JPS6118646B2 - - Google Patents

Info

Publication number
JPS6118646B2
JPS6118646B2 JP16994679A JP16994679A JPS6118646B2 JP S6118646 B2 JPS6118646 B2 JP S6118646B2 JP 16994679 A JP16994679 A JP 16994679A JP 16994679 A JP16994679 A JP 16994679A JP S6118646 B2 JPS6118646 B2 JP S6118646B2
Authority
JP
Japan
Prior art keywords
pressure
steam
secondary oil
oil pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16994679A
Other languages
Japanese (ja)
Other versions
JPS5692310A (en
Inventor
Tadayoshi Kamio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16994679A priority Critical patent/JPS5692310A/en
Publication of JPS5692310A publication Critical patent/JPS5692310A/en
Publication of JPS6118646B2 publication Critical patent/JPS6118646B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は混圧タービンの制御装置に関する。[Detailed description of the invention] The present invention relates to a control device for a mixed pressure turbine.

混圧タービンの制御装置として従来より用いら
れているものは、圧力の異なる複数の蒸気源より
それぞれ蒸気供給を受ける複数のタービン部分の
いくつかに対し蒸気入口圧力の制御即ち前圧制御
を行い、かつ同時にタービン全体としては負荷制
御を行う構成となつている。例えば2つのタービ
ン部分即ち高圧部と低圧部とより成る混圧タービ
ンにおいては、両タービン部分の蒸気加減弁はタ
ービン全体の負荷に応じて開閉を制御されると同
時に低圧部の加減弁は入口蒸気圧によつてその開
閉を制御されるように構成されている。このため
その制御機構は複雑であつて高価なものとなりか
つ作動上の信頼性にも問題がある。またこのよう
な制御装置では、その制御態様は上述のような一
定のものに限られ、従つて必要に応じ選択的に前
圧制御モードと速度制御モードとの間で切換を行
なうようなことができず、例えば高圧部及び低圧
部とも供給蒸気圧力が変動するような条件におい
ても、両者とも前圧制御を行なうということは不
可能であるという欠点を有している。またタービ
ンを自家発電等に用いる場合には、負荷がタービ
ンの最大出力を越えることに備えて外部電力網よ
り買電することが行なわれこの場合外部電力網よ
り供給される電力は一定の値に限られるような契
約となることが普通であり、従つて負荷とタービ
ン出力との差が常に一定となるようないわゆる自
動出力制御をなすことが必要となる。しかるに上
述した従来の制御装置では、任意のタービン部分
をこの自動出力制御に切換え得るようにすること
が不可能である。さらにこのような制御装置にお
いては高圧加減弁及び低圧加減弁の開閉運動が互
に完全に独立していないため、複数の蒸気供給源
の1つが故障して1つのタービン部分への蒸気供
給が正常に行われないときそのタービン部分の加
減弁のみを閉鎖してタービン全体は他のタービン
部分のみにより運転を続けるようにするというこ
とができず、タービン全体を停止せざるを得な
い。
Conventionally used control devices for mixed-pressure turbines control the steam inlet pressure, that is, prepressure control, for some of the plurality of turbine parts each receiving steam from a plurality of steam sources having different pressures. At the same time, the turbine as a whole is configured to perform load control. For example, in a mixed pressure turbine consisting of two turbine sections, a high pressure section and a low pressure section, the steam control valves of both turbine sections are controlled to open and close according to the load of the entire turbine, and at the same time, the control valve of the low pressure section is controlled to control the inlet steam. It is configured so that its opening and closing are controlled by pressure. Therefore, the control mechanism is complicated and expensive, and there are also problems in operational reliability. Furthermore, in such a control device, the control mode is limited to the fixed one described above, and therefore it is not possible to selectively switch between the front pressure control mode and the speed control mode as necessary. For example, even under conditions where the supply steam pressure fluctuates in both the high-pressure section and the low-pressure section, it is impossible to perform prepressure control on both the high-pressure section and the low-pressure section. Furthermore, when using a turbine for in-house power generation, etc., power is purchased from an external power grid in case the load exceeds the turbine's maximum output. In this case, the power supplied from the external power grid is limited to a certain value. Such a contract is common, and therefore it is necessary to perform so-called automatic output control so that the difference between the load and the turbine output is always constant. However, with the conventional control device described above, it is not possible to switch any turbine section to this automatic output control. Furthermore, in such a control device, the opening and closing movements of the high-pressure regulating valve and the low-pressure regulating valve are not completely independent of each other, so if one of the multiple steam supply sources fails, the steam supply to one turbine section may not be normal. If this is not done, it is not possible to close only the regulating valve of that turbine section and allow the entire turbine to continue operating only with other turbine sections, and the entire turbine must be stopped.

本発明は上述の如き従来の制御装置における欠
点に鑑み、コストのかからない簡単な機構にし
て、かつ複数のタービン部分をそれぞれ独立に前
圧制御モード及び速度制御モードのいづれかによ
り制御できかつ必要に応じ任意のタービン部分を
自動出力制御モードに切換えることが可能な制御
装置を提供することを目的とする。
In view of the above-mentioned shortcomings in conventional control devices, the present invention provides a simple mechanism that does not require much cost, and allows a plurality of turbine sections to be independently controlled in either the front pressure control mode or the speed control mode, and as required. It is an object of the present invention to provide a control device that can switch any turbine section to automatic output control mode.

第1図は本発明の1つの実施例の系統図を示す
もので、ここでは、高圧蒸気源1及び低圧蒸気源
2より蒸気を供給される2つのタービン部分即ち
高圧部及び低圧部より成る混圧タービンの制御装
置を例にとつている。高圧蒸気源からの蒸気は、
主蒸気止め弁3及び蒸気加減弁5を通つて混圧タ
ービン7の高圧部に供給され、高圧部及び低圧部
において仕事をし復水器8に達する。一方低圧蒸
気源2よりの蒸気は、主蒸気止め弁4及び蒸気加
減弁6を通つて混圧タービンの低圧部に供給さ
れ、この低圧部において仕事をし復水器8に達す
る。混圧タービン7の総仕事量は高圧蒸気及び低
圧蒸気がなした仕事の和である。タービン7は、
ロータの軸に直結されたガバナインペラ9を有し
ており、これはそれに接続された管路10内にロ
ータの回転数に応じた圧力を有する1次油圧を確
立する。
FIG. 1 shows a system diagram of one embodiment of the present invention, in which a mixture of two turbine sections, a high pressure section and a low pressure section, supplied with steam from a high pressure steam source 1 and a low pressure steam source 2 is shown. A pressure turbine control device is taken as an example. Steam from a high pressure steam source is
It is supplied to the high pressure section of the mixed pressure turbine 7 through the main steam stop valve 3 and the steam control valve 5, performs work in the high pressure section and the low pressure section, and reaches the condenser 8. On the other hand, steam from the low pressure steam source 2 is supplied to the low pressure section of the mixed pressure turbine through the main steam stop valve 4 and the steam control valve 6, performs work in this low pressure section, and reaches the condenser 8. The total work of the mixed pressure turbine 7 is the sum of the work done by the high pressure steam and the low pressure steam. The turbine 7 is
It has a governor impeller 9 directly connected to the shaft of the rotor, which establishes in a line 10 connected thereto a primary hydraulic pressure having a pressure dependent on the rotational speed of the rotor.

管路10内に確立された1次油圧は速度制御装
置11に入る。この装置な1次油圧の大きさに対
応した2次油圧を設定するものであつて、油圧を
機械的変位に変える変換器12、この機械的変位
を信号13として受けこれによつて2次油圧を確
立する2次油圧設定装置14,15及び変換器に
おける1次油圧と機械的変位との関係の初期設定
を行う速度設定器16を有する。
The primary hydraulic pressure established in line 10 enters speed control device 11 . This device sets the secondary hydraulic pressure corresponding to the magnitude of the primary hydraulic pressure, and includes a converter 12 that converts the hydraulic pressure into mechanical displacement, and receives this mechanical displacement as a signal 13, thereby adjusting the secondary hydraulic pressure. It has secondary oil pressure setting devices 14 and 15 for establishing the hydraulic pressure and a speed setting device 16 for initializing the relationship between the primary oil pressure and mechanical displacement in the converter.

速度制御装置11は周知の種々の形態をとるこ
とができるが、本実施例においては第2図に詳細
に示す如き構成となつている。即ち変換器12
は、管路10からの1次油圧を受けるガバナベロ
ーズ17、該ベローズの受圧面に一端を取付られ
たロツド18、及び枢点19を中心に揺動可能で
ありかつロツド18の他端と結合されたレバー2
1を含む。2次油圧設定装置14及び15は同一
の構成であり、その一方についてのみ説明する。
2次油圧設定装置14は、圧力設定室22、ピス
トン23及びスリーブ24を有しスリーブ24は
レバー21に固定される。ピストン23及びスリ
ーブ24には各々油流出孔が設けられ、また圧力
設定室22は高圧油の管路25によつて高圧油供
給源29(第1図)から高圧油の供給を受け従つ
てピストン23は引張ばね26の力に抗して下方
に押圧される。このような構成においてはピスト
ン23はその油流出孔がスリーブのそれと整合す
る位置まで下降しその位置で平衡状態となるた
め、圧力設定室22内には常にピストンをばね2
6に抗して平衡状態位置まで押下げるだけの油
圧、換言すればスリーブ24の位置に応じた油圧
が確立されるのである。従つてタービンロータの
回転が下つて管路10内の1次油圧が下ると、ガ
バナベローズ17が伸長してレバー21を図で見
て右回りに揺動させてスリーブ24を下降させ、
これによつて圧力設定室22内の2次油圧が増大
する。後述のように2次油圧の増大は蒸気加減弁
の開度をより大きくしてタービンロータの回転を
上昇させるのである。速度設定器16はレバー2
1を押圧する圧縮ばね27と、その圧縮度を変え
る装置28とを含んでおり、圧縮ばね27の圧縮
度を変えて、1次油圧の変化とレバー21の変位
との関係の初期設定を行うものである。尚、ばね
26の各々を支持するねじ14a,15aの位置
を変えて、2次油圧設定装置14,15を各々
別々に初期設定することもできる。
Although the speed control device 11 can take various known forms, in this embodiment it has a configuration as shown in detail in FIG. 2. That is, converter 12
includes a governor bellows 17 that receives primary oil pressure from the pipe 10, a rod 18 whose one end is attached to the pressure receiving surface of the bellows, and a rod 18 that is swingable about a pivot point 19 and connected to the other end of the rod 18. lever 2
Contains 1. The secondary oil pressure setting devices 14 and 15 have the same configuration, and only one of them will be described.
The secondary oil pressure setting device 14 includes a pressure setting chamber 22, a piston 23, and a sleeve 24, and the sleeve 24 is fixed to the lever 21. The piston 23 and the sleeve 24 are each provided with an oil outflow hole, and the pressure setting chamber 22 is supplied with high pressure oil from a high pressure oil supply source 29 (FIG. 1) through a high pressure oil pipe line 25, so that the piston 23 is pressed downward against the force of the tension spring 26. In such a configuration, the piston 23 descends to a position where its oil outflow hole aligns with that of the sleeve and reaches an equilibrium state at that position.
6, a hydraulic pressure sufficient to push the sleeve 24 down to the equilibrium state position, in other words, a hydraulic pressure corresponding to the position of the sleeve 24 is established. Therefore, when the rotation of the turbine rotor decreases and the primary oil pressure in the pipe line 10 decreases, the governor bellows 17 extends, swings the lever 21 clockwise as seen in the figure, and lowers the sleeve 24.
As a result, the secondary oil pressure within the pressure setting chamber 22 increases. As will be described later, an increase in the secondary oil pressure increases the opening degree of the steam control valve and increases the rotation of the turbine rotor. The speed setting device 16 is the lever 2
1, and a device 28 for changing the degree of compression of the compression spring 27. By changing the degree of compression of the compression spring 27, the relationship between changes in the primary oil pressure and displacement of the lever 21 is initialized. It is something. It is also possible to initialize the secondary oil pressure setting devices 14 and 15 separately by changing the positions of the screws 14a and 15a that support each of the springs 26.

2次油圧設定装置14によつて確立された2次
油圧は管路31によつて蒸気加減弁5の開閉駆動
を行うサーボモータ32に伝達され、また2次油
圧設定装置15によつて確立された2次油圧は管
路33によつて蒸気加減弁6のサーボモータ34
に伝達される。サーボモータ32,34はいづれ
も2次油圧が増大すると蒸気加減弁の開度を増す
構成である。
The secondary oil pressure established by the secondary oil pressure setting device 14 is transmitted through a pipe 31 to a servo motor 32 that opens and closes the steam control valve 5, and the secondary oil pressure is also established by the secondary oil pressure setting device 15. The secondary hydraulic pressure is supplied to the servo motor 34 of the steam control valve 6 through a pipe 33.
is transmitted to. Both servo motors 32 and 34 are configured to increase the opening degree of the steam control valve when the secondary oil pressure increases.

各々の主蒸気止め弁3,4の上流側には入口蒸
気圧を検知する圧力検知器35,36が設けられ
ている。高圧部用の圧力検知器35は検知した圧
力を油圧又は電気的信号に変換しこれを圧力調節
器37に送る。圧力調節器は予め設定した所望の
入口蒸気圧を表す信号46と、検知器35からの
信号とを比較し、この差に応じた蒸気圧制御信号
38をインパルスリミツタと称される蒸気圧力制
御用の2次油圧設定装置39に送る。この装置は
第2図に示すように、速度制御用の2次油圧設定
装置14と同様の構成であるため、その詳細な説
明は省略するが、その作動については、スリーブ
41は、制御信号38を図示しない適宜な装置に
よつて機械的変位に変換しこの機械的変位をレバ
ー42によつて伝達されるようになつている点が
異る。従つて圧力設定室43には制御信号38に
応じた2次油圧が確立される。制御信号38の大
きさと2次油圧設定装置39によつて設定される
油圧の大きさの関係はねじ39aの位置を変える
ことによつて調整できる。
Pressure detectors 35 and 36 are provided upstream of each of the main steam stop valves 3 and 4 to detect the inlet steam pressure. The pressure sensor 35 for the high pressure section converts the detected pressure into a hydraulic or electrical signal and sends it to the pressure regulator 37. The pressure regulator compares a signal 46 representing a preset desired inlet steam pressure with a signal from the detector 35, and outputs a steam pressure control signal 38 corresponding to this difference to a steam pressure control called an impulse limiter. It is sent to the secondary oil pressure setting device 39 for use. As shown in FIG. 2, this device has the same configuration as the secondary oil pressure setting device 14 for speed control, so a detailed explanation thereof will be omitted. The difference is that this is converted into a mechanical displacement by an appropriate device (not shown), and this mechanical displacement is transmitted by the lever 42. Therefore, a secondary oil pressure is established in the pressure setting chamber 43 in accordance with the control signal 38. The relationship between the magnitude of the control signal 38 and the magnitude of the hydraulic pressure set by the secondary hydraulic pressure setting device 39 can be adjusted by changing the position of the screw 39a.

2次油圧設定装置39の圧力設定室43は2次
油圧設定装置14の圧力設定室22と共通の2次
油管路31に接続され、即ちサーボモータ32に
対しては共に並列に接続される。従つて管路31
には両方の圧力設定室に確立された油圧のうち低
い方が確立され、即ちサーボモータ32は低値優
先で制御されることになる。
The pressure setting chamber 43 of the secondary oil pressure setting device 39 is connected to the common secondary oil pipe line 31 with the pressure setting chamber 22 of the secondary oil pressure setting device 14, that is, both are connected in parallel to the servo motor 32. Therefore, conduit 31
In this case, the lower of the oil pressures established in both pressure setting chambers is established, that is, the servo motor 32 is controlled with priority given to the lower value.

圧力調節器37と2次油圧設定装置39との間
には切換装置50が設けられており、これは2次
油圧設定装置39を図示のように圧力調節器37
と接続した状態から、以下に示す出力調整器51
に接続した状態に切換えるように作用できる。
A switching device 50 is provided between the pressure regulator 37 and the secondary oil pressure setting device 39, which switches the secondary oil pressure setting device 39 to the pressure regulator 37 as shown in the figure.
From the state connected to the output regulator 51 shown below
It can act to switch to the connected state.

出力調整器51は、タービン7に結合された発
電機52の出力と、Aで示した負荷との差を検知
しそれに応じた信号を生ずる出力検知器53に接
続されていて、この信号を受けるようになつてい
る。また出力調整器51は、Bで示した外部電力
網より受電(即ち買電)する予め定めた一定値の
電力を表す基準信号54も受けるようになつてお
り、この基準信号と出力検知器53よりの信号と
の間で減算を行ない、この差に応じた信号55を
生ずる。56は切換装置で出力調整器51よりの
信号を、高圧部への伝達路57及び低圧部への伝
達路58のいづれかに送るように切換え可能であ
る。
The output regulator 51 is connected to an output detector 53 that detects the difference between the output of the generator 52 coupled to the turbine 7 and the load indicated by A and generates a signal accordingly, and receives this signal. It's becoming like that. The output regulator 51 also receives a reference signal 54 representing a predetermined constant value of power received (that is, purchased power) from an external power network indicated by B, and from this reference signal and the output detector 53. A signal 55 corresponding to this difference is generated. Reference numeral 56 denotes a switching device that can be switched to send the signal from the output regulator 51 to either the transmission path 57 to the high pressure section or the transmission path 58 to the low pressure section.

低圧部の制御系統についても、同様に圧力調節
器44及び2次油圧設定装置45が設けられてい
る。これらの構成は高圧部の制御系統におけるも
のと同様である。圧力調節器44と2次油圧設定
装置45との間には切換装置59が設けられてお
り、2次油圧設定装置との接続を圧力調整器44
から、伝達路58及び切換装置56を介し出力調
整器51との接続に切換えられるようになつてい
る。
Similarly, a pressure regulator 44 and a secondary oil pressure setting device 45 are provided for the control system of the low pressure section. These configurations are similar to those in the control system of the high pressure section. A switching device 59 is provided between the pressure regulator 44 and the secondary oil pressure setting device 45, and a switching device 59 is provided between the pressure regulator 44 and the secondary oil pressure setting device.
From there, the connection can be switched to the output regulator 51 via the transmission path 58 and the switching device 56.

上述の如き構成において、かつ切換装置50,
56,59を図示の如き配置にした状態において
は、高圧部用の制御系統についていえば、速度設
定器16の設定を高値にすることによつて2次油
圧設定装置14の設定圧力を高値にし、2次油圧
設定装置39からの低値の油圧を優先させること
によつて高圧部の制御系統を蒸気圧力制御を優先
させる前圧制御モードとすることができる。また
逆に圧力調節器37の設定の方を高値にすれば2
次油圧設定装置14よりの低値の油圧が優先し速
度制御モードが得られる。これらの作用について
は、切換装置59を圧力調節器44との接続に切
換えた場合に低圧部の制御系統にも全く同じにあ
てはまることが理解できよう。
In the configuration as described above, and the switching device 50,
56 and 59 are arranged as shown in the figure, regarding the control system for the high pressure section, by setting the speed setting device 16 to a high value, the set pressure of the secondary oil pressure setting device 14 is set to a high value. By giving priority to the low-value oil pressure from the secondary oil pressure setting device 39, the control system of the high pressure section can be placed in a pre-pressure control mode in which steam pressure control is given priority. Conversely, if the setting of the pressure regulator 37 is set to a high value, 2
The lower value oil pressure from the next oil pressure setting device 14 is given priority and the speed control mode is obtained. It will be understood that these effects apply exactly to the control system of the low pressure section when the switching device 59 is switched to the connection with the pressure regulator 44.

切換装置59及び56を出力調整器51との接
続に切換えた低圧部制御系統では、速度設定器1
6によつて2次油圧設定装置15の設定圧力を高
値にすることによつて出力制御モードが得られ
る。即ち2次油圧設定装置45は出力調整器51
よりの信号によつて2次油圧を設定しこれが優先
してサーボモータ34に作用するのである。高圧
部の制御系統を出力制御モードにしたい場合には
切換装置50及び56を切換え、2次油圧設定装
置14の設定を高値にすればよい。
In the low pressure section control system in which the switching devices 59 and 56 are connected to the output regulator 51, the speed setting device 1
6, the output control mode is obtained by increasing the set pressure of the secondary oil pressure setting device 15 to a high value. That is, the secondary oil pressure setting device 45 is the output regulator 51
The secondary oil pressure is set in response to the signal, and this acts on the servo motor 34 with priority. If it is desired to put the control system of the high pressure section into the output control mode, the switching devices 50 and 56 may be switched to set the secondary oil pressure setting device 14 to a high value.

さらに、蒸気源の故障又は不使用時に備え蒸気
加減弁を全閉させるようになすには、蒸気源の不
作動等を知らせるインターロツク信号46が圧力
調節器37,44及び出力調整器51に送られる
ようにし、この信号を受けた圧力調節器又は出力
調整器が2次油圧設定装置39又は45に最低の
2次油圧を与えるごとく構成すればよく、ここの
ような構成によれば一方のタービン部分の蒸気加
減弁が全閉となつても他方のタービン部分に関す
る制御系統は全く影響を受けず、従つてタービン
全体はこの他方のタービン部分のみによつて運転
を続けられるのである。
Furthermore, in order to fully close the steam control valve in case the steam source fails or is not in use, an interlock signal 46 is sent to the pressure regulators 37 and 44 and the output regulator 51 to notify that the steam source is inoperable. The pressure regulator or output regulator that receives this signal may be configured to apply the lowest secondary hydraulic pressure to the secondary hydraulic pressure setting device 39 or 45. With this configuration, one turbine Even if the steam control valve of one section is fully closed, the control system for the other turbine section is not affected at all, and the entire turbine can therefore continue to be operated solely by this other turbine section.

以上の説明から明らかなように、本発明によれ
ば複数のタービン部をそれぞれ別々に前圧制御モ
ード及び速度制御モードのいづれかで制御でき、
かつ必要に応じ任意のタービン部分を出力制御モ
ードに切換えることができ、またこれらの機能を
他のタービン部分の不作動には全く影響を受けず
に行うことができるのである。
As is clear from the above description, according to the present invention, a plurality of turbine sections can be individually controlled in either the front pressure control mode or the speed control mode,
Furthermore, any turbine section can be switched to the output control mode as needed, and these functions can be performed without being affected by the inoperation of other turbine sections.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1つの実施例の全体的制御系
統を説明する系統図であり、第2図は第1図に示
された速度制御装置及び前圧制御用2次油圧設定
装置の具体的構成を示す説明図である。 1,2…蒸気源、5,6…蒸気加減弁、14,
15…第1の2次油圧設定装置、31,33…2
次油管路、32,34…サーボモータ、39,4
5…第2の2次油圧設定装置、51…出力調整
器、50,56,59…切換え装置。
FIG. 1 is a system diagram illustrating the overall control system of one embodiment of the present invention, and FIG. 2 is a specific diagram of the speed control device and the secondary oil pressure setting device for front pressure control shown in FIG. FIG. 1, 2... Steam source, 5, 6... Steam control valve, 14,
15...first secondary oil pressure setting device, 31, 33...2
Next oil pipe line, 32, 34... Servo motor, 39, 4
5... Second secondary oil pressure setting device, 51... Output regulator, 50, 56, 59... Switching device.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力の異なる2種以上の蒸気系から供給され
る蒸気をそれぞれの蒸気加減弁により制御して運
転を行う混圧タービンの制御装置において、負荷
とタービン出力との差に応じた信号を生ずる出力
調整器を有しており、また各々の蒸気加減弁につ
いて1つの制御系統が設けられ、該制御系統はタ
ービンロータの回転数に応じて2次油圧を設定す
る第1の2次油圧設定装置と、蒸気加減弁の入口
蒸気圧に応じた前圧制御信号を生じる圧力調節器
と、この圧力調節器よりの信号に応じて2次油圧
を設定する第2の2次油圧設定装置と、蒸気加減
弁を駆動する油圧式サーボモータと、前記2つの
2次油圧設定装置を共に前記サーボモータに油圧
が低値優先で作用するように接続する2次油管路
とを有しており、かつ各々の制御系統において圧
力調節器の前記第2の2次油圧設定装置に対する
接続を任意に前記出力調整器に切換え得るように
構成したことを特徴とする混圧タービンの制御装
置。
1 In a control device for a mixed pressure turbine that operates by controlling steam supplied from two or more types of steam systems with different pressures using respective steam control valves, an output that generates a signal according to the difference between the load and the turbine output. One control system is provided for each steam control valve, and the control system includes a first secondary oil pressure setting device that sets the secondary oil pressure according to the rotation speed of the turbine rotor. , a pressure regulator that generates a prepressure control signal according to the inlet steam pressure of the steam regulating valve; a second secondary oil pressure setting device that sets a secondary oil pressure in accordance with the signal from the pressure regulator; It has a hydraulic servo motor that drives the valve, and a secondary oil pipe line that connects both of the two secondary oil pressure setting devices to the servo motor so that the oil pressure acts with priority on a low value, and each A control device for a mixed pressure turbine, characterized in that the control system is configured such that connection of a pressure regulator to the second secondary oil pressure setting device can be arbitrarily switched to the output regulator.
JP16994679A 1979-12-26 1979-12-26 Control system for mixed pressure turbine Granted JPS5692310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16994679A JPS5692310A (en) 1979-12-26 1979-12-26 Control system for mixed pressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16994679A JPS5692310A (en) 1979-12-26 1979-12-26 Control system for mixed pressure turbine

Publications (2)

Publication Number Publication Date
JPS5692310A JPS5692310A (en) 1981-07-27
JPS6118646B2 true JPS6118646B2 (en) 1986-05-13

Family

ID=15895806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16994679A Granted JPS5692310A (en) 1979-12-26 1979-12-26 Control system for mixed pressure turbine

Country Status (1)

Country Link
JP (1) JPS5692310A (en)

Also Published As

Publication number Publication date
JPS5692310A (en) 1981-07-27

Similar Documents

Publication Publication Date Title
US1718673A (en) Fluid-pressure regulator and return motion therefor
US3238376A (en) Regulating system for turbines
US5346360A (en) Apparatus and methods for converting a steam turbine control system from mechanical/hydraulic to electrical/hydraulic control
US3602603A (en) Apparatus for operating a water turbine
US3526091A (en) Control apparatus for equalizing and/or limiting an engine operating condition of a plurality of gas turbine engines
JPS6118646B2 (en)
JPS62240401A (en) Controller
US2404968A (en) Regulating device for pressure fluid controlled prime movers
US2968600A (en) Control for a boiling type reactor supplying a steam turbine
JPS62326B2 (en)
US2386110A (en) Turbine control apparatus
US2101486A (en) Prime mover governing system
US4558569A (en) Stuck pushbutton contingency operation for a steam turbine control system
US3046945A (en) Hydraulic control apparatus for aircraft flight control apparatus
US3464432A (en) Apparatus for stabilizing speed control action on hydraulic turbines
US2262562A (en) Extraction control apparatus
US2383219A (en) Control apparatus
US2237118A (en) Governing mechanism
US2253963A (en) Governing mechanism
US2811651A (en) Alternator control system
US2277487A (en) Noncondensing turbine regulating system
US1013184A (en) Governing mechanism for mixed-pressure turbines.
JPS6053162B2 (en) Extraction turbine control device
JPS5928723B2 (en) Mixed pressure turbine adjustment device
EP1114358B1 (en) A control device for adjusting an actuator