JPS6212838A - Instrument for measuring moisture of granule continuously - Google Patents

Instrument for measuring moisture of granule continuously

Info

Publication number
JPS6212838A
JPS6212838A JP60149936A JP14993685A JPS6212838A JP S6212838 A JPS6212838 A JP S6212838A JP 60149936 A JP60149936 A JP 60149936A JP 14993685 A JP14993685 A JP 14993685A JP S6212838 A JPS6212838 A JP S6212838A
Authority
JP
Japan
Prior art keywords
granule
moisture
powder
distance
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60149936A
Other languages
Japanese (ja)
Inventor
Takeshi Ando
猛 安藤
Hiroyuki Ishikawa
石川 丕行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60149936A priority Critical patent/JPS6212838A/en
Publication of JPS6212838A publication Critical patent/JPS6212838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve accuracy of moisture measurement by detecting the surface height of a granule by an ultrasonic range finder and correcting a variation of an infrared irradiation distance. CONSTITUTION:The moisture measurement of the granule 1 conveyed by a belt conveyor 2 is performed by irradiating the infrared rays 4 from an infrared absorbent moisture meter sensor part 3 on the surface of the granule 1. Further, the variation of the height of the granule 1 is detected by emitting the ultrasonic waves 6 from the ultrasonic range finder 5. The height of the granule 1 varies according to a variation of loadage and a large amount of variance takes place in a measured value of the moisture meter 3. Then, the moisture measurement is performed with extremely high accuracy by correcting the variance using the distance detected by the range finder 5. Further, since the granule on the belt conveyor is not flattened with a scraper, the scattering of the granule is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) ベルトコンベア等で輸送する粉粒体の水分を、赤外線吸
収式水分計を用いて、連続かつ非接触で測定する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an apparatus for continuously and non-contactly measuring the moisture content of powder particles transported by a belt conveyor or the like using an infrared absorption moisture meter.

(、従来の技術) 石炭や砂等の粉粒体の含有水分を連続かつ粉粒体に非接
触で測定する方法として、赤外線吸収式水分計を用いる
方法がある。この水分計はある波長の赤外線が水分(0
−H基)にエネルギが吸収されることを利用して測定す
るものであシ、ベルトコンベアで輸送中の粉粒体表面に
赤外線を照射し、表面から反射して返ってくる赤外線の
エネルギの減衰程度を検出し、水分値を求めている。こ
の水分計の欠点として粉粒体表面と赤外線照射口との距
離が変動すると、照射及び反射時の赤外線の強さが変化
し、水分測定値が変動することに々る。
(Prior Art) As a method of continuously and non-contactly measuring the moisture content of powder or granules such as coal or sand, there is a method using an infrared absorption moisture meter. This moisture meter uses infrared rays of a certain wavelength to detect moisture (0).
This method uses the fact that energy is absorbed by (-H groups), and is measured by irradiating infrared rays onto the surface of powder particles being transported on a belt conveyor, and measuring the energy of the infrared rays that is reflected back from the surface. The degree of attenuation is detected and the moisture value is determined. A drawback of this moisture meter is that if the distance between the powder surface and the infrared ray irradiation port changes, the intensity of the infrared rays during irradiation and reflection will change, and the moisture measurement value will often fluctuate.

前述の欠点を補うため、従来状のような方法が知られて
いる。特公昭57−42837号によれば輸送のメイン
ベルトでは照射距離の変動が大きいため、メインベルト
から粉粒体を採取し、これをフラットなベルトコンベア
に転荷し、スクレーパ−等によって、層の厚さを一定と
して、照射距離が変動しないように保ちつ\水分を測定
し、燃料協会第77回コークス特別部会においては、輸
送中のメインベルトで、水分測定を行うため、メインベ
ルト上に赤外線吸収式水分計を取付け、赤外線を照射す
る手前で、特殊なスクレーパーを設置して、赤外線吸収
式水分計からの照射距離を一定に保持する方法が発表さ
れている。
Conventional methods are known to compensate for the above-mentioned drawbacks. According to Japanese Patent Publication No. 57-42837, since the irradiation distance varies greatly on the main belt for transportation, powder and granules are collected from the main belt, transferred to a flat belt conveyor, and separated into layers using a scraper, etc. At the 77th Coke Special Committee of the Japan Fuel Association, an infrared ray was placed on the main belt during transportation to measure the moisture content while keeping the thickness constant and the irradiation distance unchanged. A method has been announced in which an absorption moisture meter is installed and a special scraper is installed in front of the infrared rays to maintain a constant irradiation distance from the infrared absorption moisture meter.

(発明が解決しようとする問題点) しかしながら、前述の方法ではメインベルトから粉粒体
を採取する装置や照射距離を一定に保つためのスクレー
パー装置を別途設置する必要があり、またメインベルト
上に直接赤外線吸収式水分計を取付け、メインベルト上
の粉粒体をスクレーパーによって平坦にして、赤外線を
照射する方法によれば、メインベルト上に粉粒体が一定
量以上積載されていれば効果があるが、積載量が少く、
スクレーパーの取付位置以下の場合は、照射距離の変動
を避けることができかい。またスクレーパーを取付ける
ことによシ、スクレーパーによってはね飛ばされた粉粒
体がベルトコンベア外に飛散することによシ、周辺環境
を悪化させたり、飛散物の取片付は作業等の余分な労力
を費やすことになる。
(Problem to be solved by the invention) However, in the above method, it is necessary to separately install a device for collecting powder and granular material from the main belt and a scraper device to keep the irradiation distance constant. According to the method of attaching a direct infrared absorption moisture meter, flattening the powder and granules on the main belt with a scraper, and then irradiating them with infrared rays, it is effective if more than a certain amount of powder and granules are loaded on the main belt. Yes, but the loading capacity is small,
Is it possible to avoid fluctuations in the irradiation distance if it is below the scraper installation position? In addition, by installing a scraper, the powder and granules that are blown away by the scraper may be scattered outside the belt conveyor, which may worsen the surrounding environment or require extra work to clean up the scattered objects. It will take effort.

また通常のベルトコンベアは第2図に示す如く、わん曲
しておシ、光電管式の無負荷検出器10・11を用いて
負荷状態を検出する方法では、無負荷の検出が不十分で
あシ、ベルトウェア等を更に設備しなければならない。
In addition, as shown in Figure 2, a normal belt conveyor is bent and the method of detecting the load state using phototube type no-load detectors 10 and 11 is insufficient for detecting no-load. Additional equipment such as belt wear, etc. must be provided.

(問題点を解決するための手段) 本発明は、従来の装置の有する欠点ならびに問題点を除
去、改善することのできる粉粒体の水分連続測定装置を
提供することを目的とするものであシ、特許請求の範囲
記載の粉粒体の水分連続測定装置を提供することによっ
て前記目的を達成することができる。すなわちこの発明
はベルトコンベアで連続又は断続的に輸送する粉粒体の
水分を、赤外線吸収式水分計を用いて、連続かつ非接触
で測定する装置であって、ベルトコンベア上の粉粒体に
赤外線照射口を向けて設けた粉粒体の水分を測定する赤
外線吸収式水分計と、前記赤外線吸収式水分計と並列に
設置され粉粒体との距離を測定する距離計と、前記距離
計によって測定された距離変動値に基き、前記水分計に
よって得られた値を校正する演算部とが設けられてなる
粉粒体の水分連続測定装置に関する。
(Means for Solving the Problems) An object of the present invention is to provide a continuous moisture measuring device for powder and granular materials that can eliminate and improve the drawbacks and problems of conventional devices. The above object can be achieved by providing a device for continuously measuring the moisture content of powder or granular material as described in the claims. That is, the present invention is an apparatus that continuously and non-contactly measures the moisture content of powder or granules transported continuously or intermittently on a belt conveyor using an infrared absorption moisture meter. An infrared absorption moisture meter that measures the moisture content of a powder or granular material with an infrared irradiation port facing the infrared rays; a distance meter installed in parallel with the infrared absorption moisture meter that measures the distance to the powder or granular material; and the distance meter. The present invention relates to a continuous moisture measuring device for powder and granular material, which is provided with an arithmetic unit that calibrates the value obtained by the moisture meter based on the distance variation value measured by the moisture meter.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の詳細な説明図である。FIG. 1 is a detailed explanatory diagram of the present invention.

第1図には石炭、砂等の粉粒体1を連続的に輸送するコ
ンベア2と、コンベア2上の粉粒体1の含有水分を測定
するためにベルトコンベア2の粉へ粒体1に赤外線照射
口を向けて、ベルトコンベア72から一定距離をもって
設置されている赤外線吸収式水分計センサ一部3および
プロセッサー9と、赤外線吸収式水分計センサ一部3と
一定間隔を保持し、かつベルトコンベア2から一定距離
をもって設、置されている超音波距離計5と、赤外線吸
収式水分計の測定値を超音波距離計5で検出した距離に
基き校正を行う演算部7と、出力装置8とが示されてい
る。
Figure 1 shows a conveyor 2 that continuously transports granular material 1 such as coal or sand, and a belt conveyor 2 that transports granular material 1 to powder to measure the moisture content of the granular material 1 on the conveyor 2. The infrared absorption type moisture meter sensor part 3 and the processor 9 are installed at a certain distance from the belt conveyor 72 with the infrared irradiation port facing, and the belt is maintained at a constant distance from the infrared absorption type moisture meter sensor part 3 and An ultrasonic distance meter 5 installed and placed at a certain distance from the conveyor 2, a calculation unit 7 that calibrates the measured value of an infrared absorption moisture meter based on the distance detected by the ultrasonic distance meter 5, and an output device 8. is shown.

ベルトコンベア2によって搬送される粉粒体1の水分測
定は、赤外線吸収式水分計センサ一部3よシ赤外線4を
粉粒体lの表面に照射して行い、又、粉粒体1の高さの
変動を超音波距離計5よシ超音波6を発射して検出する
。粉粒体1は第1図に示すように、積載量の変化により
高さが変動し、この変動によって赤外線吸収式水分計3
の測定値が大きなバラツキを示すことになるが、超音波
距離計5で検出した距離を用いて校正する。なお赤外線
吸収式水分計3と超音波距離計5の設置距離、から生じ
るタイムラグはベルト、コンベア2の速度を考慮して同
期化させる。
The moisture content of the powder 1 transported by the belt conveyor 2 is measured by irradiating the surface of the powder 1 with infrared rays 4 from an infrared absorption moisture meter sensor part 3. The ultrasonic distance meter 5 emits ultrasonic waves 6 to detect variations in the distance. As shown in FIG.
Although the measured values of will show large variations, the distance detected by the ultrasonic distance meter 5 is used for calibration. Note that the time lag caused by the installation distances of the infrared absorption moisture meter 3 and the ultrasonic distance meter 5 is synchronized by taking into account the speeds of the belt and conveyor 2.

水分測定値の超音波距離計5で検出した距離による校正
、ならびに赤外線吸収式水分計3と超音波距離計5との
タイムラグの同期化は演算部7のコンピュータによシ行
い、結果を出力装置8より出力する。
Calibration of the moisture measurement value based on the distance detected by the ultrasonic distance meter 5 and synchronization of the time lag between the infrared absorption moisture meter 3 and the ultrasonic distance meter 5 are performed by the computer in the calculation unit 7, and the results are output to the output device. Output from 8.

赤外線吸収式水分計3での連続測定においては、粉粒体
が連続的に搬送されていることが、条件であり)断続的
に搬送される場合は、粉粒体が積載されていない部分に
ついてはベルトコンベア2の表面の赤外線吸収式を測定
していることになり、異常データが得られる。このため
従来は無負荷検出器をベルトコンベアに設置し、無負荷
時の測定値をカットしている。しかし第2図で既に説明
した通り、従来の無負荷検出器11+12では無負荷の
検出が不充分であった。
For continuous measurement with the infrared absorption moisture meter 3, the condition is that the powder or granules are conveyed continuously.) If the powder or granules are conveyed intermittently, the part where the powder or granules are not loaded is This means that the infrared absorption type on the surface of the belt conveyor 2 is being measured, and abnormal data is obtained. For this reason, conventionally, a no-load detector is installed on the belt conveyor and the measured value during no-load is cut off. However, as already explained with reference to FIG. 2, the conventional no-load detectors 11+12 are insufficient in detecting no-load.

本発明の装置によれば、超音波距離計を用いて粉粒体の
表面高さを検出し、水分測定値の校正に用いるほか、同
時にベルトコンベアの無負荷の検出を適確に行うことが
できる。
According to the device of the present invention, in addition to detecting the surface height of the powder using an ultrasonic distance meter and using it for calibrating the moisture measurement value, it is also possible to accurately detect the no-load state of the belt conveyor at the same time. can.

なお前述の説明においては照射距離の検出のため、超音
波距離計を設置した例を示したが、超音波距離計の代り
にレーザ光式距離計を用いることもできる。但し、レー
ザ光が直接又は乱反射して、赤外線の照射されている粉
粒体表面にあたると、測定値に異常をきたすおそれがあ
シ、レーザ光距離計を使用する場合は設置距離を赤外線
吸収式水分計から十分にはなすか、不透明板等で仕切る
必要がある。
In the above description, an example was shown in which an ultrasonic range finder was installed to detect the irradiation distance, but a laser beam range finder may be used instead of the ultrasonic range finder. However, if the laser beam hits the powder surface that is irradiated with infrared rays, either directly or by diffuse reflection, there is a risk of abnormalities in the measured values.When using a laser beam distance meter, the installation distance must be set to an infrared absorption type. It is necessary to remove it sufficiently from the moisture meter or separate it with an opaque plate, etc.

次に本発明を実施例によって更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 コークス炉に装入される石炭を対象として本発明を実施
した。対象石炭は10数銘柄を配合されたものであシ、
ベルトコンベアでコークス炉に搬送されており、含有水
分はおおよそ8〜10%の間で変化しているものを用い
た。またベルトコンベアには断続的に積載するようにし
、積載状態は第1図に示したように高さの変化があった
。高さの変化は無負荷時のベルトコンベア面をゼロとし
てあられすと、石炭表面の高さの変化は通常の搬送時に
おいては50〜150謔であった。
EXAMPLE The present invention was carried out using coal to be charged into a coke oven. The target coal is a mixture of more than 10 brands.
The material used was one that had been transported to a coke oven by a belt conveyor and had a moisture content varying between approximately 8 and 10%. In addition, the belt conveyor was loaded intermittently, and the height of the loaded state varied as shown in FIG. If the change in height is taken as zero at the surface of the belt conveyor under no load, the change in height of the coal surface during normal conveyance was 50 to 150 degrees.

赤外線吸収式水分計は1回/秒の頻度で測定できるもの
を用い、距離計は超音波式で511Rの変化まで検出で
きるものを使用した。赤外線吸収式水分計は超音波距離
計の後方4.08 mの位置に設置した。この場合の設
置位置によるタイムラグはベルト速度245 m / 
minのとき約1.0秒である。
The infrared absorption moisture meter used was capable of measuring once per second, and the distance meter used was an ultrasonic type capable of detecting changes up to 511R. The infrared absorption moisture meter was installed 4.08 m behind the ultrasonic range meter. In this case, the time lag due to the installation position is belt speed 245 m /
When it is min, it is about 1.0 seconds.

赤外sg&収式水式水分計超音波距離計5の高さは第3
図に示すようK、赤外線照射口ならびに超音波発射口が
ベルト表面から300鴎とした。
The height of the infrared SG & collection type water moisture meter ultrasonic distance meter 5 is the third
As shown in the figure, the infrared ray irradiation port and the ultrasonic emission port were set at 300 degrees from the belt surface.

石炭表面の高さXと、乾燥法水分値と赤外線吸収式水分
計表示値との差yとは第4図に示す如き関係になり、こ
の関係を用いて第5図に示すフローで水分値を求めた。
The height of the coal surface, I asked for

測定結果は第1表に示す通りである。、第  1  表 本発明による測定値は距離校正をしない場合の測定値と
比較して、かなシ精度が向上している。
The measurement results are shown in Table 1. , Table 1 The measured values according to the present invention have improved kana precision compared to the measured values without distance calibration.

この測定においては距離計が石炭表面の高さを10鴎以
下と示したときは、ベルト上に石炭が積載されていない
と判断し、無負荷検出器の役目も行わせるようにし、そ
の間のデータはカットした。
In this measurement, when the distance meter indicates that the height of the coal surface is 10 or less, it is determined that there is no coal loaded on the belt, and the belt also functions as a no-load detector. was cut.

(本発明の効果) 以上説明した通り本発明の装置によって粉粒体  □の
水分を測定した結果、粉粒体の高さ方向すなわち赤外線
照射距離の変動を校正することにより、   ・他めて
精度よく水分測定を行うことができた。又スクレーパー
を設置する方法では粉粒体がベルトコンベア外に飛散し
ていたが本発明ではそのようなことは全くなかった。更
に又無負荷検出器の役目を距離計で行うことができるの
で、無負荷検出器を別途購入する必要もなく、本発明の
装置を実施することの効果は極めて大である。
(Effects of the present invention) As explained above, as a result of measuring the moisture content of the powder or granular material □ using the apparatus of the present invention, by calibrating the variation in the height direction of the powder or granular material, that is, the infrared irradiation distance, the accuracy can be improved. I was able to measure the moisture content well. In addition, in the method of installing a scraper, powder particles were scattered outside the belt conveyor, but in the present invention, such a problem did not occur at all. Furthermore, since the distance meter can serve as a no-load detector, there is no need to separately purchase a no-load detector, and the effect of implementing the device of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の構成図、第2図はベルトコンベ
ア断面と光電管式無負荷検出器の設置例を示す図、第3
図は赤外線吸収式水分計と超音波距離計の設置高さを示
す説明図、第4図はベルト  □表面からの高さと、乾
燥法水分値と赤外線吸収式  ゛水分計の表示値の差と
の関係グラフを示す図、第  5図は水分値の校正フロ
ーを示す図である。     □1・・・粉粒体、2・
・・ベルトコンベア、3・・・赤外線吸収式水分計セン
サー、4・・・照射赤外線、5・・・超音波距離計、6
・・・超音波、7・・・演算部、8・・・出力装置、9
・・・プロセッサー、10・・・光電管式無負荷検出器
(受光部)、11・・・光電管式無負荷検出器(発光部
)、12・・・ベルトローラ、13・・・赤外線照射口
、14・・・超音波発射口。
Fig. 1 is a configuration diagram of the device of the present invention, Fig. 2 is a diagram showing a cross section of a belt conveyor and an installation example of a phototube type no-load detector, Fig. 3
The figure is an explanatory diagram showing the installation height of an infrared absorption type moisture meter and an ultrasonic distance meter. Figure 4 is the height from the belt surface, and the difference between dry method moisture value and infrared absorption type moisture meter display value. Figure 5 is a diagram showing the flow of calibration of moisture values. □1...powder, 2.
...Belt conveyor, 3...Infrared absorption type moisture meter sensor, 4...Irradiation infrared rays, 5...Ultrasonic distance meter, 6
...Ultrasonic wave, 7... Arithmetic unit, 8... Output device, 9
... Processor, 10... Phototube type no-load detector (light receiving section), 11... Phototube type no-load detector (light emitting section), 12... Belt roller, 13... Infrared irradiation port, 14...Ultrasonic emission port.

Claims (1)

【特許請求の範囲】 1、ベルトコンベアで連続又は断続的に輸送する粉粒体
の水分を、赤外線吸収式水分計を用いて、連続かつ非接
触で測定する装置であつて: ベルトコンベア上の粉粒体に赤外線照射口 を向けて設けた、粉粒体の水分を測定する赤外線吸収式
水分計と; 前記赤外線吸収式水分計と並列に設置され 粉粒体との距離を測定する距離計と; 前記距離計によつて測定された距離変動値 に基き、前記水分計によつて得られた値を校正する演算
部とが設けられてなる粉粒体の水分連続測定装置。
[Claims] 1. An apparatus for continuously and non-contactly measuring the moisture content of powder or granular material transported continuously or intermittently on a belt conveyor using an infrared absorption moisture meter, which includes: an infrared absorption moisture meter installed with an infrared ray irradiation port facing the powder and granule to measure the moisture content of the powder; and a distance meter installed in parallel with the infrared absorption moisture meter to measure the distance to the powder and granule. A continuous moisture measuring device for powder and granular material, comprising; and a calculation unit that calibrates the value obtained by the moisture meter based on the distance variation value measured by the distance meter.
JP60149936A 1985-07-10 1985-07-10 Instrument for measuring moisture of granule continuously Pending JPS6212838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60149936A JPS6212838A (en) 1985-07-10 1985-07-10 Instrument for measuring moisture of granule continuously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60149936A JPS6212838A (en) 1985-07-10 1985-07-10 Instrument for measuring moisture of granule continuously

Publications (1)

Publication Number Publication Date
JPS6212838A true JPS6212838A (en) 1987-01-21

Family

ID=15485802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60149936A Pending JPS6212838A (en) 1985-07-10 1985-07-10 Instrument for measuring moisture of granule continuously

Country Status (1)

Country Link
JP (1) JPS6212838A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496617U (en) * 1972-04-18 1974-01-21
JPS56142454A (en) * 1980-04-09 1981-11-06 Nippon Kokan Kk <Nkk> Steel pipe's upset flaw inspecting device
JPS578555B1 (en) * 1970-05-11 1982-02-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578555B1 (en) * 1970-05-11 1982-02-17
JPS496617U (en) * 1972-04-18 1974-01-21
JPS56142454A (en) * 1980-04-09 1981-11-06 Nippon Kokan Kk <Nkk> Steel pipe's upset flaw inspecting device

Similar Documents

Publication Publication Date Title
CA1076712A (en) Self-compensating x-ray or gamma ray thickness gauge
GB2182149A (en) Improved moisture meter
US7098409B2 (en) Apparatus for weighing materials online
FI70750C (en) ANORDINATION FOR THE MAINTENANCE OF THE CONCENTRATION FOR AND FOR THE OCCASION OF A TILLSATSAEMNE
US3936638A (en) Radiology
US4070575A (en) Measurement of flow of particulate material by sensing the shadow profile
US20100189213A1 (en) Correcting transverse scattering in a multi-emitter ct scanner
US3412249A (en) Backscatter thickness measuring gauge utilizing different energy levels of bremsstrahlung and two ionization chambers
JPS6212838A (en) Instrument for measuring moisture of granule continuously
WO1993024833A1 (en) Detecting diamonds in a rock sample
JPS5582006A (en) Measuring method for thickness
USRE30884E (en) On-line system for monitoring sheet material additives
JPS6385309A (en) Method and apparatus for measuring thickness of liquid film on plate-like material
JPH0541930B2 (en)
US20050163282A1 (en) Method for determining a gsm substance and/or a chemical composition of a conveyed material sample, and a device for this purpose
JPH0578762B2 (en)
RU2038159C1 (en) Apparatus for continuous quality control of coal on belt of conveyer
JPS56128443A (en) Grain size measuring method of granulous substance
JPH0234603Y2 (en)
SU1028387A1 (en) Apparatus for x=ray rado radiometric sorting of ores
SU939086A1 (en) Lumpy materials separation method
JP2004061479A (en) X-ray foreign matter detector
JPS5831523B2 (en) Atsusa Sokutei Souchi
JPS6333096B2 (en)
JPS59154347A (en) Measuring method of water content