JPS61246530A - Indoor apparatus of air conditioner - Google Patents

Indoor apparatus of air conditioner

Info

Publication number
JPS61246530A
JPS61246530A JP60086959A JP8695985A JPS61246530A JP S61246530 A JPS61246530 A JP S61246530A JP 60086959 A JP60086959 A JP 60086959A JP 8695985 A JP8695985 A JP 8695985A JP S61246530 A JPS61246530 A JP S61246530A
Authority
JP
Japan
Prior art keywords
heat exchanger
impeller
blower
cross
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60086959A
Other languages
Japanese (ja)
Other versions
JPH0370139B2 (en
Inventor
Katsuhisa Otsuta
勝久 大蔦
Yoshiaki Tanimura
佳昭 谷村
Hiroyuki Umemura
博之 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60086959A priority Critical patent/JPS61246530A/en
Publication of JPS61246530A publication Critical patent/JPS61246530A/en
Publication of JPH0370139B2 publication Critical patent/JPH0370139B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To make uniform the distribution of a quantity of air passing through a heat exchanger and to decrease the noise of a blower by suitably selecting the relative position between the impeller of the blower and the heat exchanger and the direction of the blower. CONSTITUTION:The relative position of a heat exchanger 1 and the impeller 3 of a blower belongs to an upper side region 12b formed by dividing the vertical length of the heat exchanger 1 by an axis (y) 10. Further, the direction of the blower is selected so that an air current blown out of the impeller 3 is directed to a lower side region 12a through an air current passage 13. When the impeller 13 is rotated, the distribution of the flow speed within the blower is zero at the center of a bound vortex 6 and maximum at the outer circumference of the bound vortex 6, and the flow speed decreases in the order of cross air currents 7a, 7b, 7c and 7d. Accordingly, the distribution of the sped of passing air currents of the heat exchanger 1 becomes uniform, and the heat exchange characteristic is improved and the pressure loss is decreased. Further, when the flow-in air current passes through the heat exchanger 1, it flows into the impeller in a laminar flow state, and crosses over the impeller 3, and hence the noise generated from the vane can be remarkably reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱交換器に対向して横断流送風機を配設した
空調装置の室内機、特に熱交換器を通過する風量分布を
均一化すると共に、横断流送風機を低騒音化するようK
したものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is an indoor unit of an air conditioner in which a cross-flow blower is arranged opposite to a heat exchanger, and in particular, to uniformize the distribution of air volume passing through the heat exchanger. In addition, K is used to reduce the noise of the cross-flow blower.
This is what I did.

〔従来の技術〕[Conventional technology]

一般に、空調装置の室内機、特にルームエアコンでは、
室内機設置の省スペースの観点から壁掛タイプが数多く
生産されている。この種の室内機の場合、奥行き寸法を
できるだけ短くして薄形に構成することが実用上重要な
要素となる。このため、ファンとしては奥行きを短くで
きる横断流送風機が多用されている。
In general, indoor units of air conditioners, especially room air conditioners,
Many wall-mounted types are being produced to save space when installing indoor units. In the case of this type of indoor unit, it is practically important to make the depth dimension as short as possible to make it thin. For this reason, cross-flow blowers, which can have a short depth, are often used as fans.

一方、近年ルームエアコンもヒートポンプ型式を採用す
るものが数多く市販されるようになり、暖房時に暖気の
浮き上シを防止するためには、下側吹出しでしかも風速
が大きい送風形態が要求されている。
On the other hand, in recent years, many room air conditioners that use a heat pump type have come on the market, and in order to prevent hot air from floating up during heating, a blowing type that blows out from the bottom and has a high wind speed is required. .

上記要求を満足するためK、従来、第4図に示す空調装
置の室内機が提案されている。
In order to satisfy the above requirements, an indoor unit of an air conditioner as shown in FIG. 4 has been proposed.

図中、(1)は熱交換器、(2)は熱交換器(1)に挿
入したパイプ、(3)は熱交換器(1)に対向する横断
流送風機の羽根車、(4)は横断流送風機のスタビライ
ザ、(5)は横断流送風機のリアガイダ、(6)は羽根
車(3)内に生じる束縛渦、(7)は羽根車(3)内の
横断気流である。なお、熱交換器(1)の羽根車(3)
に対向する位置の2本のパイプ(2)が除去され、この
分羽根車(3)が熱交換器(1)に近接されて奥行きが
短くなるように構成されている。
In the figure, (1) is the heat exchanger, (2) is the pipe inserted into the heat exchanger (1), (3) is the impeller of the cross-flow blower facing the heat exchanger (1), and (4) is the The stabilizer of the crossflow blower, (5) is the rear guider of the crossflow blower, (6) is the bound vortex generated in the impeller (3), and (7) is the crossflow in the impeller (3). In addition, the impeller (3) of the heat exchanger (1)
The two pipes (2) facing each other are removed, and the impeller (3) is moved closer to the heat exchanger (1) to shorten its depth.

次に動作について説明する。羽根車(3)を回転させる
と、スタビライザ(4)に対向する位置に束縛渦(6)
が発生し、その周シに横断気流(7)が誘起される。羽
根車(3)の送風機能として作用するのは横断気流(7
)のみであシ、熱交換器(1)を通過する気流は横断気
流(7)によるものだけとなる。
Next, the operation will be explained. When the impeller (3) is rotated, a bound vortex (6) is created in a position facing the stabilizer (4).
occurs, and a cross-sectional airflow (7) is induced around it. The cross-sectional airflow (7) acts as the blowing function of the impeller (3).
), the airflow passing through the heat exchanger (1) is only due to the crossflow (7).

したがって、熱交換器(1)で熱交換されて加温された
空気流がスタビライザ(4)及びリアガイダ(5)間の
吹出し風路を通って下方に吹出される。
Therefore, the airflow heated by heat exchange in the heat exchanger (1) is blown out downward through the blowout air path between the stabilizer (4) and the rear guider (5).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の空調装置の室内機では、羽根車(3
)と熱交換器(1)の下端部とが対向しており、横断流
送風機は、羽根車(3)内の束縛渦(6)の近傍の横断
気流の流速が最も速く、これから外側に行くに従い流速
が減少する特性を有し、しかも羽根車(3)に対向する
熱交換器(1)の下部位置では2本のパイプが除去され
てパイプが1列となっていることから、この部分(1a
)の通風抵抗が他のパイプ(2)が2列となっている部
分に比較して非常に小さい値となっている。
In the indoor unit of the conventional air conditioner as mentioned above, the impeller (3
) and the lower end of the heat exchanger (1) face each other, and the cross-flow blower has the highest flow velocity of the cross-flow air near the bound vortex (6) in the impeller (3), which goes outward from there. In addition, two pipes are removed in the lower part of the heat exchanger (1) facing the impeller (3) and the pipes are in one row. (1a
) has a very small value compared to the other parts where the pipes (2) are arranged in two rows.

その結果、熱交換器(1)の前面風速は、熱交換器(1
)下部のパイプ除去部分(1b)で最大となり、熱交換
器(1)の上端部(1b)で最小となる。
As a result, the front wind speed of the heat exchanger (1) is
) is maximum at the lower pipe removal section (1b) and minimum at the upper end (1b) of the heat exchanger (1).

一方、熱交換器(1)の熱交換量は、u”xC’(但し
、Uは前面風量、Cはパイプ(2)の列数、α。
On the other hand, the heat exchange amount of the heat exchanger (1) is u''xC' (where U is the front air volume, C is the number of rows of pipes (2), and α.

βは定数である。)に比例するので、全熱交換量(TH
) HlTH= Ar”X C’ ds テ表b サレ
ル。
β is a constant. ), the total heat exchange amount (TH
) HlTH= Ar”X C’ ds Te table b Salel.

したがって、風量Q(=7”uds)が一定の場合には
、前面風量Uが鋭いピーク値を持ち、熱交換器(1)の
パイプ列数が大きく違うときには、全熱交換量(TH)
は、前面風量(u)の分布が一様な場合に比較して著し
く減少する。このため、羽根車(3)の回転数を上げて
風量(Q)を増加させなければならず、その結果として
送風機の消費電力の増加や騒音が増大する等の問題点が
あった。
Therefore, when the air volume Q (=7" uds) is constant, the front air volume U has a sharp peak value, and when the number of pipe rows of heat exchanger (1) differs greatly, the total heat exchange volume (TH)
is significantly reduced compared to the case where the distribution of the front air volume (u) is uniform. For this reason, it is necessary to increase the rotational speed of the impeller (3) to increase the air volume (Q), which results in problems such as an increase in the power consumption of the blower and an increase in noise.

この発明は、係る問題点を解決するためになされたもの
で、風量を増加させることなく熱交換器の吸込み風速分
布を一様にして全熱交換量を増大させることができ、消
費電力、騒音等を低減する空調装置の室内機を得ること
を目的としている。
This invention was made to solve this problem, and can increase the total heat exchange amount by making the suction air velocity distribution of the heat exchanger uniform without increasing the air volume, reducing power consumption and noise. The objective is to obtain an indoor unit for an air conditioner that reduces the

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る空調装置の室内機は、横断流送風機の羽
根車とこれに対向する熱交換器との相対位置関係が、羽
根車の軸心を通り熱交換器に直交する軸線が熱交換器の
段方向領域を上下2分割した上側領域及び下側領域の何
れか一方(例えば上側領域)に属するように選定され、
且つ羽根車からの気流吹出し方向が他方の領域(下側領
域)側となるように横断流送風機の向きが選定されてい
る。
In the indoor unit of the air conditioner according to the present invention, the relative positional relationship between the impeller of the cross-flow blower and the heat exchanger opposing the impeller is such that the axis passing through the axis of the impeller and orthogonal to the heat exchanger is the heat exchanger. is selected to belong to either the upper area or the lower area (for example, the upper area) obtained by dividing the column direction area into upper and lower halves,
In addition, the direction of the cross-flow blower is selected so that the direction of airflow from the impeller is toward the other region (lower region).

〔作用〕[Effect]

この発明においては、横断流送風機の羽根車を熱交換器
の段方向領域を上下2分割した上側領域及び下側領域の
何れか一方に対向させ、且つ羽根車の気流吹出し方向が
他方の領域側となるように横断流送風機の向きを選定す
ることKよシ、羽根車による束縛渦を熱交換器の面積が
広い領域側に発生させ、これによって熱交換器の通風流
速分布を均一化させて全熱交換量が増大する。
In this invention, the impeller of the cross flow blower is arranged to face either an upper region or a lower region obtained by dividing the stage direction region of the heat exchanger into upper and lower halves, and the air flow blowing direction of the impeller is directed toward the other region. By selecting the direction of the cross-flow blower so that Total heat exchange amount increases.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す断面図であシ、図中
、(1)は熱交換器、(2)は熱交換器(1)K挿入さ
れたパイプ、(3)は熱交換器(りに対向する横断流送
風機を構成する羽根車、(4)は横断流送風機を構成す
るスタビライザ% (4a)はスタビライザ(4)の支
持と吹出し通路を形成するセパレータとを兼ねるスタビ
ライザ支持部% (41))は熱交換器(1)の支持兼
ドレーン受け、(5)は横断流送風機を構成するリアガ
イダ、(6)は束縛渦、(7)は横断気流、(8)は羽
根車(3)の軸心、(9)は軸心(8)を通って熱交換
器(1)に平行なX軸、(10)は軸心(8)を通って
熱交換器(1)に直交するy軸である。
FIG. 1 is a sectional view showing one embodiment of the present invention. In the figure, (1) is a heat exchanger, (2) is a pipe inserted into the heat exchanger (1), and (3) is a heat exchanger. (4) is a stabilizer that constitutes the cross-flow blower; (4a) is a stabilizer support that also serves as support for the stabilizer (4) and a separator that forms a blowout passage; (41)) is the support and drain receiver for the heat exchanger (1), (5) is the rear guider that constitutes the crossflow blower, (6) is the bound vortex, (7) is the crossflow, and (8) is the blade. The axis of the car (3), (9) is the X axis passing through the axis (8) and parallel to the heat exchanger (1), (10) is the axis passing through the axis (8) and parallel to the heat exchanger (1) The y-axis is perpendicular to .

ここで、熱交換器(1)と羽根車(3)との相対位置は
、y軸(lO)が熱交換器(1)の上下方向(段方向)
の長さを2分割した下側領域(X2a)及び上側領域(
xzb)中の上側領域(xzb)に属し、しかもy軸(
10)が熱交換器(1)を2:lに分割する位置となる
ように選定されておシ、且つ横断流送風機の向きは、羽
根車(3)から吹出される気流の吹出し方向がスタビラ
イザ(4)及びその支持部(4a)とリアガイダ(5)
とKよって形成される気流通路(13)を通じて下側領
域(12a)側となるように選定されている。
Here, the relative position of the heat exchanger (1) and the impeller (3) is such that the y-axis (lO) is in the vertical direction (stage direction) of the heat exchanger (1).
The lower region (X2a) and upper region (
belongs to the upper region (xzb) in the y-axis (
10) is selected so that the heat exchanger (1) is divided into 2:l, and the direction of the cross-flow blower is such that the blowing direction of the airflow blown from the impeller (3) is the stabilizer. (4) and its support part (4a) and rear guider (5)
The lower area (12a) side is selected through the airflow passageway (13) formed by and K.

次に動作について説明する。羽根車(3)を回転させる
と、羽根車(3)内のスタビライザ(4)と対向する位
置即ち熱交換器(1)の下側領域(12a)側に束縛渦
(6)が発生し、これによシ横断気流(7a)〜(7d
)が誘起される。
Next, the operation will be explained. When the impeller (3) is rotated, a bound vortex (6) is generated in the impeller (3) at a position facing the stabilizer (4), that is, on the lower region (12a) side of the heat exchanger (1). This allows cross-sectional airflow (7a) to (7d
) is induced.

ここで、横断流送風機内の流速分布は、束縛渦(6)の
中心で零、束縛製外周で最大となシ、これより外側では
束縛渦(6)から離れるに従って漸次減少する。即ち、
横断気流(7a)、  (7b)、(7c)。
Here, the flow velocity distribution in the cross-flow blower is zero at the center of the bound vortex (6), maximum at the bound periphery, and gradually decreases outside of this as it moves away from the bound vortex (6). That is,
Cross-flow (7a), (7b), (7c).

(7d)の順に流速が減少する。The flow velocity decreases in the order of (7d).

一方、熱交換器(1)と羽根車(3)の相対位置と空力
特性との関係を測定した結果、y軸(]0)が熱交換器
(1)の上下方向長さを下側(A) :、上側(B)に
分割するものとすると、それらの分割比C(=a/B 
)と、圧力損失比(Ps/Pso )との関係は第2図
に示すようKなる。ここで、 PeaはC=Q即ち羽根
車中心を通るy軸(10)が熱交換器(1)の最下部に
一致したときの静圧である。
On the other hand, as a result of measuring the relationship between the relative position of the heat exchanger (1) and the impeller (3) and the aerodynamic characteristics, it was found that the y-axis (]0) corresponds to the vertical length of the heat exchanger (1) on the lower side ( A) :, if it is divided into the upper side (B), their division ratio C (=a/B
) and the pressure loss ratio (Ps/Pso) is K as shown in FIG. Here, Pea is C=Q, that is, the static pressure when the y-axis (10) passing through the center of the impeller coincides with the lowest part of the heat exchanger (1).

この第2図から明らかなようK s C> l−oに選
定すれば、圧力損失比(Ps/Pso )を十分小さく
することができる。
As is clear from FIG. 2, if K s C>lo is selected, the pressure loss ratio (Ps/Pso) can be made sufficiently small.

このことから、上記実施例のようにy軸(10)が熱交
換器(1)の上側号の所に位置しているので、熱交換器
(1)の下側%で流入し、熱交換された気流が流速の大
きい横断気流(7a)、(7b)、(7C)となシ、上
側イで流入し、熱交換された気流が流速の遅い横断気流
(7d)となる。したがって、熱交換器(1)の全面で
略一様に気流が流入することKなシ、前記従来例のよう
に束縛渦(6)に近接する熱交換器(1)部分だけから
多量に気流が流入することを防止することができる。
From this, since the y-axis (10) is located at the upper side of the heat exchanger (1) as in the above example, the flow will flow at the lower side of the heat exchanger (1), and the heat exchange The airflow flows into the high-velocity cross-sectional airflows (7a), (7b), and (7C) at the upper side A, and the heat-exchanged airflow becomes the low-velocity cross-sectional airflow (7d). Therefore, the airflow does not flow substantially uniformly over the entire surface of the heat exchanger (1), and instead of flowing in a large amount only from the portion of the heat exchanger (1) that is close to the bound vortex (6) as in the conventional example. can be prevented from flowing in.

また、羽根車(3)に流入する横断気!(7a)〜(7
d)は、束縛渦(6)を中心とする略同心円状の気流と
なシ、従来例のように羽根車(3)の入口で急激な方向
変化を生じることがなく、羽根車(3)を横断する気流
の流れが非常に円滑となシ、その結果、風路抵抗が減少
するので、羽根車(3)の少ない回転数で多くの風量を
得ることができる。即ち、従来例のように羽根車(3)
の回転数を増加させて熱交換器(1)の上部からの気流
を強制的に本来横断流送風機で形成される気流に抗して
流入させるのではなく、横断流送風機で最も効果的な1
80°転向角状態となるので、熱交換器(1)の通過風
速分布が均一化され、熱交換特性が向上し、圧力損失も
低下する。一方、横断流送風機の空力特性から見れば、
羽根車(3)内の流れに対して、吸込流れが熱交換器(
1)によシ適正化されるので、羽根車(3)によって発
生される束縛渦(6)が強化され、それに伴って横断気
流も強くなシ、同一騒音ペースで羽根車(3)の仕事量
をよシ多くすることができる。
Also, the cross air flowing into the impeller (3)! (7a) ~ (7
d) is a substantially concentric airflow centered around the bound vortex (6), and there is no sudden change in direction at the inlet of the impeller (3) as in the conventional example; The air flow across the impeller (3) is very smooth, and as a result, the air path resistance is reduced, so a large amount of air can be obtained with a small number of rotations of the impeller (3). That is, as in the conventional example, the impeller (3)
Instead of increasing the rotational speed of the heat exchanger (1) and forcing the airflow from the top of the heat exchanger (1) to flow in against the airflow originally formed by the crossflow blower,
Since the turning angle is 80°, the air velocity distribution passing through the heat exchanger (1) is made uniform, the heat exchange characteristics are improved, and the pressure loss is also reduced. On the other hand, from the aerodynamic characteristics of a cross-flow blower,
In contrast to the flow inside the impeller (3), the suction flow flows through the heat exchanger (
1) Since the flow is optimized, the bound vortex (6) generated by the impeller (3) is strengthened, and the cross-sectional airflow is also strong. You can increase the amount.

さらに、羽根車(3)内の最も流速の速い部分即ち束縛
渦(6)の外周部の気流が、従来例のようにすぐ近くか
ら流入するものではなく、光分離れた位置から流入する
ので、流入気流が熱交換器(1)を通過する際に発生す
る流れの乱れが、長い距離流れる間に緩和されて比較的
乱れのない層流状態で羽根車(3)に流入することにな
り、これを羽根車(3)が横切るので、羽根から発生す
る騒音を著しく低減させることができる。
Furthermore, the airflow at the part of the impeller (3) with the highest flow velocity, that is, the outer periphery of the bound vortex (6), does not flow in from the immediate vicinity as in the conventional example, but from a position separated by light. , the flow turbulence that occurs when the incoming airflow passes through the heat exchanger (1) is alleviated as it flows over a long distance, and it flows into the impeller (3) in a relatively undisturbed laminar flow state. Since the impeller (3) crosses this, the noise generated from the blades can be significantly reduced.

また、スタビライザ(4)の支持部(4a)を風路形成
用のセパレータとして兼用すると共に、その基部にドレ
ーン受け(4b)を形成することによシ、ドレーン受け
を別途設ける必要がなく、全体の構成を簡略化すること
ができるのみならず、コストも低減することができる。
In addition, by using the support part (4a) of the stabilizer (4) as a separator for forming an air passage, and by forming a drain receptacle (4b) at its base, there is no need to separately provide a drain receptacle. Not only can the configuration be simplified, but also the cost can be reduced.

さらに、スタビライザ(4)の支持部(4a)とリアガ
イダ(5)とで形成される気流通路(13)は、上部に
羽根車(3)を設置したことによシ、羽根車(3)の出
口から室内機吹出し口までの距離を長くとることができ
るので、この部分を曲シ静圧回復流路として利用するこ
とができる。この静圧回復流路は、横断流送風機では、
流体に与える仕事量は動圧成分として発生するので、送
風機の仕事量を有効に使用するためには、動圧成分を静
圧に効率良く変換するために必要とするものであり、こ
れを室内機の背面側に効率良く配置することができるの
で、横断流送風機を極めて高効率で使用することができ
る。ここで、静圧回復流路は、上記実施例のように曲シ
静圧回復流路とすると、一般には拡が多面が曲っている
ので、静圧回復率が著しく低下するものであるが、上記
実施例では、静圧回復流路の入口に強い束縛渦(6)が
存在しているため、その束縛渦(6)によって誘起され
る気流によって曲シ静圧回復流路であっても気流が壁面
から剥離せず、高い静圧回復率を得ることができる。特
に、従来の静圧回復流路は拡シ角θが片側で8°以上と
すると急激に静圧回復率が低下するのに対し、本実施例
の場合は、拡り角θを片側で15°程度にしても十分な
静圧回復率を得ることができる。
Furthermore, the airflow passage (13) formed by the support part (4a) of the stabilizer (4) and the rear guider (5) is formed by installing the impeller (3) at the top. Since the distance from the outlet to the indoor unit outlet can be increased, this part can be used as a curved static pressure recovery flow path. This static pressure recovery flow path is
The amount of work given to the fluid is generated as a dynamic pressure component, so in order to use the amount of work of the blower effectively, it is necessary to efficiently convert the dynamic pressure component into static pressure, and this is done indoors. Since it can be efficiently placed on the back side of the machine, the cross-flow blower can be used with extremely high efficiency. Here, if the static pressure recovery flow path is a curved static pressure recovery flow path as in the above embodiment, the static pressure recovery rate will be significantly reduced because the expansion is generally curved on many sides. In the above embodiment, since a strong bound vortex (6) exists at the entrance of the static pressure recovery channel, the airflow induced by the bound vortex (6) causes the airflow to flow even in the curved static pressure recovery channel. does not peel off from the wall surface, and a high static pressure recovery rate can be obtained. In particular, in the conventional static pressure recovery flow path, when the expansion angle θ is 8 degrees or more on one side, the static pressure recovery rate decreases rapidly, whereas in the case of this embodiment, the expansion angle θ is 15 degrees or more on one side. A sufficient static pressure recovery rate can be obtained even if the pressure is reduced to about 100°C.

次にこの発明の他の実施例を第3図について説明する。Next, another embodiment of the invention will be described with reference to FIG.

この実施例は、熱交換器(1)の羽根車(,3)に対向
する位置における内側の2本のパイプ(2)を除去して
、この部分(1b)のパイプ(2)を1列とし、熱交換
器(1)と羽根車(3)と接近させて奥行きを短くする
ように構成したことを除いては第1図と同様の構成を有
する。
In this embodiment, the two inner pipes (2) at the position facing the impeller (, 3) of the heat exchanger (1) are removed, and the pipes (2) in this part (1b) are replaced in one row. The structure is the same as that shown in FIG. 1, except that the heat exchanger (1) and impeller (3) are arranged close to each other to shorten the depth.

この実施例においても、上述したように羽根車(3)の
熱交換器(1)と対向する位置に吸込気流が集中するこ
とがなく、熱交換器(1)の下部(la)での吸込気流
分布が改善されるので、熱交換器(1)全体として通過
気流が一様となシ、第1図の実施例と同様の作用効果を
得ることができる。
Also in this embodiment, as described above, the suction airflow does not concentrate at the position of the impeller (3) facing the heat exchanger (1), and the suction airflow at the lower part (la) of the heat exchanger (1) Since the airflow distribution is improved, the airflow passing through the heat exchanger (1) as a whole becomes uniform, and the same effect as that of the embodiment shown in FIG. 1 can be obtained.

なお、上記各実施例においては、羽根車(3)の軸心(
8)を通るy軸(10)が熱交換器(1)を2:1に分
割する位置となるように熱交換器(1)と羽根車(3)
との相対位置を選定したが、この位置は、前述したよう
に、束縛製近傍での横断気流に対する熱交換器の面積が
有効に確保されれば良く、1:1で表わされる熱交換器
(1)の中央部から1:。
In addition, in each of the above embodiments, the axis of the impeller (3) (
Heat exchanger (1) and impeller (3) so that the y-axis (10) passing through
The relative position of the heat exchanger ( 1) from the center of 1:.

で表わされる熱交換器(1)の上端までの範囲内で任意
に選定することができる。
It can be arbitrarily selected within the range up to the upper end of the heat exchanger (1) represented by .

また、上記各実施例においては、熱交換器(1)のパイ
プを2列とした場合について説明したが、これに限らず
、1列又は3列以上とすることができる。
Further, in each of the above embodiments, a case has been described in which the heat exchanger (1) has two rows of pipes, but the pipes are not limited to this, and may be one row or three or more rows.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、熱交換器と横断流送風
機の羽根車との相対位置を羽根車の軸心を通り熱交換器
と直交する軸線が熱交換器の段方向長さを2分割した領
域の何れか一方に属する関係に選定し、且つ羽根車から
の気流吹出し方向を他方の領域側となるように横断流送
風機の向きを選定するようKしたので、熱交換器を通過
する風速分布を一様化して熱交換特性を向上させると共
に、機器の発する騒音も大幅に低減させることができる
効果がある。
As explained above, in this invention, the relative position of the heat exchanger and the impeller of the cross-flow blower is such that the axis passing through the axis of the impeller and orthogonal to the heat exchanger divides the length of the heat exchanger in the stage direction into two. Since we selected the relation to belong to one of the regions and the direction of the cross-flow blower so that the airflow blowing direction from the impeller was on the other region side, the wind speed distribution passing through the heat exchanger This has the effect of making the heat exchange characteristics uniform and improving the heat exchange characteristics, as well as significantly reducing the noise emitted by the equipment.

【図面の簡単な説明】 第1図はこの発明の一実施例を示す断面図、第2図は圧
力損失特性を示す特性曲線図、第3図はこの発明の他の
実施例を示す断面図、第4図は従来例を示す断面図であ
る。 図において、(1)は熱交換器、(2)はパイプ、(3
)は羽根車、(4)はスタビライザ、(4a)はスタビ
ライザ支持部%  (4m))はドレーン受け、(5)
はリアガイダ、(6)は束縛渦、(7)、  (71)
〜(7d)は横断気流、(8)は軸心、(lo)はy軸
、(13)は気流通路である。 なお、各図中同一符号は同−又は相当部分を示す。 代理人  弁理士  大 岩 増 雄 (ほか2名) 第1図 第2図 C=A/B 第3図
[Brief Description of the Drawings] Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a characteristic curve diagram showing pressure loss characteristics, and Fig. 3 is a sectional view showing another embodiment of the invention. , FIG. 4 is a sectional view showing a conventional example. In the figure, (1) is a heat exchanger, (2) is a pipe, and (3) is a heat exchanger.
) is the impeller, (4) is the stabilizer, (4a) is the stabilizer support part (4m)) is the drain receiver, (5)
is rear guider, (6) is bound vortex, (7), (71)
~(7d) is the cross-sectional airflow, (8) is the axis, (lo) is the y-axis, and (13) is the airflow passage. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Patent attorney Masuo Oiwa (and 2 others) Figure 1 Figure 2 C=A/B Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)熱交換器に対向させて横断流送風機を配設した空
調装置の室内機において、前記横断流送風機の羽根車の
軸心を通り前記熱交換器と直交する軸線が当該熱交換器
の段方向長さを2分割した領域の何れか一方に属するよ
うに羽根車と熱交換器との相対位置を選定し、且つ羽根
車からの気流吹出し方向が他方の領域側となるように横
断流送風機の向きを選定したことを特徴とする空調装置
の室内機。
(1) In an indoor unit of an air conditioner in which a cross-flow blower is disposed facing a heat exchanger, an axis passing through the axis of the impeller of the cross-flow blower and orthogonal to the heat exchanger is the axis of the heat exchanger. The relative positions of the impeller and the heat exchanger are selected so that the impeller and the heat exchanger belong to either one of the regions where the length in the stage direction is divided into two. An indoor unit of an air conditioner characterized by the fact that the direction of the blower is selected.
(2)前記熱交換器を2列のパイプで構成し、羽根車に
近接する位置のパイプのみを1列にしたことを特徴とす
る特許請求の範囲第1項記載の空調装置の室内機。
(2) The indoor unit of the air conditioner according to claim 1, wherein the heat exchanger is composed of two rows of pipes, and only the pipes located close to the impeller are arranged in one row.
(3)前記横断流送風機のスタビライザ部が、室内機内
の吹出し風路を形成するセパレータを兼用し、且つ当該
セパレータ端部を熱交換器の保持及びドレーン受けとし
たことを特徴とする特許請求の範囲第1項記載の空調装
置の室内機。
(3) The stabilizer section of the cross-flow blower also serves as a separator forming an air outlet path in the indoor unit, and the end of the separator serves as a support for a heat exchanger and as a drain receiver. An indoor unit of an air conditioner according to scope 1.
(4)前記横断流送風機のスタビライザ部が、室内機内
の吹出し風路を形成するセパレータを兼用し、当該セパ
レータと室内機の背面壁とで囲まれた部分を横断流送風
機の吹出し側曲り静圧回復流路とし、その拡り角を片側
15°以下としたことを特徴とする特許請求の範囲第1
項記載の空調装置の室内機。
(4) The stabilizer part of the cross-flow blower also serves as a separator that forms the blow-off air path inside the indoor unit, and the portion surrounded by the separator and the back wall of the indoor unit is the static pressure on the blow-off side of the cross-flow blower. Claim 1, characterized in that the recovery flow path has a divergence angle of 15° or less on one side.
Indoor unit of the air conditioner described in Section 1.
JP60086959A 1985-04-23 1985-04-23 Indoor apparatus of air conditioner Granted JPS61246530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086959A JPS61246530A (en) 1985-04-23 1985-04-23 Indoor apparatus of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086959A JPS61246530A (en) 1985-04-23 1985-04-23 Indoor apparatus of air conditioner

Publications (2)

Publication Number Publication Date
JPS61246530A true JPS61246530A (en) 1986-11-01
JPH0370139B2 JPH0370139B2 (en) 1991-11-06

Family

ID=13901409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086959A Granted JPS61246530A (en) 1985-04-23 1985-04-23 Indoor apparatus of air conditioner

Country Status (1)

Country Link
JP (1) JPS61246530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976744A (en) * 2014-04-14 2015-10-14 海尔集团公司 Air flue structure of air conditioner indoor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976744A (en) * 2014-04-14 2015-10-14 海尔集团公司 Air flue structure of air conditioner indoor unit
CN104976744B (en) * 2014-04-14 2017-11-28 海尔集团公司 Air conditioner indoor machine air duct structure

Also Published As

Publication number Publication date
JPH0370139B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JP4678327B2 (en) Air conditioner
CN204140495U (en) Centrifugal fan volute, centrifugal fan and air conditioner
JP2007292053A (en) Multi-blade fan
US20150056910A1 (en) Indoor unit for air-conditioning apparatus
EP1632725B1 (en) Air conditioner
CN109340915A (en) Air conditioner indoor unit and air conditioner
US20170003038A1 (en) Air-conditioning indoor machine
JPS61246530A (en) Indoor apparatus of air conditioner
CN100359247C (en) Air conditioner
JP2715765B2 (en) Air conditioner
JP2002357194A (en) Cross-flow fan
JP2005106361A (en) Cross flow fan, air conditioner
KR19990050284A (en) Air conditioner indoor unit
CN109268953A (en) Outer machine of air conditioner and air conditioner
JP2001248891A (en) Air conditioner
US20220325905A1 (en) Air handling unit and fan therefor
JP3070212B2 (en) Air conditioner
JP3331873B2 (en) Air conditioner indoor unit
CN211204233U (en) Air duct structure of indoor unit of air conditioner and air conditioner
JPS63135729A (en) Indoor unit of air conditioner
JPS5824099Y2 (en) indoor unit
JPS63233223A (en) Air conditioner
JPH03211396A (en) Air conditioner
KR100261478B1 (en) Indoor unit of separable type airconditioner
JPH0861685A (en) Indoor unit for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term