JPS6188741A - Monitoring system of cooling medium temperature for rotary electric machine - Google Patents

Monitoring system of cooling medium temperature for rotary electric machine

Info

Publication number
JPS6188741A
JPS6188741A JP59207009A JP20700984A JPS6188741A JP S6188741 A JPS6188741 A JP S6188741A JP 59207009 A JP59207009 A JP 59207009A JP 20700984 A JP20700984 A JP 20700984A JP S6188741 A JPS6188741 A JP S6188741A
Authority
JP
Japan
Prior art keywords
temperature
cooling medium
alarm
stator coil
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59207009A
Other languages
Japanese (ja)
Inventor
Morio Matsuzaki
松崎 盛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59207009A priority Critical patent/JPS6188741A/en
Priority to CH4253/85A priority patent/CH673729A5/de
Priority to US06/784,302 priority patent/US4733225A/en
Priority to DE3535550A priority patent/DE3535550C2/en
Publication of JPS6188741A publication Critical patent/JPS6188741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To find the abnormal condition of a generator earlier, by generating an alarm when cooling medium temperatures metered at the outlets of cooling medium passages come to the range of temperature alarm values. CONSTITUTION:Cooling medium temperatures are metered by thermometric elements 21 at the outlets of each cooling medium passages of stator coils, and the output of a generator namely the scale of armature current is metered by a current transformer 27 within a line connecting the generator to a main transformer, and the metered temperatures and current are directed to a comparing operator 30 for input. In the meantime, to the comparing operator 30, an alarm curve generator 29 setting temperature alarm values of the upper limit and the lower limit previously according to the output of the generator every cooling medium at the outlets of cooling medium passages in stator coils 3 is connected, and when it is judged that the cooling medium temperatures metered by a said comparing operator 30 come to the range of the temperature alarm values of the upper limit and the lower limit, then the alarm is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固定子コイル内部に設けた冷却媒体通路の出
口における冷却媒体温度を監視する回転電機の冷却媒体
温度監視方式に関する0〔従来の技術〕 従来この種の装置として第5図、第6図および第7図に
示すようなタービン発電機の冷却媒体温度監視装置があ
った。第5図はこのタービン発電機内部の通風状況を示
す説明図、第6図は固定子コイルの断面図、第7図は固
定子コイルの冷却媒体通路の出口における冷却媒体温度
の監視回路図の説明図である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a cooling medium temperature monitoring method for a rotating electrical machine that monitors the cooling medium temperature at the outlet of a cooling medium passage provided inside a stator coil. ] As a conventional device of this type, there has been a cooling medium temperature monitoring device for a turbine generator as shown in FIGS. 5, 6, and 7. Fig. 5 is an explanatory diagram showing the ventilation situation inside this turbine generator, Fig. 6 is a sectional view of the stator coil, and Fig. 7 is a circuit diagram for monitoring the coolant temperature at the outlet of the coolant passage of the stator coil. It is an explanatory diagram.

第5図において、1は発電機のフレームで、機内に水素
ガスを封入しておくため、気密構造となっている02は
固定子鉄心、3は固定子コイル、4は回転子、5は回転
子4の回転軸48両端を支える軸受、6は回転子4の一
端部外周に突設したプロワ、8は水素ガスクーラである
。また、ctは低温の水素ガスの流れの方向を示す矢印
、G2は固定子コイル3の内部における水素ガスの流れ
の方向を示す矢印、G3は固定子コイル3内部に設けた
冷却媒体通路の出口における水素ガスの流れの方向を示
す矢印、G4は回転子コイル内部における水素ガスの流
れの方向を示す矢印である。
In Figure 5, 1 is the frame of the generator, which has an airtight structure in order to seal hydrogen gas inside the machine. 02 is the stator core, 3 is the stator coil, 4 is the rotor, and 5 is the rotating Bearings that support both ends of the rotating shaft 48 of the rotor 4, 6 a blower protruding from the outer periphery of one end of the rotor 4, and 8 a hydrogen gas cooler. Further, ct is an arrow indicating the flow direction of low-temperature hydrogen gas, G2 is an arrow indicating the flow direction of hydrogen gas inside the stator coil 3, and G3 is an exit of the cooling medium passage provided inside the stator coil 3. An arrow G4 indicates the direction of the flow of hydrogen gas inside the rotor coil.

次に、この水素ガスによる冷却作用について述べると、
水素ガスはフレーム1内に封止されておシ、回転子4の
回転によってプロワ6によシガスクーラフに送られて冷
却される。冷却された低温の水素ガス8は矢印G1の向
きに流れ、固定子コイル3のガス入口から固定子コイル
3の内部を軸方向(矢印G2方向)に通過して、固定子
コイル3の抵抗損失などによる発生熱を奪い、温度の高
い水素ガスとなって固定子コイル3の冷却媒体通路の出
口から矢印G3方向に排出される。
Next, let's talk about the cooling effect of hydrogen gas.
Hydrogen gas is sealed within the frame 1, and is sent to the gas cooler by the blower 6 and cooled by the rotation of the rotor 4. The cooled low-temperature hydrogen gas 8 flows in the direction of arrow G1, passes from the gas inlet of stator coil 3 through the interior of stator coil 3 in the axial direction (direction of arrow G2), and reduces the resistance loss of stator coil 3. The hydrogen gas absorbs the heat generated by the hydrogen gas, becomes high-temperature hydrogen gas, and is discharged from the exit of the cooling medium passage of the stator coil 3 in the direction of arrow G3.

一方、回転子4の回転子コイルに入った低温の水素ガス
はこの回転子コイルの両端から中央部に向って軸方向(
矢印G4)方向に流れ、その回転子コイルに生じた発生
熱を奪い、温度の高い水素ガスとなってその回転子コイ
ルの中央部から排出される。
On the other hand, the low-temperature hydrogen gas that has entered the rotor coil of rotor 4 moves in the axial direction (
It flows in the direction of arrow G4), absorbs the heat generated in the rotor coil, becomes high temperature hydrogen gas, and is discharged from the center of the rotor coil.

これらの高温の水素ガスはブロワ6によってガスクーラ
7に送られ、冷却水と熱交換を行って低温ガスとなり、
再び上記の各矢印Gr、Gz、Gs、G<の方向に循還
する。
These high-temperature hydrogen gases are sent to the gas cooler 7 by the blower 6, where they exchange heat with cooling water and become low-temperature gas.
It circulates again in the directions of the above-mentioned arrows Gr, Gz, Gs, and G<.

また、固定子コイル3付近の構造は第6図に示すように
なっている。同図において、12は固定子鉄心、13f
i固定子スロツトであり、このスロット13に固定子コ
イル3が挿入されている。14は固定子コイル3の対地
絶縁部材、15は固定子コイル導体、16はこの導体1
5内に埋設された通風管である。この通風管16は固定
子コイルの全長にわたって設けられ、この通風管16内
を水素ガスが通過することによって固定子=イル3を冷
却する。固定子コイル3はスペーサ18.19を介在し
て、スロットウェッジ20により固定子スロット13内
に脱出しないように保持されている。
Further, the structure around the stator coil 3 is as shown in FIG. In the same figure, 12 is a stator core, 13f
i stator slot, and the stator coil 3 is inserted into this slot 13. 14 is a ground insulating member of the stator coil 3, 15 is a stator coil conductor, and 16 is this conductor 1.
This is a ventilation pipe buried inside 5. The ventilation pipe 16 is provided over the entire length of the stator coil, and hydrogen gas passes through the ventilation pipe 16 to cool the stator coil 3. The stator coil 3 is held in the stator slot 13 by a slot wedge 20 with spacers 18, 19 interposed therebetween so as not to escape.

さらに、冷却媒体温度の監視回路はWJ7図に示す。水
素ガスは固定子コイル3内部を通過する際に固定子コイ
ル3の熱を吸収し、冷却媒体通路の出口つまシ通風管1
6の出口から排出される。21は複数の固定子コイル3
の冷却媒体通路のうち出口に設けた測温索子で、その出
口から排出される水素ガスの温度を測定する。測温素子
21からの温度信号は記録計22および警報装置23に
入力される。
Furthermore, the cooling medium temperature monitoring circuit is shown in Figure WJ7. When the hydrogen gas passes through the stator coil 3, it absorbs the heat of the stator coil 3, and the hydrogen gas absorbs the heat of the stator coil 3 and passes through the outlet of the cooling medium passage.
It is discharged from outlet 6. 21 is a plurality of stator coils 3
The temperature of the hydrogen gas discharged from the outlet is measured by a temperature measuring cable installed at the outlet of the cooling medium passage. A temperature signal from the temperature measuring element 21 is input to a recorder 22 and an alarm device 23.

警報装置23はすべての測温素子21からの温度信号を
常に一括監視し、このうちいずれかの測温素子で検出し
た温度が予め設定した警報値を超えた場合に警報を発す
る。そしてとの警報値は発電機の負荷の大きさすなわち
電機子電流の大きさに関係なく測温データのみに依存し
て一定の値に定められている。第8図は電機子電流と冷
却媒体通路の出口における冷却媒体温度および警報値と
の関係を示すグラフである。なお、ここでは定格電機子
電流における上記冷却媒体温度の上昇を1(p、u−)
として表わしである。
The alarm device 23 always collectively monitors the temperature signals from all the temperature measuring elements 21, and issues an alarm when the temperature detected by any of the temperature measuring elements exceeds a preset alarm value. The alarm value is determined to be a constant value depending only on the temperature measurement data, regardless of the magnitude of the load on the generator, that is, the magnitude of the armature current. FIG. 8 is a graph showing the relationship between the armature current, the coolant temperature at the outlet of the coolant passage, and the alarm value. In addition, here, the increase in the above cooling medium temperature at the rated armature current is expressed as 1 (p, u-)
It is expressed as .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷却媒体温度監視は以上のように構成されている
ので、複数の固定子コイル3の各測温素子で検出した温
度信号のうちいずれかが上記警報値を越えることによシ
贅報が発生されるまで固定子コイルの異常を発見するの
が困難であり、かつ異常発生後の迅速な処置ができない
とbう問題点があった。
Since the conventional cooling medium temperature monitoring is configured as described above, a malfunction occurs when any one of the temperature signals detected by each temperature measuring element of the plurality of stator coils 3 exceeds the above alarm value. There have been problems in that it is difficult to discover an abnormality in the stator coil until it occurs, and it is impossible to take immediate action after the abnormality occurs.

また、固定子コイルの冷却媒体通路の出口における冷却
媒体温度は電機子電流の大きさに応じて変化するが、上
記θ報値が電機子電流に関係なく一定であるため電機子
電流の小さい領域では警報値とのひらきが大きくなり1
、電機子が相当以上に温度上昇しないと固定子コイルの
異常を正しく判断できないし、逆に′FL機子電子電流
きい領域では冷却媒体温度の上昇により誤って清報を発
しやすくなるという間、頂点があった。
In addition, the coolant temperature at the exit of the coolant passage of the stator coil changes depending on the magnitude of the armature current, but since the above θ signal value is constant regardless of the armature current, it is possible to Then, the difference between the alarm value and the alarm value becomes 1.
, unless the temperature of the armature rises above a considerable level, abnormalities in the stator coil cannot be correctly determined, and conversely, in the 'FL armature electronic current threshold region, it is easy to erroneously issue a warning due to the rise in coolant temperature. There was a peak.

更に、警報発生前に固定子コイル3の異常を発見するた
め、従来では電機子電流の変化と上記温度記録計に表示
される全てΩ温度値の時間変化を見比べて運転員が判断
していたので、運転員の常時監視による疲労が著るしく
、固定子コイル3が異常であるかどうかの判断も多分に
経験にたよるところがあシ、誤判断する場合が生じてい
た。
Furthermore, in order to discover abnormalities in the stator coil 3 before an alarm occurs, operators conventionally made judgments by comparing changes in armature current with time changes in all Ω temperature values displayed on the temperature recorder. As a result, the operator is significantly fatigued by constant monitoring, and the judgment as to whether or not the stator coil 3 is abnormal is largely dependent on experience, resulting in erroneous judgments.

本発明は上記のような従来のものの問題点を除去するた
めになされたもので、全ての固定子コイル内部に設けた
冷却媒体通路の出口における測温素子が得た温度信号を
相互に自動比較し、発電機出力に応じて予め設定した警
報値領域外に上記自動比較した温度差が達した場合に警
報を発することができる回転電機の冷却媒体温度監視装
置を提供することを目的とするものである。これによシ
発電機の異常の早期発見、事故の未然防止あるいは運転
員の負担軽減が図れる0 〔問題点を解決するだめの手段〕 本発明は固定子コイル内の冷却媒体通路の出口における
冷却媒体温度ごとに、予め発電機出力に応じた上限およ
び下限の温度搾報値を設定しておき、上記冷却媒体通路
の出口において測定した冷却媒体温度と上記温度昔報値
との差を常時自動監視し、その差が異常に大きくなった
とき警報を発するようにしたのである。
The present invention was made in order to eliminate the problems of the conventional ones as described above, and it automatically compares the temperature signals obtained by the temperature measuring elements at the exits of the cooling medium passages provided inside all stator coils. The object of the present invention is to provide a cooling medium temperature monitoring device for a rotating electrical machine that can issue an alarm when the automatically compared temperature difference reaches a value outside a preset alarm value range according to the generator output. It is. This makes it possible to detect abnormalities in the generator early, prevent accidents, and reduce the burden on operators. For each medium temperature, upper and lower limit temperature values are set in advance according to the generator output, and the difference between the coolant temperature measured at the outlet of the coolant passage and the previous temperature value is automatically calculated at all times. The system was designed to monitor and issue an alarm when the difference becomes abnormally large.

〔作 用〕[For production]

この発明によれば、冷却媒体温度を固定子コイルの各冷
却媒体通路の出口において測温素子により測定しておシ
、また、発電機出力つまり電機子電流の大きさが発電機
と主変圧器とを結ぶ紛路に入れた電流変成器によって測
定され、これらが比較演算器に入力される。一方、この
比較器よf器には、固定子コイル内の冷却媒体通路の出
口における冷却媒体温度ごとに、予め発電機出力に応じ
て上限および下限の温度警報値を設定した等報曲線発生
器が接続されていて、上記比較演算器が上記測定した冷
却媒体温度が上限、下限の温度伴報値領域内に入ったと
判定したとき、W報を発するように作用する。
According to this invention, the coolant temperature is measured by a temperature measuring element at the outlet of each coolant passage of the stator coil, and the magnitude of the generator output, that is, the armature current is measured between the generator and the main transformer. are measured by a current transformer inserted in the connecting path, and these are input to a comparator. On the other hand, this comparator is equipped with a contour curve generator that has upper and lower temperature alarm values set in advance according to the generator output for each coolant temperature at the outlet of the coolant passage in the stator coil. is connected, and when the comparator determines that the measured coolant temperature falls within the upper and lower temperature guide value ranges, it acts to issue a W alarm.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、21は各固定子コイル3内に設けた冷却媒
体通路の出口に設けた測温素子、22は各測温素子21
に接続した記録計、23は同様に接続した警報素子で、
音や光で表示するものが用いられる0また、24は温度
監視装置で、上記冷却媒体通路の出口における冷却媒体
温度ごとに、予め発電機出力に応じて予め設定した上限
および下限の温度費報値と、上記各測温素子で測定した
温度との温度差を比較演算し、その温度差が異常となる
場合に、g報装置23に警報信号を出力するものである
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 21 is a temperature measuring element provided at the outlet of the cooling medium passage provided in each stator coil 3, and 22 is each temperature measuring element 21.
23 is an alarm element connected in the same way,
In addition, 24 is a temperature monitoring device that displays upper and lower temperature limits preset according to the generator output for each coolant temperature at the outlet of the coolant passage. The temperature difference between this value and the temperature measured by each temperature measuring element is compared and calculated, and if the temperature difference becomes abnormal, an alarm signal is output to the g-information device 23.

第2図はかかる温度監視装置24を具体的に示したもの
である。かかる回路では、測温素子21の測温信号が、
測温抵抗体の抵抗値変化あるいはサーモカップルの発生
電圧の変化として、ケーブルを介して固定子コイル3ご
とに設けた各変換素子25に入力させる。各変換素子2
5では例えば時間積分した安定なアナログ信号を出力し
、これを各比較器30にそれぞれ入力する。一方、発電
機の電機子電流は電流変成器27により検出し、この検
出電流を変換器28を介して各比較器30に入力する0
29は警報曲線発生器で、発電機出力すなわち電機子電
流の大きさに応じて、冷却媒体温度の上限および下限の
温度警報値を二次曲線の形で発生するものである。した
がって、比較器30は電機子電流に応じた各測温温度と
その温度警報値とを比較し、その差が異常に大きくなる
とき警報器23に警報信号を出力する。
FIG. 2 specifically shows such a temperature monitoring device 24. As shown in FIG. In such a circuit, the temperature measurement signal of the temperature measurement element 21 is
A change in the resistance value of the resistance temperature sensor or a change in the voltage generated by the thermocouple is input to each conversion element 25 provided for each stator coil 3 via a cable. Each conversion element 2
5 outputs, for example, a time-integrated stable analog signal, and inputs this to each comparator 30, respectively. On the other hand, the armature current of the generator is detected by a current transformer 27, and this detected current is input to each comparator 30 via a converter 28.
Reference numeral 29 denotes an alarm curve generator which generates upper and lower temperature alarm values of the coolant temperature in the form of a quadratic curve in accordance with the magnitude of the generator output, that is, the armature current. Therefore, the comparator 30 compares each measured temperature according to the armature current with its temperature alarm value, and outputs an alarm signal to the alarm 23 when the difference between them becomes abnormally large.

次に、上記温度監視装置の作用を第3図に示すフローチ
ャートについて具体的に説明する。
Next, the operation of the temperature monitoring device will be specifically explained with reference to the flowchart shown in FIG.

(a)  先ず、複数の固定子コイル3ごとに設けた測
温素子21によシ、冷却媒体温度T t −Tl】を検
出するとともに、電流変成器27から電機子電流1ph
を検出し、これらの各検出信号を変換素子25゜28を
通して比較器30に読み込む。
(a) First, the temperature measuring element 21 provided for each of the plurality of stator coils 3 detects the coolant temperature T t −Tl, and the armature current 1 ph is detected from the current transformer 27.
are detected and each of these detection signals is read into the comparator 30 through the conversion element 25.

(b)  比較器20に読み込んだ上記電機子電流Ip
hと予め設定されている定格型(Q子電流とからp、u
(b) The armature current Ip read into the comparator 20
h and the preset rated type (Q current and p, u
.

変換した電流値1を求める0 (C)  次に、電機子電流に応じた冷却媒体温度の上
限および下限の温度警報値を二次曲課の形で予め設定し
記憶させておく。この温度警報値は冷却媒体の温度上昇
値が電機子電流工の略二乗に比例するところから、上限
がTANN−H=AX I”+BX I+C。
Determine the converted current value 1 (C) Next, the upper and lower limit temperature alarm values of the coolant temperature according to the armature current are previously set and stored in the form of a quadratic curve. Since the temperature rise value of the cooling medium is approximately proportional to the square of the armature current, the upper limit of this temperature alarm value is TANN-H=AX I"+BX I+C.

下限がTANN−L=DXI”+EXI+Fと、適当な
余裕を持たせて第4図のように設定され、各係数A、B
、C。
The lower limit is set as TANN-L=DXI"+EXI+F with an appropriate margin as shown in Figure 4, and each coefficient A, B
,C.

D、E、Fを任意に選ぶことで、これら2つの二次曲線
の傾向を適当に設定できる。なお、固定子コイル3が正
常でも冷却媒体温度は定格電機子電流時でも約4〜5℃
の温度のばらつきがあるので、各測温素子21に応じた
警報曲線を記憶させる必要がある。
By arbitrarily selecting D, E, and F, the trends of these two quadratic curves can be set appropriately. Note that even if the stator coil 3 is normal, the coolant temperature remains approximately 4 to 5 degrees Celsius even at the rated armature current.
Since there are variations in temperature, it is necessary to store an alarm curve corresponding to each temperature measuring element 21.

(dl  ここで、先ず上限の温度設定値TANN−H
が上記測定温度TI −Tnが大きいか否かを判定する
(dl Here, first, the upper temperature setting value TANN-H
It is determined whether or not the above-mentioned measured temperature TI -Tn is large.

(e)  Tl−TnのいずれかがTANN−Hよりも
大きいか等しい場合(T1〜Tn≧TANN−H)には
、比較器30は惇報装置23に3報償号を出力する。
(e) If either Tl-Tn is greater than or equal to TANN-H (T1 to Tn≧TANN-H), the comparator 30 outputs three reward signals to the notification device 23.

(f)  また、T1〜Tn≧TANN−Hでない場合
において、T1〜Tn≦TANN −Lと判定された場
合には、比較器30は善報装置23に警報信号を出力す
る。
(f) Furthermore, in the case where T1 to Tn≧TANN-H is not satisfied, if it is determined that T1 to Tn≦TANN-L, the comparator 30 outputs an alarm signal to the good news device 23.

(g)シかし、TANN−L < TI ” Tn <
 TANN−Hである場合には、冷却媒体温度が正常で
あシ、従って固定子コイルも正常に動作しているものと
して善報は発せられない。
(g) Shikashi, TANN-L < TI ” Tn <
If TANN-H, the coolant temperature is normal and therefore the stator coil is also operating normally, and no good news is issued.

このように、温度信号、電機子電流信号および温度警報
値信号が比較器30に常時とり込まれ、電機子電流に応
じて温度信号と警報曲線との対比が常時性われる。なお
、温度信号および電機子電流の大きさは、指示計器31
によって運転員に常時示される。なお、変換装置25、
警報曲線発生装置および比較器30は集積回路化するこ
とにょシ、装置の小形化、大量生産化に好都合になるも
のであシ、故障の発生も最小限に抑えることができる。
In this way, the temperature signal, armature current signal, and temperature alarm value signal are always taken into the comparator 30, and the temperature signal and the alarm curve are constantly compared in accordance with the armature current. Note that the magnitude of the temperature signal and armature current is determined by the indicator 31.
is constantly displayed to the operator. Note that the conversion device 25,
The alarm curve generating device and the comparator 30 can be integrated into an integrated circuit, which is advantageous for miniaturization and mass production of the device, and the occurrence of failures can be minimized.

なお、第4図では電機子電流値の大きさに関係なく上限
、下限の警報曲線と冷却媒体の温度曲線との差を略一定
にしているが、電機子電流が小さくなるほど、この差を
小さくするこ゛とにょυ、/JS電流域での固定子コイ
ル3の異常検出精度を上げることができる。
In addition, in Fig. 4, the difference between the upper limit and lower limit alarm curves and the cooling medium temperature curve is kept almost constant regardless of the magnitude of the armature current value, but as the armature current becomes smaller, this difference becomes smaller. By doing so, it is possible to improve the accuracy of abnormality detection of the stator coil 3 in the /JS current range.

なお、上記実施例では固定子コイル3を水素ガスで冷却
するタービン発電機について説明したが、固定子コイル
3を水や油で冷却するタービン発電機にも応用できる。
In the above embodiment, a turbine generator in which the stator coil 3 is cooled with hydrogen gas has been described, but the present invention can also be applied to a turbine generator in which the stator coil 3 is cooled with water or oil.

また、冷却媒体の温度を直接測定するほかに、各固定子
コイル間に埋込んだ測温素子によって各固定子コイルの
温度を測定するようにしてもよい。
In addition to directly measuring the temperature of the cooling medium, the temperature of each stator coil may be measured by a temperature measuring element embedded between each stator coil.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、複数の固定子コイル
内の冷却媒体通路の出口ごとの冷却媒体温度が、発電機
出力に応じて予め設定した上限および下限の温度e報値
領域にあるか否かを常時判断して、その温度警報値信号
にある場合には警報を発するようにしたことによシ、発
電機特に固定子コイルの冷却不足による熱的あるいは絶
縁的障害の発生を迅速に認知でき、必要な保守、点検の
対策をとることができる。また、上記警報による自動監
視によって運転員の労働負担を軽減することができるな
どの効果が得られる。
As described above, according to the present invention, the coolant temperature at each outlet of the coolant passage in a plurality of stator coils is within the upper and lower temperature e-report value ranges set in advance according to the generator output. By constantly determining whether the temperature is high or not, and issuing an alarm if the temperature alarm value signal is present, the occurrence of thermal or insulation failures due to insufficient cooling of the generator, especially the stator coil, can be quickly detected. It is possible to recognize the situation and take necessary maintenance and inspection measures. Moreover, the automatic monitoring using the above-mentioned warning can reduce the labor burden on the operator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方式実施に用いられる回転電機の冷却
媒体温度監視装置の構成図、第2図は冷却媒体の温度監
視装置の回路図、第3図は第2図の回路動作の流れを示
すフローチャート、第4図は電機子電流に対する設定警
報値の関係を示すグラフ、第5図は本発明の基礎となる
タービン発電機の構造および冷却ガス通流系統を示す説
明図、第6図は同じく固定子コイル付近の断面図、第7
図は従来の冷却媒体温度監視回路の説明図、第8図は同
じ〈従来の電機子電流に対する設定警報値の関係を示す
グラフである。 図において、3は固定子コイル、4は回転子、7はガス
クーラ、12は固定子鉄心、16は通、風管、21は測
温素子、23はR報装置、24は温度監視装置、27は
電流変成器、29は弁報曲線発生器、30は比較器、3
1は指示計器である、なお各図中同一符号は同一または
相当部分を示す。 特゛許出願人  三菱電機株式会社 第4図 電機子tL(Pμ、)
Fig. 1 is a configuration diagram of a cooling medium temperature monitoring device for a rotating electric machine used to implement the method of the present invention, Fig. 2 is a circuit diagram of a cooling medium temperature monitoring device, and Fig. 3 is a flowchart of the circuit operation of Fig. 2. FIG. 4 is a graph showing the relationship between the set alarm value and the armature current. FIG. 5 is an explanatory diagram showing the structure and cooling gas flow system of the turbine generator, which is the basis of the present invention. is also a cross-sectional view near the stator coil, No. 7
The figure is an explanatory diagram of a conventional coolant temperature monitoring circuit, and FIG. 8 is a graph showing the relationship between the set alarm value and the armature current in the same conventional case. In the figure, 3 is a stator coil, 4 is a rotor, 7 is a gas cooler, 12 is a stator core, 16 is a wind pipe, 21 is a temperature measuring element, 23 is an R reporting device, 24 is a temperature monitoring device, 27 is a current transformer, 29 is a valve signal generator, 30 is a comparator, 3
Reference numeral 1 denotes an indicating instrument, and the same reference numerals in each figure indicate the same or corresponding parts. Patent applicant Mitsubishi Electric Corporation Figure 4 Armature tL (Pμ,)

Claims (3)

【特許請求の範囲】[Claims] (1)固定子コイル内部に設けた冷却媒体通路に冷却媒
体を流すことによつてこの固定子コイルを冷却するよう
にした回転電機において、上記冷却媒体通路の出口にお
ける冷却媒体温度ごとに、予め発電機出力に応じた上限
および下限の温度警報値を設定しておき、上記冷却媒体
通路の出口において測定した冷却媒体温度が上記温度警
報値領域に入つたとき警報を発するようにしたことを特
徴とする回転電機の冷却媒体温度監視方式。
(1) In a rotating electrical machine in which the stator coil is cooled by flowing a cooling medium through a cooling medium passage provided inside the stator coil, the temperature of the cooling medium at the exit of the cooling medium passage is determined in advance. Upper and lower temperature alarm values are set according to the generator output, and an alarm is issued when the coolant temperature measured at the outlet of the coolant passage falls within the temperature alarm value range. Coolant temperature monitoring method for rotating electric machines.
(2)上限および下限の温度警報値を電機子電流の二次
式で求めたことを特徴とする特許請求の範囲第1項記載
の回転電機の冷却媒体温度監視方式。
(2) A cooling medium temperature monitoring method for a rotating electric machine according to claim 1, wherein the upper and lower temperature alarm values are determined by a quadratic equation of armature current.
(3)発電機出力は、この出力の供給を受ける主変圧器
に継がる母線に入れた電流変成器から得るようにしたこ
とを特徴とする特許請求の範囲第1項記載の回転電機の
冷却媒体温度監視方式。
(3) Cooling of the rotating electric machine according to claim 1, characterized in that the generator output is obtained from a current transformer installed in a bus bar connected to the main transformer that receives this output. Medium temperature monitoring method.
JP59207009A 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine Pending JPS6188741A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59207009A JPS6188741A (en) 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine
CH4253/85A CH673729A5 (en) 1984-10-04 1985-10-02
US06/784,302 US4733225A (en) 1984-10-04 1985-10-04 Cooling medium temperature monitoring system for rotary electric machine
DE3535550A DE3535550C2 (en) 1984-10-04 1985-10-04 Coolant temperature monitoring for rotating electrical machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207009A JPS6188741A (en) 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS6188741A true JPS6188741A (en) 1986-05-07

Family

ID=16532680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207009A Pending JPS6188741A (en) 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6188741A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164174A (en) * 1978-06-16 1979-12-27 Mitsubishi Electric Corp Temperature monitor device of generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164174A (en) * 1978-06-16 1979-12-27 Mitsubishi Electric Corp Temperature monitor device of generator

Similar Documents

Publication Publication Date Title
KR940004778B1 (en) Temperature monitoring system for an electric generator
EP2372882B1 (en) Stator coil coolant flow reduction monitoring
KR940001179B1 (en) Generator stator winding diognostic system
US4733225A (en) Cooling medium temperature monitoring system for rotary electric machine
US5701044A (en) Process and device for monitoring the temperature of an electric generator
US4623265A (en) Transformer hot-spot temperature monitor
US20030011397A1 (en) Method for monitoring the radial gap between the rotor and the stator of electric generators and device for carrying out said method
KR101332113B1 (en) Apparatus for preventive maintenance of motor
US11309773B2 (en) System and method for monitoring temperature of rotating electric machine
JPH06315247A (en) Refrigerant temperature monitoring system for rotating electric machine
US4101277A (en) Detection of incipient faults in hydrogen-cooled generators
JPS6188741A (en) Monitoring system of cooling medium temperature for rotary electric machine
JPS6188739A (en) Monitoring system of cooling medium temperature for rotary electric machine
JPH05284692A (en) Monitoring equipment for temperature of coil of rotating electric machine
JPH06101910B2 (en) Cooling medium temperature monitoring method for generator
JPS6188740A (en) Monitoring system of cooling medium temperature for rotary electric machine
JPS63133854A (en) Temperature monitoring method for cooling medium of rotary electric machine
RU2366059C1 (en) Method of controlling and diagnosing technical state of turbo-generators
SU1576997A1 (en) Method of diagnostics of developing troubles in cores of electric machine winding
Livshitz et al. Condition diagnostics of energized electrical equipment: Case studies
Gurevich et al. A dynamic method for the test diagnostics of local thermal defects in the stator winding of a turbogenerator with water cooling
JP2004023986A (en) Temperature monitoring system of stator winding of generator
JPH09288016A (en) Diagnostic device for abnormality of stationary apparatus
du Pasquier Guarantees for temperature rise in electrical machinery, with special reference to large turbo-generators
JPS6275361A (en) Monitor for armature winding