JPS6031866B2 - Polyethylene resin composition for transparent heat-shrinkable articles - Google Patents

Polyethylene resin composition for transparent heat-shrinkable articles

Info

Publication number
JPS6031866B2
JPS6031866B2 JP5288684A JP5288684A JPS6031866B2 JP S6031866 B2 JPS6031866 B2 JP S6031866B2 JP 5288684 A JP5288684 A JP 5288684A JP 5288684 A JP5288684 A JP 5288684A JP S6031866 B2 JPS6031866 B2 JP S6031866B2
Authority
JP
Japan
Prior art keywords
heat
tube
shrinkable
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5288684A
Other languages
Japanese (ja)
Other versions
JPS59182831A (en
Inventor
進三 山川
則夫 村田
二三夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5288684A priority Critical patent/JPS6031866B2/en
Publication of JPS59182831A publication Critical patent/JPS59182831A/en
Publication of JPS6031866B2 publication Critical patent/JPS6031866B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、特に高い熱収縮力を有するとともに耐亀劣性
に優れた透明熱収縮性物品用ポリエチレン(以下ではポ
リエチレンをPEと略記)樹脂組成物に関するものある
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyethylene (hereinafter abbreviated as PE) resin composition for transparent heat-shrinkable articles, which has particularly high heat-shrinkage strength and excellent resistance to fading.

電子線照射PEから作られた熱収縮性チューブ、テープ
、スIJーブなどの熱収縮性物品は、シーリング剤や接
着剤などと併用して、鋼管溶援継手部、電力及び通信ケ
ーブルの接続部、端末部、補修部などの防食被覆材料、
接続材料として使用されている。
Heat-shrinkable products such as heat-shrinkable tubes, tapes, and IJ tubes made from electron-beam irradiated PE can be used in conjunction with sealants and adhesives to seal steel pipe weld joints, power and communication cable connections, etc. Corrosion-proof coating materials for parts, terminal parts, repair parts, etc.
Used as a connecting material.

しかし、これらの熱収縮性物品(以下では特にこだわら
ない限りチューブまたは熱収縮チューブと略記)を加熱
収縮させて鋼管あるいはケーブルに鉄合させる際にチュ
ーブ自身に収縮力が働いているため、加熱収縮時にチュ
ーブが容易に裂けたり、あるいは割れるという問題があ
った。このチューブの亀裂の原因として次の3つが考え
られる(「材料ト第2群蓋、第144頁、1979年発
行参照)。【11 加熱温度の上昇とともにチューブ破
断点応力は減少し、収縮応力は増加するので、ある温度
以上で収縮応力が破欧点応力より大となり、チューブは
それ自身の収縮力により裂けあるし、は破断する。
However, when these heat-shrinkable articles (hereinafter abbreviated as tubes or heat-shrinkable tubes unless otherwise specified) are heat-shrinked and bonded to steel pipes or cables, shrinkage force is applied to the tube itself, so heat-shrinkage Sometimes there was a problem with the tubes tearing or cracking easily. There are three possible causes of this tube cracking (see "Materials, Group 2 Lid," p. 144, published in 1979).[11] As the heating temperature increases, the stress at the tube breakage point decreases, and the As a result, the shrinkage stress becomes larger than the breaking point stress above a certain temperature, and the tube tears and breaks due to its own shrinkage force.

■ 過熱により酸化防止剤が消耗あるいは昇華飛散した
場合または酸化防止剤の添加量が少ない場合、チューブ
材料が熱酸化劣化を起こして破断点応力が低下し、チュ
ーブの収縮応力が破断点応力より大となるため、チュー
ブはそれ自身の収縮力により破断する。
■ If the antioxidant is consumed or sublimated and scattered due to overheating, or if the amount of antioxidant added is small, the tube material will undergo thermal oxidative deterioration and the stress at break will decrease, causing the contraction stress of the tube to become greater than the stress at break. Therefore, the tube breaks due to its own contraction force.

{31 チューブ表面の端面に微少なクラックあるいは
切欠きが存在する場合、そこに応力が集中して亀裂が進
む。
{31 When a minute crack or notch exists on the end face of the tube surface, stress concentrates there and the crack progresses.

従って、かかる原因‘1)及び■に基づく亀裂あるいは
割れ防止するために、加熱温度を注意深く制御する必要
があった。
Therefore, it was necessary to carefully control the heating temperature in order to prevent cracks or fractures due to causes '1) and (2).

また、チューブは延伸率の低い所(従って収縮力が低く
なった状態)でケーフル、鋼管等に競合させるか、ある
いは元々収縮力(あるいは融点以上におけるヤング率)
の小さいチューブを使用させざるを得なかった。ここで
、延伸率は100(D−Do)/Do〔%〕で表わされ
る。ただし、Doは延伸前または完全収縮後のチューブ
の内径、Dは蕨合されている状態または使用時における
チューブの内径である。このため、シーリング剤または
接着剤に加わる収縮力あるし、は圧着力がくなり、上述
の継手部や接続部などの防食性、水密性及び気密性が十
分でなかった。特に、かかるチューブを通信ケーブルの
外被接続部に適用する場合には、気密性及び水密性の保
持と同時に援続部の機械的強度の保持が要求される。か
かる要求を満たすべく、透明熱収縮チューブ及びテープ
とエチレンコポリマ系熱溶融接着剤(示温材内蔵)を併
用した外被接続法が提案されている(例えば、特公昭5
2一41478号、特顔昭53−83919号、特磯昭
55一8476y号)。その場合に、接着信頼性を高め
るために、高い収縮率(または収縮力)の所でチューブ
を使用すか、あるいは元々高い収縮力をもつチューブの
使用が望まれていた。しかし、従来の熱収縮チューブで
は、収縮力が高くなると亀裂が生じやすくなり、高い収
縮力が働いている状態でも亀裂が生じない高収縮力で耐
亀裂性の熱収縮チューブはこれまで開発されていなかっ
た。チューブ用材料として使用されるPE樹脂は、一般
に密度の違いによって、‘1ー 低密度PE(通常密度
0.910〜0.930夕/地、以下LDPEと略記)
■ 中密度PE(通常密度0.930〜0.945夕/
地、以下MDPEと略記)‘3’高密度PE(通常密度
0.945夕/塊以上、以下HDPEと略記)の3種類
に大別されている。
In addition, tubes should be made to compete with cables, steel pipes, etc. at low elongation ratios (and therefore have low shrinkage forces), or should they have shrinkage forces (or Young's modulus above the melting point) that are inherently low?
I had no choice but to use a small tube. Here, the stretching ratio is expressed as 100 (D-Do)/Do [%]. However, Do is the inner diameter of the tube before stretching or after complete contraction, and D is the inner diameter of the tube in the fitted state or during use. For this reason, there is a shrinkage force applied to the sealant or adhesive, and the pressure bonding force increases, and the corrosion resistance, watertightness, and airtightness of the above-mentioned joints and connections are insufficient. In particular, when such a tube is applied to a sheath connection part of a communication cable, it is required to maintain airtightness and watertightness as well as mechanical strength of the connecting part. In order to meet such requirements, a jacket connection method using a combination of transparent heat-shrinkable tubes and tapes and ethylene copolymer-based hot-melt adhesives (with built-in temperature indicating material) has been proposed (for example,
No. 2-41478, Tokugao No. 53-83919, Tokiso Sho No. 55-8476y). In this case, in order to improve adhesion reliability, it has been desired to use a tube with a high shrinkage rate (or shrinkage force), or to use a tube that originally has a high shrinkage force. However, with conventional heat shrinkable tubes, cracks tend to occur when the shrinkage force is high, and crack-resistant heat shrinkable tubes with high shrinkage force that do not crack even under high shrinkage forces have not been developed so far. There wasn't. PE resins used as tube materials are generally classified into low-density PE resins (normal density 0.910-0.930 mm/ground, hereinafter abbreviated as LDPE) depending on their density.
■ Medium density PE (normal density 0.930-0.945/
It is roughly divided into three types: '3' high-density PE (normal density of 0.945 mm/clump or higher, hereinafter abbreviated as HDPE).

また、PE樹脂は、その製造法の相違、すなわち{1}
高圧法と‘2}中低圧法によっても2種類に大別される
。高圧法によって重合されたPEは最鎖分岐構造をもつ
のが特長で密度0.910〜0.930夕/城のものに
限定される。従って、この種のPEは高圧法PEあるい
は分岐状低密度PE(以下BLDPEと略記)と呼ばれ
ている。一方、中低圧法によって重合されたPEは直鎖
状構造をもつのが特長で、この重合法によってはMDP
E及びHDPEが製造されている。近年、中低圧法によ
ってLDPEを製造する技術が開発され「一部商品化さ
れている。この種のPEはLDPEでありながら直鎖状
構造をもつので、中低圧法直鏡状低密度PE(以下LL
DPEと略記)と呼ばれている。チューブ用材料として
は、これまでBLDPE,MDPEまたはHDPEが使
用されてきた。しかし、MDPEまたはHDPEから作
られた透明チューブは、BLDPEから作られたチュー
ブに比べて、‘1} エチレンコポリマ系熱熔融接着剤
との接着性が悪い【2} 融点以下での透明性が悪い ‘3} 収縮温度が高い ‘4’柔軟性に欠ける などの短所があった。
In addition, PE resin has different manufacturing methods, namely {1}
It is roughly divided into two types depending on the high pressure method and the '2} medium and low pressure method. PE polymerized by the high-pressure method is characterized by having the most chain-branched structure, and is limited to a density of 0.910 to 0.930 yen/shiro. Therefore, this type of PE is called high-pressure PE or branched low-density PE (hereinafter abbreviated as BLDPE). On the other hand, PE polymerized by medium-low pressure method is characterized by having a linear structure, and depending on this polymerization method, MDP
E and HDPE are manufactured. In recent years, a technology for manufacturing LDPE using the medium-low pressure method has been developed and some of it has been commercialized. Although this type of PE is LDPE, it has a linear structure, so it is possible to produce LDPE using the medium-low pressure method. Below LL
It is called DPE (abbreviated as DPE). Up to now, BLDPE, MDPE or HDPE has been used as the material for the tube. However, transparent tubes made from MDPE or HDPE have poor adhesion with ethylene copolymer hot-melt adhesives compared to tubes made from BLDPE.[2] Poor transparency below the melting point. '3' had disadvantages such as high shrinkage temperature and '4' lack of flexibility.

一方、BLDPEを使用した場合には、これらm〜■の
短所はなくなるが、収縮力と耐亀裂性の双方の点で優れ
たチューブは得られないことが判明した。更にまた、L
LDPEをチューブ材料として検討した例はこれまでに
ない。本発明はこのような現状に鑑みてなされたもので
、高い熱収縮力を有し、かつ耐亀裂性に優れた透明熱収
縮性物品を形成するために用いられるポリエチレン樹脂
組成物を提供することを目的とする。
On the other hand, it has been found that when BLDPE is used, although these disadvantages m to 2 are eliminated, a tube excellent in both shrinkage force and crack resistance cannot be obtained. Furthermore, L
There has never been any study of LDPE as a tube material. The present invention has been made in view of the current situation, and an object thereof is to provide a polyethylene resin composition that can be used to form a transparent heat-shrinkable article that has high heat-shrinkage strength and excellent crack resistance. With the goal.

本発明透明熱収縮性物品用PE樹脂組成物は、第1成分
としてのLLDPEを30〜聡重量部、第2成分として
のクロロスルホン化PE単独またはクロロスルホン化P
EとBLDPEとの混合物(ただし、第2成分中におい
て塩素含有率1〜35重量%、硫黄含率0.05〜5.
0重量%)を70〜2重量部、及び酸化防止剤を0.1
〜5.の重量部含む。
The PE resin composition for transparent heat-shrinkable articles of the present invention contains 30 to 30 parts by weight of LLDPE as the first component, and chlorosulfonated PE alone or chlorosulfonated P as the second component.
A mixture of E and BLDPE (with a chlorine content of 1 to 35% by weight and a sulfur content of 0.05 to 5% by weight in the second component).
0% by weight) and 0.1 parts by weight of antioxidant.
~5. Contains parts by weight.

本発明PE樹脂組成物の1成分であるLLDPE(通常
密度0.910〜0.930夕/塊)は、圧力1〜10
山肌、温度30〜250℃の下で触媒を使用した液相溶
液法、液相スラIJ−法、気相流動床法、気相額梓層法
などによってエチレンとQ−オレフィンとを共重合する
ことにより製造でき、メルトィンデツクス(以下MIと
略記)が0.1〜5.0の範囲にあるものが望ましい。
高い収縮力と良好な耐亀裂性をもつ熱収縮チューブは、
このLLDPEを、第1成分と第2成分との合計量10
の重量部に対して30重量部以上配合した組成物をチュ
ーブ材料として使用した場合に実現できことが見出され
た。本発明において用いられる第2成分中のBLDPE
(通常密度0.910〜0.930夕/地)は、圧力1
500〜250世tm、温度120〜25000の下で
ラジカル重合によって製造でき、MIが0.1〜5.0
の範囲にあるものが望ましい。
LLDPE (usually density 0.910 to 0.930 per block), which is one component of the PE resin composition of the present invention, has a pressure of 1 to 10
Ethylene and Q-olefin are copolymerized on a mountain surface at a temperature of 30 to 250°C by a liquid phase solution method using a catalyst, a liquid phase slurry IJ method, a gas phase fluidized bed method, a gas phase bed method, etc. It is desirable that the melt index (hereinafter abbreviated as MI) is in the range of 0.1 to 5.0.
Heat shrinkable tubing has high shrinkage force and good crack resistance.
The total amount of this LLDPE of the first component and the second component is 10
It has been found that this can be achieved when a composition containing 30 parts by weight or more based on the parts by weight of is used as a tube material. BLDPE in the second component used in the present invention
(normal density 0.910-0.930 m/earth) is pressure 1
It can be produced by radical polymerization at 500 to 250 tm and a temperature of 120 to 25,000, and has an MI of 0.1 to 5.0.
It is desirable that it falls within the range of .

本発明において使用されるクロロスルホン化PEは、ク
ロロスルホン化基を化学的に結合しているPEであれば
特に限定的でなく、公知あるいは市販のクロロスルホン
イびEをそのまま使用できる。
The chlorosulfonated PE used in the present invention is not particularly limited as long as it has a chlorosulfonated group chemically bonded to it, and any known or commercially available chlorosulfonated PE can be used as is.

また、かかるクロロスルホンイびEはクロロスルホン基
を含有しているものであればよく、クロロスルホン基以
外に、例えば製造工程で含有される塩素原子等を含んで
何ら差し支えない。その場合に、硫黄含有率として0.
3〜1広重量%、塩素含有率として10〜45重量%の
ものを好適に使用することができる。硫黄含有率あるい
は塩素含有率がこれより少ないと酸化防止剤の保持能力
が低下し、チューブ加工過程及び製造後の貯蔵過程で酸
化防止剤のブルーミングが起こりやすくなる。他方、硫
黄含有率あるいは塩素含有率がこれより多いと加熱収縮
時の熱安定性が低下する。本発明で用いられる酸化防止
剤としては、種々の種類のものを使用できるが、加熱収
縮時における酸化防止剤の昇華飛散を防止するためには
、分子量300以上の酸化防止剤を使用することが望ま
しい。
Further, the chlorosulfone E may contain a chlorosulfone group, and may contain, for example, a chlorine atom contained in the manufacturing process in addition to the chlorosulfone group. In that case, the sulfur content is 0.
A chlorine content of 3 to 1% by weight and a chlorine content of 10 to 45% by weight can be suitably used. If the sulfur content or chlorine content is less than this, the ability to retain the antioxidant will be reduced, and the antioxidant will likely bloom during the tube processing process and the post-manufacturing storage process. On the other hand, if the sulfur content or chlorine content is higher than this, the thermal stability during heat shrinkage will decrease. Various types of antioxidants can be used in the present invention, but in order to prevent the antioxidant from sublimating and scattering during heat shrinkage, it is preferable to use an antioxidant with a molecular weight of 300 or more. desirable.

かかる酸化防止剤の添加量としては、上述した第1成分
と第2成分との合計量100重量部に対して0.1〜5
.0重量部が望ましい。これより少ないと熱酸化劣化に
よる亀裂が起こりやすくなる。本発明のポリエチレン樹
脂組成物は、上述した成分の外に、各種安定剤、カーボ
ンブラック、鱗燃剤.糟剤、その他の充填材や添加剤な
どを含有してもよい。なお、これらの添加剤の量はLL
DPE、クロロスルホン化PE,BLDPE及び酸化防
止剤の配合割合の組成範囲の計算上からは除外される。
The amount of the antioxidant added is 0.1 to 5 parts by weight per 100 parts by weight of the above-mentioned first and second components.
.. 0 parts by weight is desirable. If the amount is less than this, cracks are likely to occur due to thermal oxidative deterioration. In addition to the above-mentioned components, the polyethylene resin composition of the present invention contains various stabilizers, carbon black, and a scale retardant. It may also contain a paste, other fillers, additives, and the like. In addition, the amount of these additives is LL
DPE, chlorosulfonated PE, BLDPE, and antioxidant are excluded from the calculation of the composition range of the blending ratio.

上述した各種成分の配合方法は、特に制限されるもので
はなく、既知の混合技術、例えばバンバリミキサー、混
合ロールまたは押出機等による藩雛混練技術を利用する
ことができる。
The method of blending the various components described above is not particularly limited, and known mixing techniques such as the Hanbina kneading technique using a Banbury mixer, mixing roll, or extruder can be used.

本発明PE樹脂組成物により形成される熱収縮性物品、
例えばチューブやスリーブを製造するにあたっては、ブ
ロッキング法あるいは膨張法を用いることができる。
A heat-shrinkable article formed from the PE resin composition of the present invention,
For example, in manufacturing tubes and sleeves, blocking or expansion methods can be used.

ブロッキング法では、まずTダィ押出法、インフレーシ
ョン法等によって形成した上述した組成のPEシートに
加速電子線を照射し架橋させる。次に、この架橋訳Eシ
ートを加熱下で機械方向に延伸加工することによって最
尺の熱収縮フィルムを作る。最後に、この熱収縮フィル
ムをマンドレル上に緊密に巻き上げてから加熱溶融して
一体化し、熱収縮チューブを形成する(特公昭50−2
4355号参照)。膨張法では、まず押出法等によって
形成したPEパイプに加速電子線を照射し架橋させる。
この架橋PEパイプを加熱下で膨張変形し、その状態の
まま冷却固化することによって熱収縮チューブを製造す
る(侍公昭47一37506号、侍公昭52一40私3
号参照)。本発明PE樹脂組成物により熱収縮チューブ
を製造するにあたっては、上述の熱収縮フィルムを延伸
方向に延在するテープ状に切断することによって製造す
ることができる。次に本発明の実施例について説明する
が、本発明はこれら実施例になんら限定されるものでは
ない。
In the blocking method, first, a PE sheet having the above-mentioned composition formed by a T-die extrusion method, an inflation method, or the like is crosslinked by irradiating an accelerated electron beam. Next, the crosslinked E-sheet is stretched in the machine direction under heating to produce the longest heat-shrinkable film. Finally, this heat-shrinkable film is tightly wound onto a mandrel and then heated and melted to form a heat-shrinkable tube (Japanese Patent Publication No. 50-2
(See No. 4355). In the expansion method, first, a PE pipe formed by an extrusion method or the like is irradiated with an accelerated electron beam to crosslink it.
This cross-linked PE pipe is expanded and deformed under heating, and then cooled and solidified in that state to produce a heat-shrinkable tube (Samurai Kosho 47-37506, Samurai Kosho 52-40 I 3
(see issue). When manufacturing a heat-shrinkable tube using the PE resin composition of the present invention, it can be manufactured by cutting the above-mentioned heat-shrinkable film into a tape shape extending in the stretching direction. Next, examples of the present invention will be described, but the present invention is not limited to these examples in any way.

なお、これらの実施例において架橋度はゲル分率Gによ
って評価した。ゲル分率とは架橋PEの試料中のゲル分
量を百分率で表わしたものであり、電子線の照射量と共
に増加する。なお、ゲル分重量は試料を120℃のキシ
レン中にて2岬時間抽出後、不溶分を80qoにて1母
時間以上乾燥したものの重量である。熱収縮力は、15
0ooにおける段階的弛緩及び引張試験によって測定さ
れる第1図示の円周方向の静的収縮応力os〔夕/水〕
−歪ご〔%〕曲線よりご=33%及びご=186%にお
ける。
In addition, in these Examples, the degree of crosslinking was evaluated by the gel fraction G. The gel fraction is the amount of gel in a crosslinked PE sample expressed as a percentage, and increases with the amount of electron beam irradiation. The gel weight is the weight obtained by extracting the sample in xylene at 120° C. for 2 hours, and then drying the insoluble portion at 80 qo for 1 hour or more. The heat shrinkage force is 15
Static shrinkage stress in the circumferential direction shown in the first diagram measured by stepwise relaxation and tensile tests at 0oo [Evening/Wednesday]
- from the strain % curve at % = 33% and % = 186%.

s値として評価した。かかる試験にあたっては、例えば
チューブの場合には、第2図Aに示すように熱収縮チュ
ーブーの円周方向2に沿う短冊状試験片3を切り出し、
この試験片3を第2図Bに示すように引張試験機のチャ
ック4に取付け、温度150℃において、矢印で示すよ
うに段階的弛緩及び引張を熱収縮チューブ部分3に加え
て静的応力OS〔夕/仇〕を測定する。テープの場合に
は、テープの長さ方向に切り出した短冊状試験片につい
て測定を行う。熱収縮チューブ1の蓬方向の収縮力は。
st/r〔夕/洲〕(ここでtは熱収縮チューブ1の厚
み、rは熱収縮チューブ1の半径)として計算されるが
、この収縮力は、第3図に示す熱収縮チューブの実際の
収縮力の測定値。n〔夕/地〕とよく一致する。この実
際の収縮力の測定は、第4図に示すように、熱収縮チュ
ーブ1の内部に封入したガスのガス圧と収縮力とが釣合
ったときのガス圧から測定できる。(特藤昭53一弊斑
1号参照)。チューブやテープの耐亀裂性は、亀裂成長
による破壊時の吸収エネルギー量に相当するタフネス値
ノジbodご〔k9/地〕によって評価した。
It was evaluated as an s value. For such a test, for example, in the case of a tube, a strip-shaped test piece 3 is cut out along the circumferential direction 2 of the heat-shrinkable tube as shown in FIG. 2A,
This test piece 3 was attached to the chuck 4 of a tensile tester as shown in FIG. Measure [evening/enemy]. In the case of tape, measurements are made on a strip-shaped test piece cut out in the length direction of the tape. The shrinkage force of the heat-shrinkable tube 1 in the vertical direction is:
This shrinkage force is calculated as st/r (where t is the thickness of the heat-shrinkable tube 1 and r is the radius of the heat-shrinkable tube 1), but this shrinkage force is based on the actual heat-shrinkable tube shown in Figure 3. Measurement of the contraction force of. It matches well with n [evening/earth]. The actual contraction force can be measured from the gas pressure when the contraction force is balanced with the gas pressure of the gas sealed inside the heat-shrinkable tube 1, as shown in FIG. (Refer to Tokuto Sho 53 Ichieba No. 1). The crack resistance of tubes and tapes was evaluated by the toughness value Noji Bod [k9/ground], which corresponds to the amount of energy absorbed at the time of fracture due to crack growth.

すなわち、第5図に示すように、歪ごに対する応力〇を
示す曲線においてごが0から所定の量ごbに至るまでの
ど−。曲線の面積で表わされるタフネス値によって評価
した。その際に、第2図Aと同様にチューブ円周方向や
テープ長さ方向に切り出した短冊状試験片3の一側緑に
、第6図に示すように、1腕の深さの切欠5を付け、こ
の功欠付試験片3を引張試験機のチャック4に取り付け
、引張速度5仇舷/分の定速引張試験から。−ご曲線を
測定し、その〇−ご曲線の面積を求めてタフネス値とす
る。このタフネス値は、第7図に示すように、例えば実
際の熱収縮チューブの耐亀裂性を示す量、すなわちチュ
ーブ端面の切欠から亀裂が進行する速度〔分/10柳〕
とよく対応する。ここで、亀裂進行速度は、第8図に示
すように、例えば熱収縮チューブ6の端面に深さ1肌の
切欠き7をつけ、この熱収縮チューブ6に治具8を横合
させ、この治臭8により延伸率または歪ご=186%に
なるように調整し、次いでこの熱収縮チューブ6を15
0oCのシリコン油槽に浸猿したときに、切欠7からの
亀裂が1比廠進行するまでの時間を測定して求めた。な
お、第8図において、9はチューブ6の表面に付したI
Q奴標線である。熱収縮チューブやテープの収縮力と耐
亀裂性は、主に、チューブやテープ用の材料として使用
したPE樹脂の種類、及び架橋またはゲル分率によって
決まる。
That is, as shown in FIG. 5, in the curve showing the stress 〇 against the strain, the curve changes from 0 to a predetermined amount b. Evaluation was made by the toughness value expressed by the area of the curve. At that time, as shown in FIG. 6, a notch 5 with a depth of one arm is made in one green side of the strip-shaped test piece 3 cut out in the circumferential direction of the tube and the lengthwise direction of the tape in the same manner as in FIG. 2A. Attach this test piece 3 to the chuck 4 of a tensile testing machine, and perform a constant-speed tensile test at a tensile speed of 5 m/min. -Measure the curve and calculate the area of the 〇-curve to determine the toughness value. As shown in Fig. 7, this toughness value is, for example, the amount that indicates the crack resistance of the actual heat-shrinkable tube, that is, the speed at which cracks propagate from the notch on the tube end surface [minutes/10 Yanagi].
corresponds well with Here, the crack propagation speed can be determined by, for example, making a notch 7 with a depth of 1 skin on the end face of the heat-shrinkable tube 6, and placing a jig 8 horizontally on the heat-shrinkable tube 6, as shown in FIG. Adjust the elongation rate or strain to 186% using odor control 8, and then adjust this heat shrink tube 6 to 15%.
It was determined by measuring the time required for the crack from the notch 7 to propagate by 1 hour when the sample was immersed in a silicone oil bath at 0oC. In addition, in FIG. 8, 9 indicates the I attached to the surface of the tube 6.
This is the Q-guy line. The shrinkage force and crack resistance of heat-shrink tubes and tapes are primarily determined by the type of PE resin used as the material for the tube or tape and the crosslinking or gel fraction.

ある一つのPE樹脂を、例えばチューブ用材料として使
用し、電子線照射量、従ってゲル分率の異なる熱収縮チ
ューブを製造した場合、得られた熱収縮チューブの収縮
力は、後に説明する第9図に示すように、ゲル分率とと
もに大になる。一方、熱収縮チューブの耐亀裂性ははゲ
ル分率とともに悪くなる。すなわちタフネス値は後に説
明する第10図に示すように、ゲル分率とともに低下す
る。従って、ある一つのPE樹脂から作られた熱収縮チ
ューブの耐亀裂性と収縮力との関係は、照射量またはゲ
ル分率を変えたときのタフネス−OS(ご=33%)曲
線で評価できる(第11図及び第12図参照)。また、
実際に熱収縮チューブを製造しなくても、延伸または膨
張加工する前の架橋PEパイプ、架橋PEシートのタフ
ネス−けs曲線から熱収縮チュ−ブを製造したときの耐
亀裂性−収縮力曲線を予測できることが分った。これは
、膨張法及びブロッキング法で製造した熱収縮チューブ
のタフネス−ひs(ご=紙%)曲線と架橋PEシートの
場合のタフネス−。s(ご=33%)曲線(第1 1図
及び第12図)がほぼ一致していることから明らかであ
る。従って、本発明の以下に述べる実施例においては、
架橋PEシ−トのタフネス−。s(ど=33%)曲線か
ら熱収縮力との関係を評価することも行った。実施例1
と比較例1〜3第1表に示すPE樹脂組成物から押出法
によりPEパイプを作製した。
For example, when a certain PE resin is used as a tube material and heat-shrinkable tubes with different electron beam irradiation doses and therefore gel fractions are manufactured, the shrinkage force of the resulting heat-shrinkable tube will be As shown in the figure, it increases with the gel fraction. On the other hand, the crack resistance of heat-shrinkable tubes deteriorates as the gel fraction increases. That is, the toughness value decreases with the gel fraction, as shown in FIG. 10, which will be explained later. Therefore, the relationship between crack resistance and shrinkage force of a heat shrinkable tube made from a certain PE resin can be evaluated using the toughness-OS (=33%) curve when the irradiation dose or gel fraction is changed. (See Figures 11 and 12). Also,
Crack resistance-shrinkage force curves when heat-shrinkable tubes are manufactured from the toughness curves of cross-linked PE pipes and cross-linked PE sheets before being stretched or expanded, without actually manufacturing the heat-shrinkable tubes. It turns out that it is possible to predict. This is the toughness curve of heat-shrinkable tubes manufactured by the expansion method and blocking method, and the toughness curve of crosslinked PE sheets. This is clear from the fact that the s (=33%) curves (Figs. 11 and 12) are almost identical. Therefore, in the following embodiments of the invention:
Toughness of crosslinked PE sheet. The relationship with heat shrinkage force was also evaluated from the s (do=33%) curve. Example 1
and Comparative Examples 1 to 3 PE pipes were produced from the PE resin compositions shown in Table 1 by an extrusion method.

このPEパイプに電子線加速器を用いて加速電子線を照
射し、ゲル分率10〜60%の範囲の架橋PEパイプを
得た。この架橋PEパイプから膨張法により熱収縮チュ
ーブを製造した(第1表)。その熱収縮チューブの。s
(ご=斑%)〔夕/地〕−ゲル分率〔%〕曲線を第9図
に、タフネス〔k9/地〕ーゲル分率〔%〕曲線を第1
0図に示す。第9図と第10図から求めたタフネス〔k
9/仇〕−ひs(ご=33%)〔タノの〕曲線を第11
図に示す。この第11図の結果より、実施例1及び2の
熱収縮チューブは、ゲル分率G=25%以上において、
比較例2及び3の熱収縮チューブに比べて、鰻れた耐亀
裂性と高い収縮力をもつことが分る。比較例1の熱収縮
チューブは最も磯れた耐亀裂性と高い収縮力をもつが、
酸化防止剤保持能力がなく、製造工程で酸化防止剤のブ
ルーミングを起こした。第1表 a)密度=0.9222タイの、MI=0.7夕/10
分b)結合酢酸ビニル舎量=1.4重量%、密度=0.
922タイ孫、MI=o.17夕/lo分c)BLDP
E 密度=0.923タイの
、MI=0.11夕/10分d)クロロスルホン化PE
(ハイパロン40、デュポン)e)lrganox l
olo(チバ.ガイソ一宇士製)f)100(DI−D
2)/D,(雛、D,は加熱前のチューブ内径、D2は
完全収縮後のチュ−ブ内径g)完全収縮後実施例2と比
較例4〜7 第2表に示すPE樹脂組成物から圧縮成形により2肌厚
のPEシートを作成した。
This PE pipe was irradiated with an accelerated electron beam using an electron beam accelerator to obtain a crosslinked PE pipe with a gel fraction in the range of 10 to 60%. A heat-shrinkable tube was manufactured from this crosslinked PE pipe by an expansion method (Table 1). That's heat shrink tubing. s
(go = spot %) [evening/ground] - gel fraction [%] curve is shown in Figure 9, toughness [k9/ground] - gel fraction [%] curve is shown in Figure 1.
Shown in Figure 0. Toughness [k] found from Figures 9 and 10
9/enemy] - his (go = 33%) [Tano's] curve as the 11th
As shown in the figure. From the results shown in FIG. 11, the heat-shrinkable tubes of Examples 1 and 2 have a gel fraction G of 25% or more.
It can be seen that the heat shrinkable tubes of Comparative Examples 2 and 3 have better crack resistance and higher shrinkage force. The heat shrink tube of Comparative Example 1 has the highest crack resistance and high shrinkage force, but
It did not have the ability to retain antioxidants, and antioxidant blooming occurred during the manufacturing process. Table 1 a) Density = 0.9222 tie, MI = 0.7 evening/10
Min. b) Amount of bound vinyl acetate = 1.4% by weight, density = 0.
922 Tai Son, MI=o. 17 evening/lo minute c) BLDP
E Density = 0.923 tie, MI = 0.11 m/10 min d) Chlorosulfonated PE
(Hypalon 40, DuPont) e) lrganox l
olo (manufactured by Chiba. Gaiso Kazuji) f) 100 (DI-D
2) /D, (Chick, D, is the inner diameter of the tube before heating, D2 is the inner diameter of the tube after complete contraction g) After complete contraction Example 2 and Comparative Examples 4 to 7 PE resin compositions shown in Table 2 A two-thickness PE sheet was prepared by compression molding.

このPEシートに電子線加速器を用いて加速電子線を照
射し、ケル分率5〜65%の範囲の架橋PEシートを得
た。この架橋PEシートのタフネス〔k9/地〕−os
(ど=33%〔夕/地〕曲線を第12図に示す。こ0の
架橋PEシートの場合にも、上述した熱収縮チューブの
タフネス−。s(ど=33%)曲線の場合と類似の結果
が得られることが分る。第2表 a)密度=0.922タイ協、MI=0.7夕/10分
b)密度=0.922タイごみ、必1コ0.82夕/1
0分c)結合酢酸ピニル舎量=1.4重量物、密度=0
.922タイとあ、MI=0.17夕/10分d)クロ
ロスルホン化P8(/・イパロン40、デュポン)e)
BLDPE 密度=o.
923タイcえ MI=0.11夕/10分f)lrg
anox lol.0(チバ・ガィジメ士製)以上のよ
うに、第11図〜第12図の結果から明らかなように、
本発明によれば、第1成分として中低圧法直鎖状低密度
ポリエチレンを30〜鱗重量部、第2成分としてクロロ
スルホン化ポリエチレン単独またはクロロスルホン化ポ
リエチレンと高圧法分岐状低密度ポリエチレンとの混合
物(ただし、この第2成分において塩素含有率1〜35
重量%、硫黄含有率0.05〜5.の重量%)を70〜
2重量部、及び酸化防止剤を0.1〜5.0重量部含む
ポリエチレン樹脂組成物を、透明熱収縮性物品を形成す
るのに提供でき、かかるポリエチレン樹脂組成物をチュ
ーブ、スリーブ、テープ等の材料とし、ゲル分率を25
%以上の範囲とすることによって、従来材料の高圧法分
岐状低密度ポリエチレンを使用した場合に比較して、格
段に優れた耐亀裂性と高い収縮力を有する熱収縮チュー
ブ、スリーブ、テープ等の透明熱収縮性物品を形成でき
ることが分った。
This PE sheet was irradiated with an accelerated electron beam using an electron beam accelerator to obtain a crosslinked PE sheet with a Kel fraction in the range of 5 to 65%. Toughness of this cross-linked PE sheet [k9/base]-os
(D = 33% [Sun/Ground] curve is shown in Figure 12. In the case of this cross-linked PE sheet, the toughness of the heat shrink tube described above is similar to the case of the s (D = 33%) curve. It can be seen that the following results can be obtained. Table 2 a) Density = 0.922 Thai Association, MI = 0.7 evening/10 minutes b) Density = 0.922 Thai garbage, 1 piece must be 0.82 evening/ 1
0 minutes c) Amount of bound pinyl acetate = 1.4 weight, density = 0
.. 922 Thai Toa, MI=0.17 evening/10 minutes d) Chlorosulfonated P8 (/・Ipalon 40, DuPont) e)
BLDPE density=o.
923 tie ce MI=0.11 evening/10 minutes f) lrg
anox lol. 0 (Made by Chiba Gaijimeshi) As mentioned above, as is clear from the results in Figures 11 and 12,
According to the present invention, 30 to 30 parts by scale weight of medium-low pressure linear low-density polyethylene is used as the first component, and chlorosulfonated polyethylene alone or chlorosulfonated polyethylene and high-pressure branched low-density polyethylene are used as the second component. mixture (however, the chlorine content in this second component is 1 to 35
Weight%, sulfur content 0.05-5. weight%) from 70 to
2 parts by weight and 0.1 to 5.0 parts by weight of an antioxidant can be provided to form transparent heat shrinkable articles, such polyethylene resin compositions can be used to form tubes, sleeves, tapes, etc. with a gel fraction of 25
% or higher, it is possible to produce heat-shrinkable tubes, sleeves, tapes, etc. that have significantly superior crack resistance and high shrinkage strength compared to conventional materials such as high-pressure branched low-density polyethylene. It has been found that transparent heat shrinkable articles can be formed.

また、本発明ポリエチレン樹脂組成物により形成した透
明熱収縮怪物品は、従来材料の中密度あるいは高密度ポ
リエチレンに比べて、エチレンコモポリマ系熱溶融接着
剤との接着性が良いことや、融点以下での透明性が良い
などの利点もある。従って、例えば本発明ポリエチレン
樹脂組成物により形成したチューブを、例えば通信ケー
ブルの外被接続に適用した場合、信頼性の高い接続部を
形成できる。
In addition, the transparent heat-shrinkable product formed from the polyethylene resin composition of the present invention has better adhesion with ethylene comopolymer hot-melt adhesives than conventional materials such as medium-density or high-density polyethylene, and has lower melting point. There are also advantages such as good transparency. Therefore, for example, when a tube formed from the polyethylene resin composition of the present invention is applied to, for example, a jacket connection of a communication cable, a highly reliable connection part can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱収縮チューブの円周方向の静的応力osと歪
ごとの関係を示す特性曲線図、第2図A及びBはOS−
ご曲線を求める測定方法の説明図、第3図は。 s値から算出される径方向の収縮力と実際のチューブの
収縮力ひnとの相関関係を示す特・性曲線図、第4図は
実際のチューブの収縮力の測定方法の説明図、第5図は
定速引張試験より得られる応力。−歪ご曲線の面積から
タフネス値を算出することを説明するための。−ご曲線
を示す特性曲線図、第6図はタフネス値測定方法の説明
図、第7図はタフネス値とチューブの耐亀裂性を評価で
きる実験値としての亀裂進行速度との相関関係を示す特
性曲線図、第8図は実際のチューブの亀裂進行速度の測
定方法の説明図、第9図は歪ご=33%における。s値
とゲル分率との関係を示す特性曲線図、第10図はタフ
ネスとゲル分率その関係を示す特性曲線図、第11図〜
第12図はタフネスと歪ど=33%におけるOS値との
関係を示す特性曲線図である。1・・・・・・熱収縮チ
ューブ、2・…・・円周方向、3・・・・・・短冊状試
験片、4・・・・・・引張試験機のチャック、5…・・
・切欠、6・・…・熱収縮チューブ、7…・・・切欠、
8・・・・・・拾具「 9…・・・IW岬標線。 界ノ図努2図 熱3図 略4図 群ふ図 第6図 努9図 第7図 繁?図 孫/o図 潔//図 努/2図
Figure 1 is a characteristic curve diagram showing the relationship between the static stress os in the circumferential direction of the heat shrink tube and each strain, and Figure 2 A and B are OS-
Figure 3 is an explanatory diagram of the measurement method for determining the curve. Figure 4 is a characteristic curve diagram showing the correlation between the radial contraction force calculated from the s value and the actual tube contraction force h. Figure 5 shows the stress obtained from the constant speed tensile test. - To explain that the toughness value is calculated from the area of the strain curve. -Characteristic curve diagram showing the curve, Figure 6 is an explanatory diagram of the toughness value measuring method, Figure 7 is the characteristic showing the correlation between the toughness value and the crack growth rate as an experimental value that can evaluate the crack resistance of the tube. The curve diagram, FIG. 8, is an explanatory diagram of the method of measuring the crack growth rate of an actual tube, and FIG. 9 is at a strain of 33%. A characteristic curve diagram showing the relationship between s value and gel fraction, Figure 10 is a characteristic curve diagram showing the relationship between toughness and gel fraction, Figures 11~
FIG. 12 is a characteristic curve diagram showing the relationship between toughness and OS value at strain = 33%. 1... Heat shrink tube, 2... Circumferential direction, 3... Strip test piece, 4... Chuck of tensile tester, 5...
・Notch, 6... Heat shrink tube, 7... Notch,
8... pick up tools 9... IW cape mark line. KAI no zu Tsutomu 2 figure heat 3 figure omitted 4 figure group figure 6 figure 6 figure 9 figure 7 traditional? figure grandson/o Zugye // Zutsutomu / Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 第1成分としての中低圧法直鎖状低密度ポリエチレ
ンを30〜98重量部、第2成分としてのクロロスルホ
ン化ポリエチレン単独またはクロロスルホン化ポリエチ
レンと高圧法分岐状低密度ポリエチレンとの混合物(た
だし、当該第2成分中において塩素含有率1〜35重料
%、硫黄含有率0.05〜5.0重量%)を70〜2重
量部、及び酸化防止剤を0.1〜5.0重量%部含むこ
とを特徴とする透明熱収縮性物品用ポリエチレン樹脂組
成物。
1 30 to 98 parts by weight of medium-low-pressure linear low-density polyethylene as the first component, chlorosulfonated polyethylene alone or a mixture of chlorosulfonated polyethylene and high-pressure branched low-density polyethylene as the second component (but , 70 to 2 parts by weight of a chlorine content of 1 to 35% by weight, a sulfur content of 0.05 to 5.0% by weight in the second component, and 0.1 to 5.0 parts by weight of an antioxidant. % parts of a polyethylene resin composition for transparent heat-shrinkable articles.
JP5288684A 1984-03-19 1984-03-19 Polyethylene resin composition for transparent heat-shrinkable articles Expired JPS6031866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5288684A JPS6031866B2 (en) 1984-03-19 1984-03-19 Polyethylene resin composition for transparent heat-shrinkable articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5288684A JPS6031866B2 (en) 1984-03-19 1984-03-19 Polyethylene resin composition for transparent heat-shrinkable articles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56028441A Division JPS6031336B2 (en) 1981-03-02 1981-03-02 Polyethylene resin composition for transparent heat-shrinkable articles

Publications (2)

Publication Number Publication Date
JPS59182831A JPS59182831A (en) 1984-10-17
JPS6031866B2 true JPS6031866B2 (en) 1985-07-24

Family

ID=12927354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5288684A Expired JPS6031866B2 (en) 1984-03-19 1984-03-19 Polyethylene resin composition for transparent heat-shrinkable articles

Country Status (1)

Country Link
JP (1) JPS6031866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2473574C2 (en) * 2011-04-01 2013-01-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Thermoplastic elastomeric composition

Also Published As

Publication number Publication date
JPS59182831A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
KR910004046B1 (en) Film for stretch packaging
US6841212B2 (en) Heat-recoverable composition and article
AU607971B2 (en) Thermoplastic multi-layer barrier film and bags made therefrom
EP0087080B1 (en) Laminate film
JPS608511Y2 (en) Hollow heat-shrinkable articles used to terminate or connect high-voltage power cables
CA2148072A1 (en) Multilayer polyolefin film containing recycle polymer for irradiated films
US4163117A (en) Heat-recoverable articles and their use
US9616462B2 (en) Protective polymer layer
CA2248654C (en) Ethylene polymer composition for cable applications
CN107531957A (en) Heat recoverable article, method, knot and the wire harness for manufacturing heat recoverable article
JPH03100086A (en) New tape covering
RU2123429C1 (en) Layered thermocontractable film and sac manufactured from it
CA1070880A (en) Cohesive heat-recoverable polymeric sealant article
JPS6031336B2 (en) Polyethylene resin composition for transparent heat-shrinkable articles
JPS6031866B2 (en) Polyethylene resin composition for transparent heat-shrinkable articles
JPS5923685B2 (en) heat shrink tube
CA1330933C (en) Sealable multilayered films with improved transparency
Todo et al. Structure and properties of new olefin polymers
JPS6031865B2 (en) Polyethylene resin composition for transparent heat-shrinkable articles
JP2561980B2 (en) New tape coating
WO2016174962A1 (en) Heat recovery article, heat recovery article manufacturing method, wire splice, and wire harness
US5914371A (en) Self fusing tape
US5681626A (en) Heat recoverable articles
CA1339985C (en) Self-bonding tapes
US4911961A (en) Plastic covering for anti-corrosion protection of articles and the like