JPS6136934A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6136934A
JPS6136934A JP15965584A JP15965584A JPS6136934A JP S6136934 A JPS6136934 A JP S6136934A JP 15965584 A JP15965584 A JP 15965584A JP 15965584 A JP15965584 A JP 15965584A JP S6136934 A JPS6136934 A JP S6136934A
Authority
JP
Japan
Prior art keywords
insulating film
semi
base
electrode
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15965584A
Other languages
Japanese (ja)
Inventor
Teruyuki Kasashima
笠島 輝之
Hideo Kawasaki
川崎 英夫
Susumu Sugumoto
直本 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15965584A priority Critical patent/JPS6136934A/en
Publication of JPS6136934A publication Critical patent/JPS6136934A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To simplify a process for extracting an electrode by changing a semi- insulating film in a base-emitter junction section into an insulating film through ion implantation. CONSTITUTION:A semi-insulating film 5 and an insulating film 6 are applied onto the whole surface of a semiconductor substrate 1, to which a P-N junction is shaped, first. The insulating film 6 in the vicinity of the base-emitter junction section is etched selectively. The semi-insulating film 5 in the base-emitter junction section is turned into an insulating film through ion implantation, and insulating films 9 having the same quality as the insulating film 6 on the surface side are shaped. The insulating film 6 is etched selectively for forming openings for each electrode forming section for a base and an emitter. A base electrode 7 and an emitter electrode 8 are applied and shaped through the evaporation deposition of aluminum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表面安定化層を有する半導体装置の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a surface stabilizing layer.

従来例の構成とその問題点 プレーナ型半導体装置において、PN接合の現われる半
導体基板表面は、通常、熱酸化膜で保護される。しかし
、この半導体装置のPN接合に逆電圧を印加すると、熱
酸化膜中に存在する正電荷により、基板と熱酸化膜との
界面付近での空乏層の拡がわが、基板内部よりも小さく
なり電界が界2ぺ。
Conventional Structure and Its Problems In a planar semiconductor device, the surface of the semiconductor substrate where the PN junction appears is usually protected with a thermal oxide film. However, when a reverse voltage is applied to the PN junction of this semiconductor device, the expansion of the depletion layer near the interface between the substrate and the thermal oxide film becomes smaller than that inside the substrate due to the positive charges existing in the thermal oxide film. The electric field is field 2pe.

面に集中して界面付近での耐圧の低下を起こす。Concentrates on the surface and causes a drop in withstand pressure near the interface.

さらに熱酸化膜の表面にイオンが存在すると、高温環境
でPN接合に逆電圧を印加する試験において、PN接合
の耐圧の劣化や漏れ電流の増大等を伴なう不良が発生す
ることが多い。
Furthermore, the presence of ions on the surface of the thermal oxide film often causes defects such as deterioration of the withstand voltage of the PN junction and increase in leakage current in tests in which a reverse voltage is applied to the PN junction in a high temperature environment.

そこで、熱酸化膜の代わりに、半絶縁性膜として知られ
る酸素をドープした多結晶シリコン膜を被着し、これに
よって接合の耐圧を向上させ、信頼性を向上させている
。半絶縁性膜はわずかに導電性であるため、その下側の
領域をその上側の材料の電荷からも遮蔽でき、またPN
接合の逆電圧印加時に、半絶縁性膜で電圧を徐々に降下
させることにより、半絶縁性膜の下側の領域における電
界を減少させるため、信頼性を向上させ、耐圧を向上さ
せることができる。さらに実用の半導体装置では、半絶
縁性膜上に絶縁膜、たとえば、シリコン酸化膜を堆積さ
せて半絶縁性膜を保護し、半導体基板の表面安定化を高
めうるようにするのが好ましい。次に、NPNブレーナ
トランジスタを例に、半絶縁性膜を用いた場合の製造工
程を説明する。
Therefore, instead of the thermal oxide film, an oxygen-doped polycrystalline silicon film known as a semi-insulating film is deposited to improve the breakdown voltage of the junction and improve reliability. Because the semi-insulating film is slightly conductive, it can also shield the area underneath it from the charge of the material above it, and the PN
By gradually lowering the voltage across the semi-insulating film when applying a reverse voltage across the junction, the electric field in the area under the semi-insulating film is reduced, which improves reliability and withstand voltage. . Furthermore, in a practical semiconductor device, it is preferable to deposit an insulating film, for example, a silicon oxide film, on the semi-insulating film to protect the semi-insulating film and improve surface stabilization of the semiconductor substrate. Next, a manufacturing process using a semi-insulating film will be explained using an NPN Brainer transistor as an example.

第1図AはN型シリコン半導体基板1の表面に、熱酸化
によって熱酸化膜を形成し、この熱酸化膜に開口を形成
して、この開口から不純物拡散を行ない、ベース領域2
をP型不純物拡散により形成し、次いで、この拡散時に
形成された熱酸化膜をマスクにして、エミッタ領域3を
N型不純物拡散により形成したものであり、この拡散時
に熱酸化膜4が形成される。
In FIG. 1A, a thermal oxide film is formed on the surface of an N-type silicon semiconductor substrate 1 by thermal oxidation, an opening is formed in this thermal oxide film, and impurities are diffused from this opening to form a base region 2.
is formed by diffusing P-type impurities, and then, using the thermal oxide film formed during this diffusion as a mask, the emitter region 3 is formed by diffusing N-type impurities, and a thermal oxide film 4 is formed during this diffusion. Ru.

第1図Bは、半導体基板のベース・コレクタ接合付近と
コレクタ領域1との表面の熱酸化膜4を除去して周辺部
に開口を形成したものである。ベース領域2とエミッタ
領域3とのPN接合部の表面に熱酸化膜4を残置したの
は、PN接合の順電圧印加時にリーク電流による直流電
流増幅率の低下を防ぐためである。
In FIG. 1B, the thermal oxide film 4 on the surface of the collector region 1 and near the base-collector junction of the semiconductor substrate is removed to form an opening in the periphery. The reason why the thermal oxide film 4 is left on the surface of the PN junction between the base region 2 and the emitter region 3 is to prevent the direct current amplification factor from decreasing due to leakage current when applying a forward voltage to the PN junction.

第1図Cは、半絶縁性膜としての酸素を含んだ多結晶シ
リコン膜5と絶縁膜としてのシリコン酸化膜6とを気相
成長法によって、順次、全面に形成したものである。
In FIG. 1C, a polycrystalline silicon film 5 containing oxygen as a semi-insulating film and a silicon oxide film 6 as an insulating film are successively formed over the entire surface by vapor phase growth.

第1図りは、ベースとエミッタ電極部の開口を形成する
ため、絶縁膜6と半絶縁性膜5を選択エツチングしたも
のである。半絶縁性膜が直接、半導体基板に被着すると
半絶縁性膜はシリコンとの選択エツチングが良好に行な
われないため、エツチングの終点が明確ではなく、エツ
チングが足りなかったり、あるいはエツチングしすぎた
るおそれがあり、それを防ぐためにも熱酸化膜を残して
いる。半絶縁性膜5のエツチングには、たとえばCF4
+02のプラズマが用いられるが、酸化膜との選択比が
大きいため終点がはっきりとする。
In the first diagram, the insulating film 6 and the semi-insulating film 5 are selectively etched to form openings for the base and emitter electrode portions. When a semi-insulating film is directly deposited on a semiconductor substrate, the selective etching of the semi-insulating film with silicon does not occur well, so the end point of the etching is not clear and the etching may be insufficient or over-etched. To prevent this, a thermal oxide film is left behind. For example, CF4 is used for etching the semi-insulating film 5.
Although +02 plasma is used, the end point is clear because it has a high selectivity with respect to the oxide film.

第1図Eは、ベース領域2上およびエミッタ領域3上の
電極形成部に開口を形成したものである。
In FIG. 1E, openings are formed in the electrode forming portions on the base region 2 and emitter region 3. In FIG.

このように表面安定化層5,6と熱酸化膜4との二段階
のエツチングが必要であり製造上かなり吹雑である。
As described above, two-step etching of the surface stabilizing layers 5 and 6 and the thermal oxide film 4 is required, which is quite complicated in manufacturing.

第1図Fは、ベース電極7およびエミッタ電極8が被着
形成されたものである。
In FIG. 1F, a base electrode 7 and an emitter electrode 8 are formed.

発明の目的 本発明は、上記の難点を解決するためになされたもので
あり、電極取出しの工程を簡略化し、電極の断切れを防
止することが可能な半導体装置の製造方法を提供するも
のである。
OBJECTS OF THE INVENTION The present invention has been made to solve the above-mentioned difficulties, and provides a method for manufacturing a semiconductor device that simplifies the process of taking out the electrodes and can prevent the electrodes from breaking. be.

発明の構成 本発明は、表面にPN接合を現わして有する半導体基板
の全面をおおって、半絶縁性膜および絶縁膜を被着する
工程、前記絶縁膜を選択エツチングする工程イオン注入
によって前記半絶縁性膜を絶縁膜化する工程を備えた半
導体装置の製造方法であり、これにより、半絶縁性膜を
選択エツチングする工程が削減できるとともに電極の断
切れを防止できるため、歩留の向上および信頼性の向上
がはかれるものである。
Structure of the Invention The present invention provides a step of depositing a semi-insulating film and an insulating film over the entire surface of a semiconductor substrate having a PN junction exposed on the surface, a step of selectively etching the insulating film, and a step of selectively etching the insulating film by ion implantation. This is a semiconductor device manufacturing method that includes a step of converting an insulating film into an insulating film. This method reduces the step of selectively etching a semi-insulating film and prevents electrode breakage, thereby improving yield and This is intended to improve reliability.

実施例の説明 第2図A〜第2図Eは、本発明をNPN トランジスタ
の製造工程に実施する一例を工程順に図示したものであ
る。
DESCRIPTION OF THE EMBODIMENTS FIGS. 2A to 2E illustrate an example of implementing the present invention in the manufacturing process of an NPN transistor in the order of steps.

第2図Aは、第1図Aの従来工程に引き続いて、エミッ
タ領域3の形成後、半導体表面の全域に、半絶縁性膜5
と絶縁膜6とを気相成長法によって、順次、全面に形成
したものである。この半絶縁性膜5の被着によって耐圧
を向上させ信頼性を向上させている。半絶縁性膜6の形
成は、減圧CVD装置内にモノシランと亜酸化窒素ガス
を混合させることによって、酸素を含む多結晶シリコン
膜を形成し、捷た、絶縁膜6の形成は、亜酸化窒素ガス
の流量を増加して連続的にシリコン酸化膜を形成する工
程によって実現することができる。この半絶縁性膜5は
、半導体基板表面を外部電界から遮蔽するのに充分な程
度導電性とするため、1o7Ωα〜1o10Ω儂との間
の比抵抗を有するように選択される。
FIG. 2A shows that, following the conventional process of FIG. 1A, after the emitter region 3 is formed, a semi-insulating film 5 is applied over the entire semiconductor surface.
and an insulating film 6 are sequentially formed over the entire surface by a vapor phase growth method. The deposition of the semi-insulating film 5 improves the breakdown voltage and reliability. The semi-insulating film 6 is formed by mixing monosilane and nitrous oxide gas in a low-pressure CVD apparatus to form a polycrystalline silicon film containing oxygen. This can be achieved by a process of continuously forming a silicon oxide film by increasing the flow rate of gas. This semi-insulating film 5 is selected to have a specific resistance between 107 Ωα and 1010 Ω2 in order to be sufficiently conductive to shield the semiconductor substrate surface from external electric fields.

第2図Bは、ベース・エミッタ接合部付近の絶縁膜6を
選択エツチングしたものである。
FIG. 2B shows selective etching of the insulating film 6 near the base-emitter junction.

第2図Cは、酸素あるいは窒素をイオン注入して、ベー
ス・エミッタ接合部の半絶縁性膜6を絶縁膜化して、表
面側の絶縁膜6と同質の絶縁膜9を形成したものである
。従ってベース・エミッタ接合部のベース領域2上とエ
ミッタ領域3上の絶縁膜の厚みは等しくなる。これによ
って特性改善のために微細化が進む場合でもアルミニウ
ム蒸着電極の断切れを防止できる。
In FIG. 2C, oxygen or nitrogen ions are implanted to transform the semi-insulating film 6 at the base-emitter junction into an insulating film, forming an insulating film 9 of the same quality as the insulating film 6 on the surface side. . Therefore, the thickness of the insulating film on the base region 2 and on the emitter region 3 of the base-emitter junction becomes equal. This makes it possible to prevent the aluminum vapor-deposited electrode from breaking even when miniaturization progresses to improve characteristics.

第2図りは、電極取出しのためにベースとエミッタとの
各電極形成部の開口を形成するために絶縁膜6を選択エ
ツチングしたものである。
The second diagram shows the insulating film 6 selectively etched to form openings in the base and emitter electrode forming portions for taking out the electrodes.

第2図Eは、ベース電極γおよびエミッタ電極8がアル
ミニウム蒸着により被着形成されたもので、半絶縁性膜
5は通常、5000八程度の膜厚であり、アルミニウム
電極の500℃位の熱処理によって合金層1oが形成さ
れ半導体基板と良好なオーミックコンタクトが得られる
In FIG. 2E, the base electrode γ and the emitter electrode 8 are formed by aluminum vapor deposition, and the semi-insulating film 5 is usually about 5,000 degrees thick, and the aluminum electrode is heat-treated at about 500°C. Thus, an alloy layer 1o is formed and good ohmic contact with the semiconductor substrate is obtained.

なお本実施例ではNPNトランジスタに本発明を適用し
たが、PNP )ランジスタ・ダイオードに本発明を適
用しても同様の効果を有することは明らかである。
In this embodiment, the present invention is applied to an NPN transistor, but it is clear that the same effect can be obtained even if the present invention is applied to a PNP transistor/diode.

発明の詳細 な説明したように、本発明はPN接合面を有する半導体
装置において、半導体基板表面の全面に半絶縁性膜およ
び絶縁膜を被着し、この絶縁膜を選択エツチングし、イ
オン注入によってベース・エミッタ接合部の半絶縁性膜
を絶縁膜化し、ベースとエミッタとの各電極形成部の開
口を形成するだめに絶縁膜を選択エツチングし、ベース
電極とエミッタ電極を被着形成し、電極の熱処理によっ
て、半導体基板との良好なオーミックコンタクトが得ら
れることによって、半絶縁性膜を選択エツチングする工
程が削減でき、ベース・エミッタ接合部の絶縁膜の厚み
を等しくできることによって、電極の断切れを防止でき
るという利点を有するものである。
As described in detail, the present invention provides a semiconductor device having a PN junction surface, in which a semi-insulating film and an insulating film are deposited on the entire surface of a semiconductor substrate, this insulating film is selectively etched, and etching is performed by ion implantation. The semi-insulating film at the base-emitter junction is made into an insulating film, and the insulating film is selectively etched to form openings for the base and emitter electrode formation parts.The base electrode and emitter electrode are deposited and the electrodes The heat treatment enables good ohmic contact with the semiconductor substrate, which eliminates the process of selectively etching the semi-insulating film, and by making the thickness of the insulating film at the base-emitter junction equal, there is no disconnection of the electrode. This has the advantage of being able to prevent

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜第1図Fは従来例を工程順に示した断面図、
第2図A〜第2図Eは本発明の一実施例を工程順に示し
た断面図である。 1・・・・・・N型半導体基板、2・・・・・・P型不
純物を拡散したべ〜ス領域、3・・・・・・N型不純物
を拡散したエミッタ領域、4・・・・・・熱酸化膜、5
・・・・・・半絶縁性膜、6・・・・・・絶縁膜、7・
・・・・・ベース電極、8・・・・・・エミッタ電極、
9・・・・・・絶縁化した半絶縁性膜、10・・・・・
・半絶縁性膜と電極との合金層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!!
l!1図
Figures 1A to 1F are cross-sectional views showing the conventional example in the order of steps;
FIGS. 2A to 2E are cross-sectional views showing an embodiment of the present invention in the order of steps. 1... N-type semiconductor substrate, 2... Base region with P-type impurities diffused, 3... Emitter region with N-type impurities diffused, 4... ...Thermal oxide film, 5
... Semi-insulating film, 6... Insulating film, 7.
...Base electrode, 8...Emitter electrode,
9... Insulated semi-insulating film, 10...
・Alloy layer of semi-insulating film and electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person! !
l! Figure 1

Claims (1)

【特許請求の範囲】[Claims] 表面にPN接合を有する半導体基板の全面をおおって、
半絶縁性膜とその上に絶縁膜とを堆積する工程と、前記
絶縁膜を選択エッチング除去する工程と、イオン注入に
よって前記半絶縁性膜を絶縁膜化する工程とを有する半
導体装置の製造方法。
Covering the entire surface of a semiconductor substrate with a PN junction on the surface,
A method for manufacturing a semiconductor device, comprising: depositing a semi-insulating film and an insulating film thereon; removing the insulating film by selective etching; and converting the semi-insulating film into an insulating film by ion implantation. .
JP15965584A 1984-07-30 1984-07-30 Manufacture of semiconductor device Pending JPS6136934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15965584A JPS6136934A (en) 1984-07-30 1984-07-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15965584A JPS6136934A (en) 1984-07-30 1984-07-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6136934A true JPS6136934A (en) 1986-02-21

Family

ID=15698447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15965584A Pending JPS6136934A (en) 1984-07-30 1984-07-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6136934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062599A1 (en) * 2008-09-05 2010-03-11 Mitsubishi Electric Corporation Method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062599A1 (en) * 2008-09-05 2010-03-11 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
US8377832B2 (en) * 2008-09-05 2013-02-19 Mitsubishi Electric Corporation Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4264382A (en) Method for making a lateral PNP or NPN with a high gain utilizing reactive ion etching of buried high conductivity regions
US4236294A (en) High performance bipolar device and method for making same
JPS60201666A (en) Semiconductor device
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
JPS6256670B2 (en)
EP0194199B1 (en) Double gate static induction thyristor and method for manufacturing the same
JPS6136934A (en) Manufacture of semiconductor device
JPS6136935A (en) Manufacture of semiconductor device
JPS624339A (en) Semiconductor device and manufacture thereof
JPS5834943A (en) Semiconductor device and manufacture thereof
JP2904545B2 (en) High breakdown voltage planar semiconductor device and method of manufacturing the same
JPS632143B2 (en)
KR940010540B1 (en) Isolating area forming method having gettering function and their structure
JPS63138771A (en) Schottky barrier type semiconductor device and manufacture thereof
JPH05283715A (en) Highly stable zener diode
JPS58164241A (en) Manufacture of semiconductor device
JPS61129868A (en) Semiconductor device
JPH0521374A (en) Semiconductor device and manufacture of the same
JPS6188543A (en) Manufacture of semiconductor device
JPS61136267A (en) Bipolar semiconductor device
JPH01109716A (en) Formation of contact in semiconductor device
JPH01223740A (en) Manufacture of semiconductor integrated circuit
JPH0693458B2 (en) Bipolar transistor
JPH0376023B2 (en)
JPS5898953A (en) Semiconductor device