JPS60261906A - Valve driving device - Google Patents

Valve driving device

Info

Publication number
JPS60261906A
JPS60261906A JP11645684A JP11645684A JPS60261906A JP S60261906 A JPS60261906 A JP S60261906A JP 11645684 A JP11645684 A JP 11645684A JP 11645684 A JP11645684 A JP 11645684A JP S60261906 A JPS60261906 A JP S60261906A
Authority
JP
Japan
Prior art keywords
valve
oil
turbine
control
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11645684A
Other languages
Japanese (ja)
Inventor
Naohiko Iwata
直彦 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11645684A priority Critical patent/JPS60261906A/en
Publication of JPS60261906A publication Critical patent/JPS60261906A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To eliminate a piping system running between valves, to prevent the occurrence of a fluctuation in an oil pressure during operation of a valve, and to prevent the occurrence of mulfunction, by a method wherein an oil pressure generator, consisting of a motor, a pump, and a tank, is mounted to a hydraulic cylinder adapted to drive each control valve of a steam turbine. CONSTITUTION:An oil pressure generator, formed with a motor 19, a pump 20, and a tank 18, is mounted to a hydraulic cylinder 12 of a hydraulic type valve driving device adapted to drive a main valve 11 of a turbine power plant. With the motor 19 and the pump 20 driven, working oil in the tank 18 is increased in a pressure, and is fed to a servo valve 14 and the feed oil port of an electromagnetic valve 15. During the starting of a plant, by means of a signal from a con- trol panel 5, the oil feed port and the cylinder port of a servo valve 19 are closed. By outputting an opening signal from the control panel 5, the servo valve 14 is opened, the feed oil port and the cylinder port of the valve 14 are intercommunicated, and the working oil is fed to the lower chamber of the cylinder 12 to push up the piston to open the valve 11.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービンで蒸気流量の調整又は流路の開
閉を複数個の主要弁で行う場合の弁駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a valve driving device for adjusting the steam flow rate or opening and closing a flow path in a steam turbine using a plurality of main valves.

〔発明の背景〕[Background of the invention]

第1図、第2図により以下説明する。 This will be explained below with reference to FIGS. 1 and 2.

火力および原子、力発電プラントの蒸気タービンには、
タービンの出力、速度を制御するため蒸気流量を調整す
る制御弁やタービンの危急停止時にタシビンへ流入する
蒸気をしゃ断してタービンの過速を防止する保安装置等
の目的で複数の主要弁が設置される。
Steam turbines in thermal, nuclear, and power plants include:
Multiple main valves are installed for purposes such as control valves that adjust the steam flow rate to control the output and speed of the turbine, and safety devices that prevent the turbine from overspeeding by cutting off the steam flowing into the Tashibin in the event of an emergency shutdown of the turbine. be done.

これらの主要弁は運転中、弁に荷重される蒸気力等の過
大な負荷力に抗して開閉動作を行うためコンパクトなア
クチェー°夕で大出力が得られ制御応答性が向上する油
圧式アクチェータで駆動される。
During operation, these main valves open and close against excessive load forces such as steam power applied to the valves, so hydraulic actuators are used that are compact and can provide high output and improve control response. is driven by.

従来より主要弁のアクチェータに供給する圧油は大形の
高圧油圧ユニ゛ットを1基設置して、この油圧ユニット
から各主要弁の間は油配管により連゛絡されていた。゛
・ 油圧ユニットからは三つの油系統が出ており、一つはポ
ンプの吐出圧油が直接アクチェータを駆動するために供
給する制御圧油、〜二つ目はタービンしゃ断装置に供給
されしゃ所用油圧切換弁以降は高年しや7断圧油となっ
て各弁駆動装置のしゃ新機構に供給される。このしゃ断
圧油がタービンしゃ断装置により断たれると弁駆動装置
のダンプ弁が開き、アクチェータ内の制御圧油がドレン
に排出され、弁に加わる蒸気力および弁閉鎖バネにより
弁は急速閉動作する。
Conventionally, pressurized oil is supplied to the actuators of the main valves by installing one large, high-pressure hydraulic unit, and connecting the main valves from this hydraulic unit with oil piping.゛・ Three oil systems come out from the hydraulic unit: one is control pressure oil, which is supplied by the pump's discharge pressure oil to directly drive the actuator, and the second is used to supply the turbine shutoff device. After the hydraulic switching valve, the oil becomes high-pressure oil and is supplied to the switching mechanism of each valve drive device. When this cutoff pressure oil is cut off by the turbine cutoff device, the dump valve of the valve drive device opens, the control pressure oil in the actuator is discharged to the drain, and the valve is quickly closed by the steam force applied to the valve and the valve closing spring. .

三つ目は弁駆動装置の内部漏洩油および弁急速閉動作時
に排出される制御油を油圧ユニットのリサーハに回収す
るドレン系統である。
The third is a drain system that collects internal leakage oil from the valve drive device and control oil discharged during the valve rapid closing operation to the hydraulic unit rehearsal.

′従来のセントラルシステムの配管系統では油圧ユニッ
トと弁間の連絡配管が多数必要と、、なり、1ユニツト
での総延長配管長さは数キロメートルにも及び且つ弁の
配置上、配管作業は複雑なルートにより施行される。
'The conventional central system piping system requires a large number of connecting piping between the hydraulic unit and the valves, and the total piping length for one unit is several kilometers, and the piping work is complicated due to the arrangement of the valves. It will be enforced through appropriate routes.

一方、弁の制御性では配管施行上複数の弁間を一本で連
絡する共通母管部が有るため、弁急速動作時や運転中に
行う弁の定期開閉テスト時等の圧油の給排時に配管系統
内に油圧脈動が発生し、これが種弁の機能に影響を与え
、誤動作等の不具合が発生することが有る。又運転前の
オイルフランシングには長期間を要し試運転期間が長く
なる。
On the other hand, in terms of valve controllability, there is a common main pipe that connects multiple valves in piping construction, so pressure oil is supplied and discharged during rapid valve operation or periodic valve opening/closing tests during operation. At times, hydraulic pulsations occur within the piping system, which may affect the function of the seed valve and cause problems such as malfunction. Furthermore, oil flancing before operation requires a long period of time, resulting in a long test run period.

セントラルシステムでは油圧ユニットのパワー源である
モータ、ポンプ、その他付属装置等の故障による圧油発
生の機能低下又は機能停止、あるい□は配管継手、溶接
部が多数存在するためこれらからの異常漏洩等が発生の
場合、たとえ1ケ所でもユニットは停止を余儀なくされ
る。又、制御油をタービンしゃ断装置により危急しゃ新
油に変換して各弁駆動装置に供給しているが、このしゃ
断装置にはタービンの保護装置のため各種のユニットト
リップ信号により動作されるトリップ信号として例えば
、タービン過速時に、タービン前部のシャフトに取付け
られた偏心リングに生ず゛る遠心力がスプリングのセッ
ト力に打ち勝って、偏心リングが外側に飛び出し、この
偏心リングは非常調速機のトリップフィンガーを叩き、
レバーリンク機構を介してメカニカルトリップ弁を作動
させ、しや断油をダンプして主蒸気止め弁、蒸気加減弁
、中間止め弁、インターセプト弁をトリップさせる。
In the central system, the power source of the hydraulic unit, such as the motor, pump, or other auxiliary equipment, may deteriorate or stop functioning due to failure, or abnormal leakage may occur from many pipe joints and welded parts. If something like this occurs, the unit will be forced to stop, even in one location. In addition, the control oil is converted into emergency new oil by a turbine cutoff device and supplied to each valve drive device, but this cutoff device has a trip signal activated by various unit trip signals as a turbine protection device. For example, when a turbine overspeeds, the centrifugal force generated in the eccentric ring attached to the shaft at the front of the turbine overcomes the setting force of the spring, causing the eccentric ring to fly outward. hit the trip finger of
The mechanical trip valve is actuated via the lever link mechanism to dump oil failure and trip the main steam stop valve, steam control valve, intermediate stop valve, and intercept valve.

このようにタービンしゃ断装置は保護装置として重要な
機能を有するため1本装置にはバックアップ機能、テス
ト機能等が付属され、これらにメカニカルトリップ弁、
ロックアウト弁、マスタートリップ電磁弁、オイルトリ
ップソレノイド弁、リセット電磁弁等が有る。従ってし
ゃ断装置は複雑な系統、シーケンスにより動作される。
In this way, the turbine breaker device has an important function as a protection device, so it is equipped with a backup function, a test function, etc., and a mechanical trip valve,
There are lockout valves, master trip solenoid valves, oil trip solenoid valves, reset solenoid valves, etc. Therefore, the breaker is operated according to a complicated system and sequence.

このような従来の油圧ユニットによるセントラルシステ
ムは、複雑で延長距離が長くなる配管系統の施行作業、
運転時の油圧変動や油漏洩による機能低下、複雑なしゃ
断装置の設置等の欠点を有する。
Such a conventional central system using a hydraulic unit requires complicated piping system construction work that requires a long extension distance.
It has drawbacks such as reduced functionality due to oil pressure fluctuations and oil leaks during operation, and the installation of a complicated breaker device.

〔発明の目的〕[Purpose of the invention]

、本発明の目的は従来の1基の油圧ユニットにより各弁
駆動装置を配管系統で連絡するセントラルシステムにお
ける前記欠点を解消するため、各弁駆動装置にコンパク
ト化した油圧発生装置を具備し配管系統を無くした新し
い、油圧発生装置付弁駆動装置を提供するにある。
An object of the present invention is to solve the above-mentioned drawbacks of the conventional central system in which each valve drive device is connected through a piping system using one hydraulic unit, and to provide a compact hydraulic generator for each valve drive device and to improve the piping system. The purpose of the present invention is to provide a new valve drive device with a hydraulic pressure generating device that eliminates the problem.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、弁駆動用油圧シリンダーに。 The feature of the present invention is the hydraulic cylinder for driving the valve.

モータ、ポンプ、タンクから構成される油圧発生装置を
具備し、ポンプ吐出圧油と弁位置制御用サーボ弁、電磁
弁お・よび油圧シリンダ給排油口をマニホールドの機械
加工によるへ油路により連絡する。
Equipped with a hydraulic pressure generator consisting of a motor, pump, and tank, the pump discharge pressure oil is connected to a servo valve for valve position control, a solenoid valve, and a hydraulic cylinder oil supply/drain port through an oil path created by machining the manifold. do.

この構成により前記目的を確実に達成することができた
ものである。
With this configuration, the above objective could be achieved reliably.

〔発明の・実施例〕。[Embodiments of the invention].

以下1本発明を第3図から第6図に基づいて説明する。The present invention will be explained below based on FIGS. 3 to 6.

前記図中で、第1図、第2図と同一のものには同一符号
を付して説明する。
In the figures, the same parts as in FIGS. 1 and 2 are designated by the same reference numerals and will be explained.

蒸気タービンプラントは、ボイラー又は原子炉の蒸気発
生器1.高圧タービン2、低圧タービン3、タービンの
回転機械エネルギーを電気エネルギーに変換する発電機
4の主機より構成されている。
A steam turbine plant consists of a boiler or a nuclear reactor steam generator1. The main engine is a high-pressure turbine 2, a low-pressure turbine 3, and a generator 4 that converts the rotary mechanical energy of the turbine into electrical energy.

一方11発電プラントの出力、速度を運転指令シ二〇基
づいて制御する制御装置6.これら制御のため弁開度を
変化させて蒸気流量を*aする主要弁11が複数設置さ
れている。
On the other hand, a control device 6. controls the output and speed of the 11 power generation plant based on the operation command C. For these controls, a plurality of main valves 11 are installed to change the valve opening degree to control the steam flow rate *a.

これら主要弁の駆動方式には比較的コンパクトな駆動装
置で大出力が得られる油圧式を従来より採用している。
The driving method for these main valves has traditionally been hydraulic, which provides a large output with a relatively compact drive device.

本発明による油圧式弁駆動装置は油圧シリンダ12にモ
ータ19、ポンプ20、タンク18の油圧発生装置を具
備し、モータ19.ポンプ20は機器をコンパクト化す
るため従来の周波数50〜60Hz、回転数1500〜
1800RPMに対し1例えば周波数200〜400H
z、回転数は約1200ORPMの高速仕様を使用する
The hydraulic valve driving device according to the present invention includes a hydraulic cylinder 12, a motor 19, a pump 20, and a hydraulic pressure generating device of a tank 18. The pump 20 has a conventional frequency of 50 to 60 Hz and a rotation speed of 1,500 to 1,500 to make the device more compact.
1 for 1800RPM, for example, frequency 200-400H
z, a high-speed specification with a rotation speed of about 1200 ORPM is used.

モータ19、ポンプ20を駆動するとタンク18の作動
油は高圧化され、サーボ弁14および電磁弁15の給油
ボートに供給される。プラント起動時はサーボ弁19は
制御盤5からの閉信号により、サーボ弁19の給油ボー
トとシリンダボートは塞じられており、ポンプからの吐
出油は給油ポートで止まりシリンダ12へは供給されな
い。
When the motor 19 and the pump 20 are driven, the hydraulic oil in the tank 18 is made high-pressure and is supplied to the oil supply boat of the servo valve 14 and the solenoid valve 15. When the plant is started, the servo valve 19 is closed by a closing signal from the control panel 5, and the oil supply boat and cylinder boat of the servo valve 19 are closed, and the oil discharged from the pump stops at the oil supply port and is not supplied to the cylinder 12.

一方、電磁弁15は無励磁で、この時電磁弁15の給油
ポートとシリンダポートは連通しており、このためポン
プからの吐出油は電磁弁15を通過して、ダンプ機構に
給油され、ダンプ弁13を上側に押し付はダンプ弁を閉
じている。
On the other hand, the solenoid valve 15 is not energized, and at this time, the oil supply port and cylinder port of the solenoid valve 15 are in communication, so the oil discharged from the pump passes through the solenoid valve 15, is supplied to the dump mechanism, and the dump mechanism is refueled. Pushing the valve 13 upward closes the dump valve.

その後、制御盤5からの弁開信号により、サーボ弁14
を開くとサーボ弁14の給油ボートとシリンダポートが
連通し1作動油はシリンダ12の下部室に供給され、シ
リンダのピストンを上に押上げ、弁を開く。
Thereafter, a valve opening signal from the control panel 5 causes the servo valve 14 to open.
When opened, the oil supply boat of the servo valve 14 and the cylinder port communicate with each other, and the hydraulic oil is supplied to the lower chamber of the cylinder 12, pushing the piston of the cylinder upward and opening the valve.

これらの主要弁は通常運転中全開位置に保持されている
。主要弁の機能の一つにタービンの危急しゃ断時に急速
に閉じ、タービンに流入する蒸気をしゃ断し、タービン
の過速を防止し、タービンを保護すること□が要求され
る。
These main valves are held in the fully open position during normal operation. One of the functions of the main valve is to close rapidly in the event of an emergency shutdown of the turbine, to cut off the steam flowing into the turbine, to prevent the turbine from overspeeding, and to protect the turbine.

そこで主要弁のこの機能を確認するため主要弁は運転中
定期的に弁の開閉テストを実施する。通常弁の閉テスト
は制御盤5に付属するテストボタンからのテスト信号に
よりサーボ弁のボートはシリンダポートとタンクボート
が連通し、給油ボートはブロックして圧油の供給をしゃ
断するか、あ(るいは、弁を閉じる側のシリンダポート
に接続する。このため、油圧シリンダ12の下部室の圧
油は、サーボ弁を介して排出されるので、弁を全開に保
持するための油圧痣1低下し、弁を―しる方向に負荷し
ている蒸気力、弁閉鎖バネ力により弁は徐々に閉じ、全
閉して、弁閉テストは終了する。
Therefore, in order to confirm this function of the main valves, valve opening/closing tests are conducted periodically during operation. Normally, in a valve closing test, a test signal from a test button attached to the control panel 5 is used to connect the cylinder port and tank boat of the servo valve boat, and block the refueling boat to cut off the supply of pressure oil. Otherwise, it is connected to the cylinder port on the side that closes the valve.For this reason, the pressure oil in the lower chamber of the hydraulic cylinder 12 is discharged via the servo valve, so the hydraulic pressure 1 is lowered to keep the valve fully open. Then, the valve gradually closes due to the steam force that is applied in the direction toward the valve, and the force of the valve closing spring, until it is fully closed and the valve closing test is completed.

この時、シリンダ下部室から排出される排油はシリンダ
の排油室と上部室を連通ずる油路を経由してシリンダ上
部室およびこれに継ながるタンク18に回収される。
At this time, the waste oil discharged from the cylinder lower chamber is collected into the cylinder upper chamber and the tank 18 connected thereto via an oil passage that communicates the oil drain chamber and the upper chamber of the cylinder.

弁閉テスト終了後、テストボタンを元の正規位置に戻す
と、サーボ弁には弁開信号が入り、前記、起動時と同要
領により弁は全開して、弁定期テストを完了する。
After the valve closing test is completed, when the test button is returned to its original normal position, a valve opening signal is input to the servo valve, and the valve is fully opened in the same manner as at startup, completing the valve periodic test.

タービンの緊急停止が必要な時は、緊急停止信号として
例えば、タービン振動穴、復水器真空腐蝕、スラスト軸
受摩耗大、軸受油圧低、電源喪失、タービン回転数人、
負荷喪失等があり、これらのトリップ信号が制御I15
から電磁弁15の励磁信号として出さ九る。
When an emergency stop of the turbine is required, an emergency stop signal such as turbine vibration hole, condenser vacuum corrosion, large thrust bearing wear, low bearing oil pressure, loss of power, several rotations of the turbine,
There is a loss of load, etc., and these trip signals are activated by the control I15.
It is output as an excitation signal for the solenoid valve 15.

電磁弁15が励磁されると電磁弁の給油ポートがブロッ
クされ、ポンプ吐出圧油がダンプ室へ供給するのをしゃ
断すると同時に、ダンプ室への供給ボートはドレンボー
ト連絡するため、ダンプ弁13の下部室圧油はタンク1
8へ排出さ九る。このため、ダンプ室の油圧が低下して
、ダンプ弁13の押付力が、シリンダ下部室の油圧力シ
;よるダンプ弁13の押し下げ力より小さくなるのでダ
ンプ弁13は下方に押し下げられ、ダンプ弁が開く。
When the solenoid valve 15 is energized, the oil supply port of the solenoid valve is blocked and the supply of pump discharge pressure oil to the dump chamber is cut off.At the same time, the supply boat to the dump chamber is connected to the drain boat, so the dump valve 13 is Lower chamber pressure oil is in tank 1
It is discharged to 8. Therefore, the oil pressure in the dump chamber decreases, and the pressing force of the dump valve 13 becomes smaller than the pressing force of the dump valve 13 due to the hydraulic pressure in the cylinder lower chamber, so the dump valve 13 is pushed downward, and the dump valve 13 is pushed down. opens.

これにより、シリンダー下部室の制御圧油は、ダンプ弁
の開口部より多量に排出されるので、弁の蒸気力、弁閉
鎖バネ力により弁は急速に全閉し、タービンへ流入する
蒸気をしゃ断し、タービンが過速するのを防止する。
As a result, a large amount of control pressure oil in the lower cylinder chamber is discharged from the dump valve opening, and the valve is quickly fully closed by the valve's steam force and valve closing spring force, cutting off the steam flowing into the turbine. and prevent the turbine from overspeeding.

なお1本発明において各部の具体的な構成、構造、系統
は、図示実施例に限らず、所期の目的動作を果しうるも
のであればよい。
Note that in the present invention, the specific configuration, structure, and system of each part are not limited to those shown in the illustrated embodiment, and may be any structure that can achieve the intended purpose operation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、各弁間を接続す
る配管系統が無いので、弁動作時に油圧変動により種弁
に誤動作等の影響を与えず、外部への油漏れが発生する
要因が低減する。
As explained above, according to the present invention, since there is no piping system connecting each valve, there is no effect such as malfunction on the main valve due to oil pressure fluctuation during valve operation, which is a factor that can cause oil leakage to the outside. is reduced.

更に油圧発生装置が故障の場合でも、当該弁のみ使用せ
ず、プラントの運転継続が可能になる。
Furthermore, even if the hydraulic pressure generator is out of order, the plant can continue operating without using only the relevant valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸気タービンの制御系統及び弁駆動装置
の配管系統図、第2図は従来の蒸気タービンの詳細な弁
制御系統図、第3図は本発明の一実施例の蒸気タービン
および弁駆動装置の制御系統図、第4図は同じく弁駆動
装置の詳細図、第5図は本発明によるポンプの吐出圧油
をサーボ弁で流量調整し、弁の開閉制御を行う場合の制
御ブロック図、第6図は本発明によるポンプ制御用サー
ボ弁によりポンプの吐出油量を調整して、弁の開閉制御
を行う場合の制御ブロック図である。 1・・・蒸気発生器、2・・・高圧タービン、3・・・
低圧タービン、4・・・発電機、5・・・制御盤、6・
・・制御装置、1i17・・・しゃ断装置、11・・・
主要弁、12・・・油圧シリンダ、17・・・差動トラ
ンス、18・・・タンク、19・・・高圧モータ、20
・・・高圧ポンプ、21・・・ポンプ率2日 市4図
Fig. 1 is a piping system diagram of a conventional steam turbine control system and a valve drive device, Fig. 2 is a detailed valve control system diagram of a conventional steam turbine, and Fig. 3 is a steam turbine and a piping system diagram of an embodiment of the present invention. A control system diagram of the valve drive device, FIG. 4 is a detailed diagram of the valve drive device, and FIG. 5 is a control block according to the present invention when the flow rate of the discharge pressure oil of the pump is adjusted by a servo valve to control the opening and closing of the valve. FIG. 6 is a control block diagram when the pump control servo valve according to the present invention adjusts the amount of oil discharged from the pump and controls the opening and closing of the valve. 1...Steam generator, 2...High pressure turbine, 3...
Low pressure turbine, 4... Generator, 5... Control panel, 6...
...Control device, 1i17...Cutoff device, 11...
Main valve, 12... Hydraulic cylinder, 17... Differential transformer, 18... Tank, 19... High pressure motor, 20
...High pressure pump, 21...Pump rate 2nd day figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気タービンの出力、速度を制御するため蒸気流量
を調整する制御弁、又は、蒸気タービンの危急停止時に
、タービンへ流入する蒸気をしゃ断してタービンの過速
を防止する保安装置用止め弁で、弁は圧油の供給、排出
により開閉動作し、この制御は、タービン制御装置から
の電気信号により、弁アクチェータに付属するサーボ弁
又は電磁弁を制御して行う油圧式弁駆動装置において、
各弁間を連絡する配管系統番持たず、各弁は各々独立し
て個々の弁アクチェータ比、モータ、ポンプタンクから
構成される油圧発・主装置を具備することを特徴とする
弁駆動装装置。
1. A control valve that adjusts the flow rate of steam to control the output and speed of a steam turbine, or a stop valve for a safety device that prevents overspeeding of the turbine by cutting off steam flowing into the turbine in the event of an emergency stop of the steam turbine. In a hydraulic valve drive device, the valve is opened and closed by supplying and discharging pressure oil, and this control is performed by controlling a servo valve or solenoid valve attached to a valve actuator using an electric signal from a turbine control device.
A valve drive device characterized in that there is no piping system number connecting each valve, and each valve is independently equipped with a hydraulic power generator/main device consisting of an individual valve actuator ratio, motor, and pump tank. .
JP11645684A 1984-06-08 1984-06-08 Valve driving device Pending JPS60261906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11645684A JPS60261906A (en) 1984-06-08 1984-06-08 Valve driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11645684A JPS60261906A (en) 1984-06-08 1984-06-08 Valve driving device

Publications (1)

Publication Number Publication Date
JPS60261906A true JPS60261906A (en) 1985-12-25

Family

ID=14687563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11645684A Pending JPS60261906A (en) 1984-06-08 1984-06-08 Valve driving device

Country Status (1)

Country Link
JP (1) JPS60261906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075184A1 (en) * 2001-03-08 2002-09-26 Siemens Aktiengesellschaft Steam line closing valve and steam turbine plant comprising such a steam line closing valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075184A1 (en) * 2001-03-08 2002-09-26 Siemens Aktiengesellschaft Steam line closing valve and steam turbine plant comprising such a steam line closing valve
US6929447B2 (en) 2001-03-08 2005-08-16 Siemens Aktiengesellschaft Steam line closing valve and steam turbine plant comprising such a steam line closing valve
CN100416144C (en) * 2001-03-08 2008-09-03 西门子公司 Steam line closing valve and steam turbine plant comprising such steam line closing valve

Similar Documents

Publication Publication Date Title
JPH08226339A (en) Trip oil-system in fuel feeder and control method of flow offuel to gas turbine
EP3647567B1 (en) A gas turbine engine control system for limiting turbine overspeed in case of a shaft failure
US4343454A (en) Apparatus for individual isolation of hydraulically actuated valves
US5292225A (en) Overspeed protection apparatus for a turbomachine
US4019390A (en) System and method for complete on line testing of a mechanical overspeed trip channel associated with an electrohydraulic emergency trip system for a turbine power plant
CN217712699U (en) Through-flow valve group structure of externally arranged safety valve
JPS60261906A (en) Valve driving device
EP1881164B1 (en) Device for regulating the intercept valves of a steam-turbine plant
JPH10306766A (en) Reversible pump-turbine
US4103592A (en) Valve operator
JP7408494B2 (en) Steam turbine valve abnormality monitoring system, steam turbine valve drive device, steam turbine valve device, and steam turbine plant
US3342194A (en) Emergency governor exerciser system
JP2986148B2 (en) Turbine emergency equipment
JP4155495B2 (en) Cooling equipment for reactor isolation
JPS6153408A (en) Emergency stop device for turbine
US3060692A (en) Control gear for steam turbines
US3692419A (en) Elastic fluid turbine system
JP2960584B2 (en) Hydraulic control unit for combined cycle power plant
US3683620A (en) Arrangement for protecting a steam treatment device against excess pressure
JPS6119905A (en) Turbine control device
JPH02259284A (en) Control method for pressure regulator valve
CN115126552A (en) Through-flow valve block structure with safety valve arranged outside machine
JP3386149B2 (en) Control device for water turbine
JPS63201303A (en) Protection device for mixed pressure extraction turbine
JPH01305A (en) Steam turbine control device