JPS61163920A - Thermosetting resin composition and its production - Google Patents

Thermosetting resin composition and its production

Info

Publication number
JPS61163920A
JPS61163920A JP459885A JP459885A JPS61163920A JP S61163920 A JPS61163920 A JP S61163920A JP 459885 A JP459885 A JP 459885A JP 459885 A JP459885 A JP 459885A JP S61163920 A JPS61163920 A JP S61163920A
Authority
JP
Japan
Prior art keywords
thermosetting resin
thermoplastic elastomer
resin composition
composition according
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP459885A
Other languages
Japanese (ja)
Inventor
Hideki Okabe
岡部 秀樹
Munetomo Torii
鳥井 宗朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP459885A priority Critical patent/JPS61163920A/en
Publication of JPS61163920A publication Critical patent/JPS61163920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To make it possible to obtain a cured product which is lowly shrinking and lowly elastic and at the same time can retain a high glass transition temper ature and a high reliability of moisture resistance, by adding a thermoplastic elastomer in a finely pulverized state to a thermosetting resin. CONSTITUTION:A thermoplastic elastomer previously pulverized into solid pow der (suitably to a size smaller than the opening of ASTM sieve No.20) is mixed with a thermosetting resin by melting. After cooling, this mixture is finely divided (suitably to a size <= the opening of ASTM sieve No.10), and this pow der is added to the remaining components to obtain a thermosetting resin compo sition. As said thermoplastic elastormer, NBR of a nitrile content of 15-45wt% is desirable and it is added in an amount of, desirably, 0.1-20wt%, based on the total weight of additives (i.g., the residue after excluding the thermoplastic elastomer from the thermosetting resin composition) is used desirably. As said thermosetting resin, an epoxy resin (e.g., bisphenol A) is particularly desirable.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、半導体、電子部品などの封止などに用いら
れる熱硬化性樹脂組成物およびその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a thermosetting resin composition used for sealing semiconductors, electronic parts, etc., and a method for producing the same.

〔背景技術〕[Background technology]

近年、IC,LSI、  トランジスタ、ダイオード等
の半導体および電子部品等の封止は、電気絶縁性に優れ
、低圧成形においても充分な流動性を有し、素子を傷つ
けることな(、多量にしかも安価に封止ができるという
利点のために、エポキシ樹脂によるトランスファ成形封
止が主流を占めるようになってきた。しかしながら、こ
こ最近、半導体、および電子部品等の高集積化、高実装
密度イ3.□、2.7ケー9(DtJ、工、イ3、あお
6、at、i    ’子自体の大型化2回路のブロッ
ク化などに伴うパンケージの大型薄肉化が進み、パッケ
ージのクランク、反り、ねじれなどの外観あるいは内部
応力による素子特性劣化などに大きな問題を残している
。この問題を解決するため、従来、 (a)  官能基を持つ液状ポリブタジェン系ゴムとエ
ポキシ樹脂を前反応して得た反応物をエポキシ樹脂成形
材料の組成系に加える、 (bl  官能基を持つシリコーンオイルとフェノール
とを反応させたものをエポキシ樹脂成形材料の組成系に
加える、 などの方法が提案されているが、(al、 (b)の方
法では、硬化物の収縮の増大、ガラス転移温度(Tg)
の低下を招く原因となっている。このため、高ガラス転
移温度、高耐湿信頼性を維持した上で、しかも、低弾性
、低収縮の効果でパッケージに反り、クランク、ねじれ
などを発生させることなく、樹脂加熱硬化時における素
子自体への過大な応力を与えない硬化物を得ることがで
きるエポキシ樹脂組成物の開発が求められている。
In recent years, the encapsulation of semiconductors and electronic components such as ICs, LSIs, transistors, and diodes has excellent electrical insulation, has sufficient fluidity even during low-pressure molding, and does not damage the elements (can be produced in large quantities and at low cost). Transfer molding encapsulation using epoxy resin has become mainstream due to its advantage of being able to be encapsulated in various ways.However, in recent years, there has been an increase in the degree of integration and high packaging density of semiconductors and electronic components. □, 2.7K9 (DtJ, Engineering, I3, Ao6, at, i') Due to the increase in the size of the child itself and the formation of two circuit blocks, the size of the pan cage has become larger and thinner, resulting in problems such as cranking, warping, and twisting of the package. There remain major problems such as deterioration of device characteristics due to external appearance or internal stress.In order to solve this problem, conventionally, (a) reaction obtained by pre-reacting liquid polybutadiene rubber with functional groups and epoxy resin; Methods have been proposed, such as adding a substance to the composition system of an epoxy resin molding material, (bl) adding a reaction product of silicone oil with a functional group and phenol to the composition system of an epoxy resin molding material, etc. al, In the method (b), increase in shrinkage of the cured product, glass transition temperature (Tg)
This is the cause of a decline in For this reason, while maintaining a high glass transition temperature and high humidity resistance reliability, the low elasticity and low shrinkage effects prevent the package from warping, cranking, twisting, etc., and the element itself when the resin is heated and cured. There is a need for the development of an epoxy resin composition that can produce a cured product that does not apply excessive stress.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のことに鑑みて、高ガラス転移温度、
高耐湿信頼性を維持し、しかも、低収縮、低弾性の硬化
物を得ることができる熱硬化性樹脂組成物およびその製
法を提供することを目的とする。
In view of the above, this invention has a high glass transition temperature,
It is an object of the present invention to provide a thermosetting resin composition that maintains high humidity resistance reliability and can obtain a cured product with low shrinkage and low elasticity, and a method for producing the same.

〔発明の開示〕[Disclosure of the invention]

この発明は、上記の目的を達成するために、固型の熱可
塑性エラストマーが配合されている熱硬化性樹脂組成物
において、前記熱可塑性エラストマーが微粉砕されてい
ることを特徴とする熱硬化性樹脂組成物を第1の要旨と
し、微粉砕された固型の熱可塑性エラストマーが配合さ
れている熱硬化性樹脂組成物を得るにあたり、あらかじ
め固型粉末状にした熱可塑性エラストマーを前記熱硬化
性樹脂と加熱溶融して混合し、冷却したのち、微粉砕し
て残りの配合物に加えることを特徴とする熱硬化性樹脂
組成物の製法を第2の要旨としている。以下に、この両
発明の詳細な説明する。なお、以下に「この発明」とし
た場合、特に断らない限り、第1の要旨および第2の要
旨をともに指すものとする。
In order to achieve the above object, the present invention provides a thermosetting resin composition containing a solid thermoplastic elastomer, characterized in that the thermoplastic elastomer is finely pulverized. In order to obtain a thermosetting resin composition in which a resin composition is the first principle and a finely pulverized solid thermoplastic elastomer is blended, the thermoplastic elastomer, which has been made into a solid powder in advance, is mixed with the thermosetting resin composition. The second gist is a method for producing a thermosetting resin composition, which is characterized in that it is heated and melted and mixed with a resin, cooled, and then finely pulverized and added to the remaining formulation. Both inventions will be explained in detail below. Note that the term "this invention" hereinafter refers to both the first gist and the second gist, unless otherwise specified.

この発明において用いられる熱可塑性エラストマーとは
、特に限定はないが、合成天然ゴム(イソプレンゴム、
IR)、天然ゴム(NR)、ブタジェンゴム(BR)、
スチレン−ブタジェンゴム(SBR)、 ブタジェン−
アクリロニトリルゴム(NBR)、クロロブレンゴム(
CR)、ブチルゴム(I I R) 、  ウレタンゴ
ム、ケイ素ゴム、フッ素ゴム、アクリルゴム(ABR)
等の固型ゴムが好ましく、被配合物全量に対して0.1
〜20wt%の割合で用いるのが好ましい。配合割合が
o、1wt%よりも低いと、熱可塑性エラストマーの配
合効果である低収縮、低弾性が得られないことがありあ
まり好ましくない。また、20wt%を超えると、ブリ
ード(bleed ) L、成形品(硬化物)の外観に
ムラとなって出てくるほか、硬化物の強度が低下し、ま
た、熱硬化性樹脂組成物の成形時の流動性も低下するこ
とがありあまり好ましくない。熱可塑性エラストマーは
、高純度であることが好ましい。なお、ここで被配合物
とは、熱硬化性樹脂組成物中、熱可塑性エラストマーを
除いたものをt旨す。
The thermoplastic elastomer used in this invention is not particularly limited, but synthetic natural rubber (isoprene rubber,
IR), natural rubber (NR), butadiene rubber (BR),
Styrene-butadiene rubber (SBR), butadiene-
Acrylonitrile rubber (NBR), chloroprene rubber (
CR), butyl rubber (IIR), urethane rubber, silicon rubber, fluororubber, acrylic rubber (ABR)
Solid rubbers such as
It is preferable to use it in a proportion of ~20 wt%. If the blending ratio is lower than 0.1 wt%, the low shrinkage and low elasticity that are the effects of blending the thermoplastic elastomer may not be obtained, which is not very preferable. In addition, if it exceeds 20 wt%, bleed will occur and the appearance of the molded product (cured product) will become uneven, the strength of the cured product will decrease, and the molding of the thermosetting resin composition will be affected. This is not very preferable since the fluidity during the process may also decrease. Preferably, the thermoplastic elastomer has high purity. Note that the compounded material herein refers to the thermosetting resin composition excluding the thermoplastic elastomer.

この発明に用いる熱可塑性エラストマーは、その粘度に
ついて特に限定はないが、ムーニー粘度80−ML口4
  (100℃)以下のものが好ましい。これよりも高
ムーニータイプの熱可塑性エラストマーを配合すると、
目的とするところの低収縮、低弾性の効果が得られない
ことがあるのであまり好ましくない。また、この発明で
は、固型の熱可塑性エラストマーは、熱硬化性樹脂組成
物中に均一に分散されていることが好ましい。このため
には、熱可塑性エラストマー(高純度のものが好ましい
)を微粒子量にして熱硬化性樹脂組成物系に分散するこ
とが好ましい、しかし、一般に、低弾性化にとって、よ
り効果の大きい低ムーニータイプの熱可塑性エラストマ
ーは、液化窒素による低温粉砕等の粉砕方法を用いても
、微粒子量を得ることは難しい。ところが、この発明の
一方の要旨である製法を用いると、ムーニー粘度30−
ML、ヤ4  (100℃)以下の低ムーニータイプの
熱可塑性エラストマーの微粒子量(たとえば、ASTM
ふるいl’h100の通過品)を得ることが可能になる
のである。もちろん、ムーニー粘度がこれよりも大きい
ものでも同様に微粒子量を得ることが可能である。
The thermoplastic elastomer used in this invention is not particularly limited in its viscosity, but Mooney viscosity 80-ML mouth 4
(100°C) or less is preferable. If a higher moony type thermoplastic elastomer is blended than this,
This is not very preferable because the desired effects of low shrinkage and low elasticity may not be achieved. Further, in the present invention, it is preferable that the solid thermoplastic elastomer is uniformly dispersed in the thermosetting resin composition. For this purpose, it is preferable to disperse a thermoplastic elastomer (preferably one with high purity) in a fine particle amount into a thermosetting resin composition system. For thermoplastic elastomers of this type, it is difficult to obtain a fine particle amount even if a grinding method such as cryogenic grinding using liquefied nitrogen is used. However, when using the manufacturing method that is one of the gist of this invention, the Mooney viscosity is 30-
ML, Y4 (100°C) or less of low Mooney type thermoplastic elastomer fine particle amount (for example, ASTM
This makes it possible to obtain a product that passes through the sieve l'h100. Of course, even if the Mooney viscosity is larger than this, it is possible to obtain a similar amount of fine particles.

この明細書で、ASTMとは、アメリカ材料試験協会(
American 5ociety for Test
ing Mater−ials)のことである。
In this specification, ASTM refers to the American Society for Testing and Materials (
American 5ociety for Test
ing Mater-ials).

なお、この発明に用いる熱可塑性エラストマーは、配合
系へのある程度の相溶性を持つものを選ぶことが好まし
い。熱硬化性樹脂であるエポキシ樹脂、フェノール樹脂
など、および硬化剤であるフェノール樹脂などとの相溶
性の大き過ぎるものを選択すると、熱硬化性樹脂組成物
中に応力吸収構造である海鳥構造を採らせることができ
なくなることがありあまり好ましくない。また、非相溶
性のものを選択すると、成形品の外観表面にムラとなっ
て出やすいのであまり好ましくない。このため、エポキ
シ樹脂、フェノール樹脂等の熱硬化性樹脂に、または、
熱硬化性樹脂とその硬化剤にある程度の相溶性をiつ固
型ゴム、たとえば、アクリロニトリル基などの極性基を
持ち、しかもニトリル含有量が15〜45wt%程度の
NBRを熱可塑性エラストマーとして用いることが好ま
しい。この場合、ニトリル含有f15ewt%よりも低
いと、熱硬化性樹脂と、または、熱硬化性樹脂およびそ
の硬化剤との相溶性がなくなり、45wt%を超えると
相溶性が大きくなりすぎるとともに、熱硬化性樹脂組成
物の硬化物の機械的強度が増し、低弾性化の効果が失わ
れる6なお、ここでニトリル含を量とは、固型ゴム10
0g中のアクリロニトリル基のグラム数をいう。
The thermoplastic elastomer used in this invention is preferably selected to have a certain degree of compatibility with the compounding system. If a thermosetting resin such as epoxy resin or phenolic resin or a hardening agent such as phenolic resin is selected that has too high compatibility with the thermosetting resin, the seabird structure, which is a stress-absorbing structure, may not be adopted in the thermosetting resin composition. This is not very desirable as it may not be possible to Furthermore, if an incompatible material is selected, it is not very preferable because it tends to cause uneven appearance on the surface of the molded product. For this reason, thermosetting resins such as epoxy resins and phenolic resins, or
A solid rubber that has a certain degree of compatibility with the thermosetting resin and its curing agent, for example, NBR that has a polar group such as an acrylonitrile group and has a nitrile content of about 15 to 45 wt%, is used as the thermoplastic elastomer. is preferred. In this case, if the nitrile content is lower than 15 ewt%, the compatibility with the thermosetting resin or the thermosetting resin and its curing agent will be lost, and if it exceeds 45 wt%, the compatibility will become too large and the thermosetting resin will become incompatible. The mechanical strength of the cured product of the solid rubber increases, and the effect of lowering the elasticity is lost.
It refers to the number of grams of acrylonitrile group in 0g.

熱可塑性エラストマーを熱硬化性樹脂と、または、熱硬
化性樹脂およびその硬化剤と加熱溶融して混合し、冷却
後、微粉砕したあとの粘度についても特に限定はないが
、ASTMふるいNa100の目の開き以下の大きさと
することが好ましい。
There is no particular limitation on the viscosity of the thermoplastic elastomer and the thermosetting resin, or the thermosetting resin and its curing agent after being heated and melted, cooled, and finely pulverized. It is preferable that the size is equal to or smaller than the difference between the two.

この大きさよりも大きいと、成形品の外観に異常(ムラ
、未充填)が生じることがある。なお、このような微粉
砕を行うためには、あらかじめ粉末状にした熱可塑性エ
ラストマーの粒度が、ASTMふるいNa2O以下の大
きさであることが好ましい。
If the size is larger than this, abnormalities (unevenness, unfilled) may occur in the appearance of the molded product. In order to carry out such fine pulverization, it is preferable that the particle size of the thermoplastic elastomer, which has been previously pulverized, is equal to or smaller than the ASTM sieve Na2O.

この発明で用いられる熱硬化性樹脂としては、エポキシ
樹脂がまず第1にあげられるが、特にこれに限定はされ
ず、フェノール樹脂など他の熱硬化性樹脂も用いること
ができる。
The thermosetting resin used in this invention is primarily an epoxy resin, but is not particularly limited thereto, and other thermosetting resins such as phenol resins can also be used.

この発明において用いられるエポキシ樹脂は、1分子中
に2個以上のエポキシ基を有するものであり、たとえば
、ビスフェノールA型エポキシ樹脂、クレゾールノボラ
ック型エポキシ樹脂、フェノールノボラック型エポキシ
樹脂、臭素化フェノールノボラック型エポキシ樹脂等で
あり、これらを単独であるいは併用して用いることがで
きる。
The epoxy resin used in this invention has two or more epoxy groups in one molecule, and includes, for example, bisphenol A epoxy resin, cresol novolac epoxy resin, phenol novolac epoxy resin, and brominated phenol novolak epoxy resin. These are epoxy resins and the like, and these can be used alone or in combination.

なお、エポキシ樹脂の軟化点としては、65℃〜100
℃程度が好ましく、できるだけ加水分解性塩素の少ない
ものが望ましい。また、熱硬化性樹脂としてエポキシ樹
脂を用いる場合、硬化剤としては、フェノールノボラッ
ク型、クレゾールノボラック型などのフェノール系硬化
剤を用いるのが好ましい。その軟化点は、70−100
℃程度が好ましく、未反応上ツマ−の少ないものが望ま
しい、これらの使用量については特に制限はないが、エ
ポキシ基とフェノール性水酸基のバランスを考えて設定
するのが好ましい。同様の場合に、硬化促進剤としては
、イミダゾール類、三級アミン類、三級ホスフィン類、
四級ホスホニウム塩等が用いるのが好ましい。通常、硬
化促進剤は、エポキシ樹脂100重量部に対して0.0
5〜3.0重量部添加するのが好ましい。同様の場合に
、充填剤としては、結晶性シリカ、溶融シリカ、アルミ
ナ、ガラス繊維等の無機質充填剤をそれぞれ単独、ある
いは併用して用いることができる。なかでも高純度の結
晶シリカまたは溶融シリカを組成物全量に対して40〜
90wt%程度用いるのが好ましい。40wt%を下ま
わると、樹脂組成物の収縮が大きくなり過ぎ、逆に90
wt%を超えると樹脂組成物0流動性7゛4<“り成形
性”悪<1・+″)他の添加剤としては、カーボンブラ
ック、アセチレンブラック等の顔料、カルナバワックス
、ステアリン酸、ベヘニン酸、モンタン酸等の離型剤、
三酸化アンチモンなどの難燃化剤、表面処理剤等があり
必要に応じて配合される。
The softening point of the epoxy resin is 65°C to 100°C.
The temperature is preferably about 0.degree. C., and it is desirable to have as little hydrolyzable chlorine as possible. Furthermore, when an epoxy resin is used as the thermosetting resin, it is preferable to use a phenolic curing agent such as a phenol novolac type or a cresol novolak type as the curing agent. Its softening point is 70-100
The temperature is preferably about 0.degree. C., and it is preferable to use one with a small amount of unreacted additives.Although there is no particular restriction on the amount used, it is preferable to set it in consideration of the balance between the epoxy group and the phenolic hydroxyl group. In similar cases, curing accelerators include imidazoles, tertiary amines, tertiary phosphines,
It is preferable to use a quaternary phosphonium salt or the like. Usually, the curing accelerator is 0.0 parts by weight per 100 parts by weight of the epoxy resin.
It is preferable to add 5 to 3.0 parts by weight. In the same case, as the filler, inorganic fillers such as crystalline silica, fused silica, alumina, and glass fiber can be used alone or in combination. Among them, high-purity crystalline silica or fused silica is added in an amount of 40 to 40% based on the total amount of the composition.
It is preferable to use about 90 wt%. If it is less than 40 wt%, the shrinkage of the resin composition becomes too large, and conversely, if the
Other additives include pigments such as carbon black and acetylene black, carnauba wax, stearic acid, and behenin. Acid, mold release agent such as montanic acid,
Flame retardants such as antimony trioxide, surface treatment agents, etc. are included as needed.

熱硬化性樹脂として用いられるフェノール樹脂としては
、レゾール型およびノボラック型の種々のものがある。
There are various types of phenolic resins used as thermosetting resins, including resol type and novolac type.

また、それぞれに応じた硬化剤。Also, hardening agents according to each.

変性剤、充填剤、顔料、離型剤、N燻化剤9表面処理剤
などを必要に応じて配合することができる、他の熱硬化
性樹脂を用いる場合も、上記のような添加剤をそれぞれ
に応じて配合することができる。
Modifiers, fillers, pigments, mold release agents, N-smoking agents, 9 surface treatment agents, etc. can be added as necessary.When using other thermosetting resins, the above additives may also be added. They can be mixed according to each.

なお、この発明の第2の要旨において、熱可塑性エラス
トマーをあらかじめ固型粉末状にする方法は、固型物の
粉砕など種々の方法があり特に限定されない、微粉砕す
る方法も特に限定されない。また、熱硬化性樹脂、また
は、熱硬化性樹脂およびその硬化剤と、あらかじめ固型
粉末状にした熱可塑性エラストマーとの加熱溶融混合を
行う温度は特に限定されないが、前記熱硬化性樹脂の、
または、熱硬化性樹脂および硬化剤の軟化点より10℃
程度高い温度で行うのが好ましい。加熱熔融混合を行う
時間も適宜設定すればよい。加熱溶融混合を行う、熱硬
化性樹脂、または、熱硬化性樹脂およびその硬化剤は、
配合量の全部または一部でよく、混合される固型粉末状
の熱可塑性エラストマーがその20〜30wt%となる
ようにするのが好ましい。たとえば、上記の1例を示す
と、あらかじめ、熱可塑性エラストマーを、常温あるい
は低温でASTMふるい隘20の目の開き以下の大きさ
に粉・砕を行う、ついで、エポキシ樹脂、あるいは、こ
の樹脂とフェノール樹脂(この場合、硬化剤)をその軟
化点よりlO℃程度高い温度にて溶融し、その中へ前記
の粉砕した熱可塑性エラストマーを20〜30wt%程
度混入し、10分間加熱溶融ブレンドさせたものを冷却
する。冷却後、粗砕機にて粗砕を行ってから液化窒素に
て冷凍して、微粉砕を行い、ASTMふるいN[Llo
oの目の開き以下の大きさの微粒子品を得る。この発明
の樹脂組成物は、たとえば、成形材料に用いられ、半導
体、電子部品などの封止などを行ったりする。なお、こ
の発明の樹脂組成物は、適当な溶剤などに熔解させて用
いることもできる。
In the second aspect of the present invention, the thermoplastic elastomer can be made into a solid powder in advance by various methods such as pulverization of the solid material, and is not particularly limited. The method of pulverization is also not particularly limited. Further, the temperature at which the thermosetting resin or the thermosetting resin and its curing agent are heated and melted and mixed with the thermoplastic elastomer that has been previously made into a solid powder is not particularly limited;
Or 10℃ above the softening point of the thermosetting resin and curing agent.
It is preferable to carry out the reaction at a moderately high temperature. The time for heating and melting and mixing may also be set appropriately. Thermosetting resins or thermosetting resins and their curing agents that undergo heating and melting mixing are
It may be all or part of the blended amount, and it is preferable that the amount of the solid powder thermoplastic elastomer to be mixed is 20 to 30 wt%. For example, to give an example of the above, a thermoplastic elastomer is powdered and crushed at room temperature or low temperature to a size smaller than the opening of an ASTM sieve size 20, and then epoxy resin or this resin is mixed with the thermoplastic elastomer. A phenolic resin (hardening agent in this case) was melted at a temperature about 10°C higher than its softening point, and about 20 to 30 wt% of the above-mentioned pulverized thermoplastic elastomer was mixed therein, and the mixture was heated and melt-blended for 10 minutes. Cool things down. After cooling, it is coarsely crushed in a crusher, then frozen in liquid nitrogen, finely crushed, and passed through an ASTM sieve N [Llo
Obtain a fine particle product with a size equal to or smaller than the opening of the o. The resin composition of the present invention is used, for example, as a molding material, and for sealing semiconductors, electronic parts, etc. Note that the resin composition of the present invention can also be used after being dissolved in a suitable solvent.

この発明の樹脂組成物を用いて、半導体、電子部品など
の封止などを行う場合、その樹脂組成物中のナトリウム
含有量を30ppm以下、かつ、加水分解性クロル含有
量200pp+w以下に抑えることが好ましく、どのよ
うにすれば、従来の耐湿信頼性をほぼ維持しながら、ガ
ラス転移温度もほとんど低下することなく応力吸収構造
を持つ低弾性、低収縮の硬化物を得ることができる。ナ
トリウム含有量および加水分解性クロル含有量の少なく
とも一方がその範囲を上まわると、耐湿信頼性が低下す
ることがある。
When sealing semiconductors, electronic parts, etc. using the resin composition of the present invention, it is possible to suppress the sodium content in the resin composition to 30 ppm or less and the hydrolyzable chlorine content to 200 pp+w or less. Preferably, what method can be used to obtain a cured product with low elasticity and low shrinkage that has a stress-absorbing structure while maintaining almost the conventional moisture resistance reliability and hardly reducing the glass transition temperature. If at least one of the sodium content and the hydrolyzable chlorine content exceeds this range, the moisture resistance reliability may decrease.

以下に、この発明の実施例を示すが、この発明は、実施
例に限定されない。
Examples of the present invention are shown below, but the invention is not limited to the examples.

(実施例1) 熱可塑性エラストマーとして、ムーニー粘度56−M 
L、やa  (100℃)、ニトリル含有量35wt%
のNBRを用いた。なお、このNBRのエポキシ樹脂と
の相溶性は、優・良・可・不可の4段階評価で可であり
、フェノール樹脂との相溶性も同様に可であった。この
NBRを、あらかじめ、常温で、ASTMふるい隘20
の目の開き以下の大きさとなるように粉砕して、粉末状
にした。ついで、タレゾールノボラック型エポキシ樹脂
85重量部およびフェノールノボラック系硬化剤45重
量部をその軟化点よりlθ℃程度高い温度にして溶融し
、その中へ前記粉末状のNBRを18重量部混入し、1
0分間加熱溶融して混合し、冷却した。その後、粗砕機
にて粗砕を行ってから、液化窒素にて冷凍し、微粉砕を
行い、ASTMふるいNa60の目の開き以下の大きさ
の微粒手品を得た。この微粒手品148重量部に、難燃
剤として臭素化フェノールノボラック型エポキシ樹脂1
2重量部、三酸化アンチモン18重量部、充填剤として
熔融シリカ380重量部、離型剤としてカルナバワック
ス2重量部、改質剤としてエポキシシランカソプリング
剤2.5重量部、顔料としてカー      ]ボボン
ブラタ22.5量部、硬化促進剤として2−メチルイミ
ダゾール2重量部を加え、加熱溶融して混練し、ついで
冷却したのち粉砕してエポキシ樹脂組成物を得た。
(Example 1) Mooney viscosity 56-M as thermoplastic elastomer
L, Yaa (100℃), nitrile content 35wt%
NBR was used. The compatibility of this NBR with the epoxy resin was evaluated as good on a four-level evaluation of excellent, good, fair, and poor, and the compatibility with the phenol resin was similarly good. This NBR was passed through an ASTM sieve size 20 at room temperature in advance.
It was crushed into powder to a size no larger than the size of the opening of the eye. Next, 85 parts by weight of Talesol novolak type epoxy resin and 45 parts by weight of phenol novolac type curing agent were melted at a temperature approximately lθ°C higher than their softening point, and 18 parts by weight of the powdered NBR was mixed therein. 1
The mixture was heated and melted for 0 minutes, mixed, and cooled. Thereafter, the mixture was crushed in a crusher, frozen in liquid nitrogen, and finely pulverized to obtain fine particles having a size equal to or smaller than the opening of an ASTM sieve Na60. To 148 parts by weight of this fine particle magic trick, 1 part of brominated phenol novolac type epoxy resin was added as a flame retardant.
2 parts by weight, 18 parts by weight of antimony trioxide, 380 parts by weight of fused silica as a filler, 2 parts by weight of carnauba wax as a mold release agent, 2.5 parts by weight of an epoxy silane cassoplating agent as a modifier, carrion as a pigment. 22.5 parts by weight and 2 parts by weight of 2-methylimidazole as a curing accelerator were added, heated and melted, kneaded, cooled and pulverized to obtain an epoxy resin composition.

(実施例2) 熱可塑性エラストマーとして実施例1と同じものを用い
、微粉砕後の最大粒度が、ASTMふるい1k100の
目の開きと等しい以外は、実施例1と全く同様にしてエ
ポキシ樹脂組成物を得た。
(Example 2) An epoxy resin composition was prepared in exactly the same manner as in Example 1, except that the same thermoplastic elastomer as in Example 1 was used, and the maximum particle size after pulverization was equal to the opening of the ASTM sieve 1k100. I got it.

(比較例1) 従来の改良例の1つとして示す。変性剤としてシリコー
ンオイル18重量部を配合し、第1表に示す配合でエポ
キシ樹脂組成物を得た。
(Comparative Example 1) This is shown as one of the conventional improvement examples. 18 parts by weight of silicone oil was blended as a modifier to obtain an epoxy resin composition having the formulation shown in Table 1.

(比較例2) 従来の改良例の1つとして示す。変性剤として液状ポリ
ブタジェン系ゴム18重量部を配合し、第1表に示す配
合でエポキシ樹脂組成物を得た。
(Comparative Example 2) This is shown as one of the conventional improved examples. 18 parts by weight of liquid polybutadiene rubber was blended as a modifier to obtain an epoxy resin composition having the formulation shown in Table 1.

(比較例3) 従来例として示す。熱可塑性エラストマーも変性剤も用
いずに、第1表に示す配合でエポキシ樹脂組成物を得た
(Comparative Example 3) This is shown as a conventional example. Epoxy resin compositions were obtained according to the formulations shown in Table 1 without using a thermoplastic elastomer or a modifier.

実施例1.2および比較例1〜3のエポキシ樹脂組成物
を用いて、それぞれ半導体チップの封止を行い、この成
形の特性(成形収縮率9曲げ弾性率1曲げ強さ、ガラス
転移温度2休積抵抗率)をそれぞれ調べ、結果を第2表
に示した。また別に、各側のエポキシ樹脂組成物の不純
イオン(ナトリウムイオン、加水分解性クロルイオン)
の含有量を調べ、第2表に示した。上記で得た各側の半
導体封止物の耐湿信頼性を、5atm、151℃でのプ
レ、シャクツカ−試験(PCT)で初めて不良品が発生
するまでの時間を測定し、第2表に示した。また、各側
の成形品の外観(ウェルド、ピンホール、ムラ)および
金型クモリを優・良・可・不可の4段階で評価し、第2
表に示した。
Semiconductor chips were encapsulated using the epoxy resin compositions of Example 1.2 and Comparative Examples 1 to 3, respectively, and the molding properties (molding shrinkage rate 9 bending modulus 1 bending strength, glass transition temperature 2 The dead storage resistivity) was investigated, and the results are shown in Table 2. Separately, impurity ions (sodium ions, hydrolyzable chloride ions) in the epoxy resin composition on each side
The content was investigated and shown in Table 2. The moisture resistance reliability of the semiconductor encapsulation on each side obtained above was determined by measuring the time until the first defective product occurred in the Pre-Shakutzker test (PCT) at 5 atm and 151°C, and the results are shown in Table 2. Ta. In addition, the appearance of the molded product on each side (welds, pinholes, unevenness) and mold cloudiness were evaluated in four grades: excellent, good, fair, and poor.
Shown in the table.

(以 下 余 白) 第2表にみるように、実施例1.2の成形品は、従来例
およびその改良例よりも収縮率が低くなっており、弾性
率が低くなっているのがわかる。
(Margin below) As shown in Table 2, it can be seen that the molded product of Example 1.2 has a lower shrinkage rate and lower elastic modulus than the conventional example and its improved example. .

また、それらのガラス転移温度は、従来例と同等か若干
低下しているが、従来の改良例はどの低下はみられない
。体積抵抗率、すなわち、電気絶縁性も満足のいくもの
である。また、耐湿信頼性も、従来例およびその改良例
よりもよくなっている。また、成形品の外観、金型クモ
リも従来例およびその改良例と比べて遜色ない。
Furthermore, the glass transition temperatures of these samples are the same as or slightly lower than those of the conventional examples, but no decrease is observed in the conventional improved examples. The volume resistivity, ie the electrical insulation, is also satisfactory. Furthermore, the moisture resistance reliability is also better than that of the conventional example and its improved example. Furthermore, the appearance of the molded product and mold cloudiness are comparable to those of the conventional example and its improved example.

すなわち、この発明の製法およびその生成物により、従
来の熱硬化性樹脂組成物の特性(特に、ガラス転移温度
と耐湿信頼性)を低下させることなく、収縮率および弾
性率を低下させることができるのがわかる。
That is, the production method of the present invention and its product can reduce the shrinkage rate and elastic modulus without reducing the properties (especially glass transition temperature and moisture resistance reliability) of conventional thermosetting resin compositions. I understand.

〔発明の効果〕〔Effect of the invention〕

この発明の第1の要旨の熱硬化性樹脂組成物は、以上に
みてきたように、微粉砕された熱可塑性エラストマーが
配合されているので、成形性が良く、しかも熱可塑性エ
ラストマーの弾性および加熱硬化時の熱膨張による樹脂
の硬化収縮抑制効果のために、Tg、耐湿信頼性を低下
させることなく、低収縮、低弾性の硬化物を得ることが
できる、また、この発明の第2の要旨の熱硬化性樹脂組
成物の製法は、以上にみてきたように、あらかじめ固型
粉末状にした熱可塑性エラストマーを熱硬化性樹脂と加
熱溶融して混合し、冷却したのち、微粉砕して残りの配
合物に加えるようにしているので、熱可塑性エラストマ
ーのムーニー粘度が低くても微粉砕が可能になっている
。もちろん、粘度が高くても微粉砕が可能である。
As seen above, the thermosetting resin composition according to the first aspect of the present invention contains finely pulverized thermoplastic elastomer, so it has good moldability, and the elasticity and heating properties of the thermoplastic elastomer are excellent. Due to the effect of suppressing curing shrinkage of the resin due to thermal expansion during curing, it is possible to obtain a cured product with low shrinkage and low elasticity without reducing Tg and moisture resistance reliability, and the second gist of the present invention As we have seen above, the manufacturing method for thermosetting resin compositions is as follows: The thermoplastic elastomer, which has been previously made into a solid powder, is heated and melted and mixed with the thermosetting resin, cooled, and then finely pulverized to form the remaining material. Since the thermoplastic elastomer is added to the formulation, fine pulverization is possible even if the Mooney viscosity of the thermoplastic elastomer is low. Of course, fine pulverization is possible even if the viscosity is high.

Claims (1)

【特許請求の範囲】 (1)固型の熱可塑性エラストマーが配合されている熱
硬化性樹脂組成物において、前記熱可塑性エラストマー
が微粉砕されていることを特徴とする熱硬化性樹脂組成
物。 (2)微粉砕された熱可塑性エラストマーがASTMふ
るいNo.100の目の開き以下の大きさである特許請
求の範囲第1項記載の熱硬化性樹脂組成物。 (3)熱可塑性エラストマーがムーニー粘度30−ML
_1_+_4(100℃)以下である特許請求の範囲第
1項または第2項記載の熱硬化性樹脂組成物(4)熱可
塑性エラストマーの配合量が被配合物全量に対して0.
1〜20wt%の範囲にある特許請求の範囲第1項ない
し第3項のいずれかに記載の熱硬化性樹脂組成物。 (5)熱可塑性エラストマーがニトリル含有量15〜4
5wt%のNBRである特許請求の範囲第1項ないし第
4項のいずれかに記載の熱硬化性樹脂組成物。 (6)熱硬化性樹脂がエポキシ樹脂であり、エポキシ樹
脂組成物中のナトリウム含有量が30ppm以下、かつ
、加水分解性クロル含有量が200ppm以下である特
許請求の範囲第1項ないし第5項のいずれかに記載の熱
硬化性樹脂組成物。 (7)微粉砕された固型の熱可塑性エラストマーが配合
されている熱硬化性樹脂組成物を得るにあたり、あらか
じめ固型粉末状にした熱可塑性エラストマーを前記熱硬
化性樹脂と加熱溶融して混合し、冷却したのち、微粉砕
して残りの配合物に加えることを特徴とする熱硬化性樹
脂組成物の製法。 (8)固型粉末状にした熱可塑性エラストマーがAST
MふるいNo.20の目の開き以下の大きさであり、微
粉砕したものがASTMふるいNo.100の目の開き
以下の大きさである特許請求の範囲第7項記載の熱硬化
性樹脂組成物の製法。 (9)熱可塑性エラストマーがムーニー粘度30−ML
_1_+_4(100℃)以下である特許請求の範囲第
7項または第7項記載の熱硬化性樹脂組成物の製法。 (10)熱可塑性エラストマーの配合量が被配合物全量
に対して0.1〜20wt%の範囲にある特許請求の範
囲第7項ないし第9項のいずれかに記載の熱硬化性樹脂
組成物の製法。 (11)熱可塑性エラストマーがニトリル含有量15〜
45wt%のNBRである特許請求の範囲第7項ないし
第10項のいずれかに記載の熱硬化性樹脂組成物の製法
。 (12)熱硬化性樹脂がエポキシ樹脂であり、あらかじ
め固型粉末状にした熱可塑性エラストマーが、前記エポ
キシ樹脂およびこの樹脂に配合される硬化剤と加熱溶融
される特許請求の範囲第7項ないし第11項のいずれか
に記載の熱硬化性樹脂組成物の製法。 (13)熱硬化性樹脂がエポキシ樹脂であり、エポキシ
樹脂組成物中のナトリウム含有量が30ppm以下、か
つ、加水分解性クロル含有量が200ppm以下である
特許請求の範囲第7項ないし第12項のいずれかに記載
の熱硬化性樹脂組成物の製法。
[Scope of Claims] (1) A thermosetting resin composition containing a solid thermoplastic elastomer, characterized in that the thermoplastic elastomer is finely pulverized. (2) The finely pulverized thermoplastic elastomer was passed through ASTM sieve No. The thermosetting resin composition according to claim 1, which has a size of 100 mesh or less. (3) The thermoplastic elastomer has a Mooney viscosity of 30-ML
_1_+_4 (100°C) or less The thermosetting resin composition according to claim 1 or 2 (4) The blending amount of the thermoplastic elastomer is 0.0.
The thermosetting resin composition according to any one of claims 1 to 3, wherein the content is in the range of 1 to 20 wt%. (5) The thermoplastic elastomer has a nitrile content of 15 to 4
The thermosetting resin composition according to any one of claims 1 to 4, which contains 5 wt% NBR. (6) Claims 1 to 5, wherein the thermosetting resin is an epoxy resin, and the epoxy resin composition has a sodium content of 30 ppm or less and a hydrolyzable chlorine content of 200 ppm or less. The thermosetting resin composition according to any one of the above. (7) To obtain a thermosetting resin composition containing a finely pulverized solid thermoplastic elastomer, the thermoplastic elastomer, which has been made into a solid powder, is heated and melted and mixed with the thermosetting resin. A method for producing a thermosetting resin composition, which comprises: cooling, pulverizing, and adding to the remaining formulation. (8) AST is a thermoplastic elastomer made into a solid powder.
M sieve No. The size is less than 20 mesh, and the finely ground material is passed through ASTM sieve No. 8. The method for producing a thermosetting resin composition according to claim 7, which has a size of 100 mesh or less. (9) The thermoplastic elastomer has a Mooney viscosity of 30-ML.
The method for producing a thermosetting resin composition according to claim 7 or claim 7, wherein the temperature is _1_+_4 (100°C) or less. (10) The thermosetting resin composition according to any one of claims 7 to 9, wherein the amount of the thermoplastic elastomer is in the range of 0.1 to 20 wt% based on the total amount of the compound. manufacturing method. (11) The thermoplastic elastomer has a nitrile content of 15 or more
A method for producing a thermosetting resin composition according to any one of claims 7 to 10, which contains 45 wt% NBR. (12) The thermosetting resin is an epoxy resin, and the thermoplastic elastomer, which has been previously made into a solid powder, is heated and melted with the epoxy resin and a curing agent blended with this resin. A method for producing a thermosetting resin composition according to any one of Item 11. (13) Claims 7 to 12, wherein the thermosetting resin is an epoxy resin, and the epoxy resin composition has a sodium content of 30 ppm or less and a hydrolyzable chlorine content of 200 ppm or less. A method for producing a thermosetting resin composition according to any one of the above.
JP459885A 1985-01-15 1985-01-15 Thermosetting resin composition and its production Pending JPS61163920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP459885A JPS61163920A (en) 1985-01-15 1985-01-15 Thermosetting resin composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP459885A JPS61163920A (en) 1985-01-15 1985-01-15 Thermosetting resin composition and its production

Publications (1)

Publication Number Publication Date
JPS61163920A true JPS61163920A (en) 1986-07-24

Family

ID=11588481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP459885A Pending JPS61163920A (en) 1985-01-15 1985-01-15 Thermosetting resin composition and its production

Country Status (1)

Country Link
JP (1) JPS61163920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010241A1 (en) * 1991-08-13 1994-05-11 Nippon Shokubai Co., Ltd. Epoxy resin composition and production thereof
US5691416A (en) * 1992-11-05 1997-11-25 Nippon Shokubai Co., Ltd. (Meth)acrylate polymer particles dispersed in epoxy resin
JP2001279056A (en) * 2000-03-31 2001-10-10 Toray Ind Inc Epoxy resin composition for sealing semiconductor
JP2019085514A (en) * 2017-11-08 2019-06-06 パナソニックIpマネジメント株式会社 Epoxy resin composition, method for manufacturing epoxy resin composition and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010241A1 (en) * 1991-08-13 1994-05-11 Nippon Shokubai Co., Ltd. Epoxy resin composition and production thereof
US5691416A (en) * 1992-11-05 1997-11-25 Nippon Shokubai Co., Ltd. (Meth)acrylate polymer particles dispersed in epoxy resin
JP2001279056A (en) * 2000-03-31 2001-10-10 Toray Ind Inc Epoxy resin composition for sealing semiconductor
JP2019085514A (en) * 2017-11-08 2019-06-06 パナソニックIpマネジメント株式会社 Epoxy resin composition, method for manufacturing epoxy resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
JPH0697325A (en) Resin-sealed semicondutor device
US6297306B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JPS61163920A (en) Thermosetting resin composition and its production
JPS6325012B2 (en)
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP4627208B2 (en) Pre-kneading composition, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP2991849B2 (en) Epoxy resin composition
JPH0588904B2 (en)
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH05299537A (en) Epoxy resin composition
JPH0310664B2 (en)
JPH04296046A (en) Resin-sealed semiconductor device
JPH02219814A (en) Epoxy resin composition
JPH01275620A (en) Epoxy resin composition for semiconductor sealing
JPH07107123B2 (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JPH03167250A (en) Epoxy resin composition
JPS61188465A (en) Thermosetting resin composition
JPH01236226A (en) Epoxy resin composition for semiconductor sealing
JPH09176279A (en) Epoxy resin composition
JPH05343570A (en) Epoxy resin composition
JP3004454B2 (en) Resin composition
JPH062801B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2001031840A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH06100658A (en) Epoxy resin composition