその下に生じた空乏層の厚みがゆるやかに薄く
なり、電界の集中が軽減されるためである。従ってソー
スとドレインの間隔を狭くすることができ、素子抵抗を
下げられる。
In the present invention, a high-resistance thin film is placed via an insulating film in a portion where a depletion layer is formed on the substrate surface when a high voltage is applied, and the potential at one end of this film is applied to a conductor that forms a junction where a depletion layer is formed. This is a high-voltage power IC integrated with two or more elements, characterized in that the potential of the conductive type region is made equal to the potential of the film at the other end, and the potential of the film at the other end is made equal to that of the opposite conductive type. This will be specifically explained using FIG. 1. The difference from FIG. 5 is that the high resistance film 23,
An insulating film 24 is formed, and wirings 21 and 22 are provided on the insulating film 24. The potential at both ends of a high-resistance thin film is fixed to the ground potential (source potential) and drain potential, and the drain has a high W! When the voltage is high, a minute current flows through the high resistance film 23, creating a voltage gradient. Since this potential gradient is not affected by the wiring above, the surface of the underlying substrate is not affected by the wiring. Furthermore, providing such a high resistance film generally improves the breakdown voltage of the junction. This is because the high-resistance thin film has a potential gradient, so as shown in Figure 2, the thickness of the depletion layer formed under the high-resistance film gradually becomes thinner, reducing the concentration of the electric field. . Therefore, the distance between the source and drain can be narrowed, and the element resistance can be lowered.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は高抵抗膜に微小電流を流すことに
よって基板表面の電位が固定されることを利用して、接
合の高耐圧化と配線の影響をなくすという一石二鳥の役
目をもたせた構造を提供し、500V以上の高耐圧パワ
ーICが容易に実現できる0 〔発明の実施例〕 第1図の場合のMOSFETについて製作プルセスを述
べる。まず高抵抗P−基板10にイオン注入法を用いて
n十層12を形成する。この上、気相成長によって高抵
抗n土層11を形成し・アイソレーション拡散層14、
及び埋め込みn+十層、2とコンタクトするn+ドレイ
ン層13を拡散形成する。この後、全体に厚い酸化膜を
形成し、ゲート酸化膜25とベース拡散層19を形成す
る部分だけ厚い酸化膜を取り除く。
As described above, the present invention utilizes the fact that the potential on the substrate surface is fixed by passing a minute current through a high-resistance film to create a structure that can kill two birds with one stone by increasing the breakdown voltage of the junction and eliminating the influence of wiring. Embodiments of the Invention The manufacturing process for the MOSFET shown in FIG. 1 will be described. First, an n0 layer 12 is formed on a high resistance P-substrate 10 using an ion implantation method. On top of this, a high resistance n-soil layer 11 is formed by vapor phase growth, an isolation diffusion layer 14,
Then, an n+ drain layer 13 in contact with the buried n+ layer 2 is formed by diffusion. Thereafter, a thick oxide film is formed over the entire surface, and only the portions where the gate oxide film 25 and base diffusion layer 19 are to be formed are removed.

そして、ゲート酸化膜25を形成した後ポリシリコンを
形成しへ必要な部分だけを残して取り去る。
After forming the gate oxide film 25, polysilicon is formed and removed leaving only the necessary portions.

このポリシリコンをマスクとして、Pベース拡散19と
n+ソース拡散20を行う。更に全体を絶縁膜でおおい
、13.14.1つの各層へのコンタクトホールを形成
し、A7電極16.17.25.26を形成する。
Using this polysilicon as a mask, P base diffusion 19 and n+ source diffusion 20 are performed. Further, the whole is covered with an insulating film, and 13.14. contact holes are formed for each layer, and A7 electrodes 16.17.25.26 are formed.

この上からアモルファスシリコンを形成し、23を形成
する。次に全体をポリイシド等の絶縁膜でおおい、16
.17とコンタクトする配線21.22を形成して終了
する。ここでアモルファスシリコンのかわりに5IPO
8を用い、ポリイシドのかわりにCVD酸化膜を用いて
も良い。第3図は別の実施例で、高抵抗膜の電位の片方
をソースではなくゲートに固定したもので、第1図と同
じ付号のものは同じ付号で示している。
Amorphous silicon is formed on this to form 23. Next, the whole is covered with an insulating film such as polyide, and 16
.. The process ends by forming wirings 21 and 22 in contact with 17. Here, 5IPO is used instead of amorphous silicon.
8, and a CVD oxide film may be used instead of the polyide. FIG. 3 shows another embodiment in which one of the potentials of the high-resistance film is fixed to the gate instead of the source, and parts with the same numbers as in FIG. 1 are indicated by the same numbers.

また!4図は導電変調型MO8FETの実施例を示す。Also! FIG. 4 shows an example of a conductivity modulation type MO8FET.

導電調型FETではドレイン層はn+ではなく、P土層
であり、ドレインから正孔をn土層11 に注入し、こ
こにキャリアの蓄積をさせ、導電変調を起して素子のオ
ン抵抗が下がる。またこれらの実施例だけでなく、バイ
ポーラトランジスタ等を組み込んだICにも本発明は有
効である。
In the conductivity modulation type FET, the drain layer is not an n+ layer but a p layer, and holes are injected from the drain into the n layer 11, where carriers are accumulated, causing conductivity modulation and increasing the on-resistance of the device. Go down. Furthermore, the present invention is effective not only in these embodiments but also in ICs incorporating bipolar transistors and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明するため図、第
3図及び第4図は本発明の詳細な説明するための図、第
5図及び第6図は従来例を説明するための図である。 23・・高抵抗膜、24・・・絶縁膜 21.22・・・配線。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 1/)m  −〜  偽
1 and 2 are diagrams for explaining the present invention in detail, Figures 3 and 4 are diagrams for explaining the invention in detail, and Figures 5 and 6 are diagrams for explaining the conventional example. This is a diagram for 23...High resistance film, 24...Insulating film 21.22...Wiring. Agent Patent attorney Nori Chika Ken Yudo Takehana Kikuo 1/)m -~ False

Claims (5)

【特許請求の範囲】[Claims] (1)ICの端子間に高電圧が印加された場合に、Pn
接合の空乏層が基板表面に生ずる部分に絶縁膜を介して
高抵抗の薄膜を設け、この膜の一端の電位を接合の一導
電型の領域の電位とほぼ等しくおき、かつ他の一端の電
位を反対導電型の領域の電位とほぼ等しくしたことを特
徴とする高耐圧パワー集積回路。
(1) When high voltage is applied between the terminals of the IC, Pn
A high-resistance thin film is provided via an insulating film in the area where the depletion layer of the junction occurs on the substrate surface, and the potential at one end of this film is set approximately equal to the potential in one conductivity type region of the junction, and the potential at the other end is A high-voltage power integrated circuit characterized in that the voltage is approximately equal to the potential of a region of opposite conductivity type.
(2)高抵抗膜の一端をゲート電極の電位と等しくし、
他端の電位をドレイン電極の電位と等しくしたことを特
徴とする特許請求の範囲第1項記載の高耐圧パワー集積
回路。
(2) Make one end of the high-resistance film equal to the potential of the gate electrode,
2. The high voltage power integrated circuit according to claim 1, wherein the potential of the other end is equal to the potential of the drain electrode.
(3)高抵抗薄膜の上に絶縁膜を介して電極を設けたこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
高耐圧パワー集積回路。
(3) A high-voltage power integrated circuit according to claim 1 or 2, characterized in that an electrode is provided on the high-resistance thin film via an insulating film.
(4)絶縁膜を介して設けた電極は2つの素子を結合す
る配線電極であることを特徴とする特許請求の範囲第3
項記載の高耐圧パワー集積回路。
(4) Claim 3, characterized in that the electrode provided through the insulating film is a wiring electrode that connects two elements.
High-voltage power integrated circuit described in Section 1.
(5)高抵抗膜をアモルファスシリコン又は高抵抗ポリ
シリコンで構成したことを特徴とする特許請求の範囲第
1項記載の高耐圧パワー集積回路。
(5) The high-voltage power integrated circuit according to claim 1, wherein the high-resistance film is made of amorphous silicon or high-resistance polysilicon.
JP61004991A 1986-01-16 1986-01-16 High voltage power integrated circuit Expired - Lifetime JP2547729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004991A JP2547729B2 (en) 1986-01-16 1986-01-16 High voltage power integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004991A JP2547729B2 (en) 1986-01-16 1986-01-16 High voltage power integrated circuit

Publications (2)

Publication Number Publication Date
JPS62165363A true JPS62165363A (en) 1987-07-21
JP2547729B2 JP2547729B2 (en) 1996-10-23

Family

ID=11599073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004991A Expired - Lifetime JP2547729B2 (en) 1986-01-16 1986-01-16 High voltage power integrated circuit

Country Status (1)

Country Link
JP (1) JP2547729B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153529A (en) * 1987-10-19 1990-06-13 American Teleph & Telegr Co <Att> Resistive electric field shield for high voltage device
JPH02283074A (en) * 1989-04-25 1990-11-20 Fuji Electric Co Ltd Semiconductor integrated circuit device
EP0764988A3 (en) * 1995-08-31 1998-03-04 Texas Instruments Incorporated Isolated power transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374795B2 (en) 2020-02-05 2023-11-07 株式会社東芝 semiconductor equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853860A (en) * 1981-09-26 1983-03-30 Toshiba Corp High breakdown voltage planar type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853860A (en) * 1981-09-26 1983-03-30 Toshiba Corp High breakdown voltage planar type semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153529A (en) * 1987-10-19 1990-06-13 American Teleph & Telegr Co <Att> Resistive electric field shield for high voltage device
JPH02283074A (en) * 1989-04-25 1990-11-20 Fuji Electric Co Ltd Semiconductor integrated circuit device
EP0764988A3 (en) * 1995-08-31 1998-03-04 Texas Instruments Incorporated Isolated power transistor

Also Published As

Publication number Publication date
JP2547729B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
US6190948B1 (en) Method of forming power semiconductor devices having overlapping floating field plates for improving breakdown voltage capability
US6570229B1 (en) Semiconductor device
JPH08264787A (en) Edge termination method of power mosfet and its structure
JPH03270273A (en) Semiconductor device and its manufacture
JPH0457111B2 (en)
US6914270B2 (en) IGBT with PN insulation and production method
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3354127B2 (en) High voltage element and method of manufacturing the same
KR930005509B1 (en) Mos type integrated circuit
JPS62165363A (en) High dielectric strength power integrated circuit
KR19990069332A (en) Trench gate type MOS device and its manufacturing method
KR19980702335A (en) A method of manufacturing a resurf semiconductor device and a semiconductor device manufactured by such a method
JPH0888290A (en) Semiconductor device and using method therefor
JPH07142731A (en) Power device and method for forming it
US5962898A (en) Field-effect transistor
JPH08116049A (en) Insulated-gate semiconductor device
JPH0974187A (en) High withstand voltage lateral type semiconductor device
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP2004228553A (en) Insulated gate semiconductor device and its manufacturing method
JPH11307768A (en) Silicon carbide semiconductor device and manufacture thereof
JPH03171774A (en) High withstand voltage planar element
JP3435171B2 (en) High voltage semiconductor device
JP3157187B2 (en) Semiconductor integrated circuit
JPS6174361A (en) Buried resistance semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term