JPS60144154A - High efficiency operating device of air conditioner - Google Patents

High efficiency operating device of air conditioner

Info

Publication number
JPS60144154A
JPS60144154A JP58246546A JP24654683A JPS60144154A JP S60144154 A JPS60144154 A JP S60144154A JP 58246546 A JP58246546 A JP 58246546A JP 24654683 A JP24654683 A JP 24654683A JP S60144154 A JPS60144154 A JP S60144154A
Authority
JP
Japan
Prior art keywords
voltage
circuit
triangular wave
motor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58246546A
Other languages
Japanese (ja)
Inventor
Joji Ochi
越智 譲次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP58246546A priority Critical patent/JPS60144154A/en
Publication of JPS60144154A publication Critical patent/JPS60144154A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve the operating economy by always operating a motor in the maximum efficiency for the variation in a load, thereby maintaining high energy effective ratio through full year. CONSTITUTION:When the coil temperature of a heat source side coil 2 is high and a load applied to a compressor 1 is large, the resistance value of a negative temperature coefficient thermistor 14 decreases, the voltage value of the divided voltage E4 rises to lower the effective voltage, thereby limiting the current of a motor 5. When a cooling load decreases to generate a capacity control command to the compressor 1, the normal closure contact of a relay 17 is opened to operate a resistor R6. Thus, the voltage E4 is raised, with the result that the effective voltage drops, and the motor 5 operates in the maximum efficiency for the load.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気調和機における圧縮機用電動機を負荷の変
動に左右されず常に高効率で運転するようにした高効率
運転装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-efficiency operating device that constantly operates a compressor motor in an air conditioner at high efficiency regardless of load fluctuations.

(従来技術) エネルギ有効比(EER)が高い空気調和機は電力消費
面での節減効果が大であるところから省エネルギ形機械
として実状勢に即するものであるが、現状ではEER値
は夏期の標準的な温度条件に準じて規定されているので
、高EER機と評価されたものであっても、必らずしも
1年間を通じて最善の省エネルギ効果が期待されるとは
限らない。
(Prior art) Air conditioners with a high effective energy ratio (EER) are suitable for the current situation as energy-saving machines because they have a large saving effect in terms of power consumption. Therefore, even if a machine is rated as having a high EER, it is not necessarily the case that the best energy saving effect can be expected throughout the year.

それは、空気調和機が凝縮温度、蒸発温度の変化によっ
て、圧縮機用電動機に加わる負荷は太きく変動すること
から、年間を平均して室内・外温度の変動が可成り大き
い状況の下で常に最高のEERを示すものではないから
であって、EER値を左右する各種要因のうちで電動機
の性能、こよる変化は影響が大きい要素の一つであるこ
とが判っている。
This is because the load applied to the compressor motor of an air conditioner fluctuates widely due to changes in condensing and evaporating temperatures, so it is constantly changing under conditions where indoor and outdoor temperatures fluctuate considerably on average throughout the year. This is because it does not indicate the highest EER, and among the various factors that influence the EER value, it is known that the performance of the electric motor and its changes are one of the factors that have a large influence.

特に、EERに影響を与えるといわれる電動機の効率は
、印加電圧を変えない場合は軽負荷になる程悪くなり、
また50ヘルツ、60ヘルツの交流電源を共用する汎用
の電動機を50ヘルツ地帯で運転するときには、電動機
の効率が最高値を示すときの負荷値よりも軽い状態で運
転されることが多くなり、EER低下の影響は一層顕著
となる。
In particular, the efficiency of the motor, which is said to affect EER, worsens as the load becomes lighter if the applied voltage is not changed.
Furthermore, when a general-purpose motor that shares a 50 Hz and 60 Hz AC power supply is operated in the 50 Hz zone, it is often operated at a load lighter than the maximum efficiency of the motor, resulting in EER The impact of the decline will be even more pronounced.

従って圧縮機の容量制御を行なうものは運転効率の面で
問題があるところから、インバータを用いて連続的に周
波数変換を行なわせ、電動機の回転を制御するものが最
近になって多用されてきているが、これは電動機を効率
よく運転することが可能であるが、インバータの装置費
が嵩んで汎用品としては今なお不適通であり、普及され
るには至っていない。
Therefore, since compressors that control the capacity of the compressor have problems in terms of operational efficiency, recently, systems that use inverters to continuously convert the frequency and control the rotation of the electric motor have been widely used. Although it is possible to operate the electric motor efficiently, the inverter is still unsuitable as a general-purpose product due to the high device cost, and has not become widespread.

(発明の目的) かかる実状に対処して本発明は従来の問題点を解消する
ことを技術的課題として成されたものであって、電子回
路化された簡単かつ低コストの制御装置によって、圧縮
機の原動機である単相誘導電動機を負荷変動に対し常に
最高効率のもとて運転可能となすことにより、全年間を
通じ高EERを維持し得て運転経済性の向上を果させる
点を本発明は目的とする。
(Objective of the Invention) In view of the above-mentioned circumstances, the present invention has been made with the technical objective of solving the problems of the conventional technology. The present invention is capable of maintaining high EER throughout the year and improving operating economy by enabling the single-phase induction motor, which is the prime mover of the machine, to always operate at maximum efficiency in response to load fluctuations. is the purpose.

(発明の構成) しかして本発明は、圧縮機、熱源側コイル、減圧器及び
利用側コイルを備えた空気調和機において、交流用断続
器と、写角波発振回路と、電圧発生回路と、比較回路と
、増巾回路と、アイソレータとの6個の要素により高効
率運転装置を構成したものであって、前記交流用断続器
は、半導体スイッチング素子を要素となして圧縮機用単
相誘導電動機の主固定子巻線に対し直列に接続して交流
電圧の供給を断続せしめる電子回路であり、前記三角波
発振回路は、正電圧でかつ高周波数の連続する三角波を
発振する電子回路であり、前記電圧発生回路は、前述の
三角波のピーク電圧値以下の正電圧域で空調負荷が増大
するときは減じ、逆に減少するときは増す電圧を連続的
に出力する電子回路であり、前記比較回路は、三角波発
振回路が発振した三角波と電圧発生回路が出力した電圧
とを比較して、三角波の方が高いときと低いときとで極
性の異なる交番的な方形波パルスに変換し出力する電子
回路であり、前記増巾回路は、比較回路が出力した方形
波パルスのうちで三角波の方が高いときに出力した一方
の方形波パルスのみを増巾し出力する電子回路であり、
前記アイソレータは、前記増巾回路の出力に応じたゲー
ト信号を交流用断続器に出力する電子回路であり、電動
機に印加する交流電圧の正弦波形をオン、オフの交互に
細分割することによって、電圧(電流)の実効値を変え
、これが軽空調負荷のときに定格値よりも下げて該電′
動機が最高効率で運転される如き所定値に制御する如く
なしたものであって、かくして所期の目的はここに達成
される。
(Structure of the Invention) The present invention provides an air conditioner equipped with a compressor, a heat source side coil, a pressure reducer, and a usage side coil, which includes an AC interrupter, a viewing angle wave oscillation circuit, a voltage generation circuit, A high-efficiency operation device is constructed of six elements: a comparison circuit, an amplification circuit, and an isolator. An electronic circuit that is connected in series to the main stator winding of a motor to intermittent the supply of alternating current voltage, and the triangular wave oscillation circuit is an electronic circuit that oscillates a continuous triangular wave of positive voltage and high frequency, The voltage generating circuit is an electronic circuit that continuously outputs a voltage that decreases when the air conditioning load increases and increases when the air conditioning load decreases in the positive voltage range below the peak voltage value of the triangular wave, and the voltage generating circuit continuously outputs a voltage that increases when the air conditioning load decreases. is an electronic circuit that compares the triangular wave oscillated by a triangular wave oscillation circuit with the voltage output by a voltage generator circuit, converts the triangular wave into alternating square wave pulses with different polarities depending on when it is higher or lower, and outputs the pulse. The amplification circuit is an electronic circuit that amplifies and outputs only one square wave pulse output when the triangular wave is higher among the square wave pulses output by the comparison circuit,
The isolator is an electronic circuit that outputs a gate signal corresponding to the output of the amplification circuit to the AC interrupter, and by subdividing the sine waveform of the AC voltage applied to the motor into alternating on and off states, Change the effective value of the voltage (current) to lower it than the rated value when the air conditioning load is light.
This is done so that the motor is controlled to a predetermined value such that it is operated at maximum efficiency, thus achieving the intended purpose.

(実施例) 本発明の実施例を添付図面にもとづいて詳しく説明する
(Example) An example of the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の実施例に係る空気調和機の冷凍回路図
であって、この空気調和機は圧縮機(1)、熱源側コイ
ル(2)、減圧器(3)及び利用側コイル(4)を冷房
サイクルに接続して、利用側コイル(4)を蒸発器とし
て林用させることにより冷房運転が成される。
FIG. 1 is a refrigeration circuit diagram of an air conditioner according to an embodiment of the present invention, which includes a compressor (1), a heat source side coil (2), a pressure reducer (3), and a user side coil ( 4) is connected to the cooling cycle and the utilization side coil (4) is used as an evaporator to perform cooling operation.

上記圧縮機(1)には、主固定子巻線(5A)及び補助
固定子巻線(5B)を有する単相誘導電導機 (コンデ
ンサ起動運転形)(5)を軸直結せしめている。
A single-phase induction machine (capacitor start operation type) (5) having a main stator winding (5A) and an auxiliary stator winding (5B) is directly connected to the compressor (1).

この眼相誘導電動機(以下モータと略称する)(5)に
は第2図に示す如く、固定子巻線が巻装されてなる鉄心
の適当個所に、巻線温度を検出する温度検出器09例え
ば正特性サーミスタを埋設させているが、このモータ(
5)の運転制御、特に本発明の特徴である、高効率運転
制御を主として行なわせる電気回路は第2図に示される
通りであって、交流用断続器(6)と、三角波発振回路
(7)と、電圧発生回路(8)と、比較回路(9)と、
増1を回路α印と、アイソレータQllとの6つの要素
からなっている。
As shown in FIG. 2, this ophthalmic induction motor (hereinafter referred to as motor) (5) has a temperature detector 09 installed at an appropriate location on the iron core around which the stator winding is wound to detect the winding temperature. For example, a positive characteristic thermistor is embedded in the motor (
5) The electrical circuit that mainly performs the operation control, especially the high-efficiency operation control that is a feature of the present invention, is as shown in FIG. ), a voltage generation circuit (8), a comparison circuit (9),
It consists of six elements: the circuit 1, the circuit α, and the isolator Qll.

それら各要素の内容説明に先立って単相誘導電動機にお
ける効率運転特性について触れるが、電動機効率と電動
機負荷との関係は第3図にグラフ示される通り、定格電
源電圧を印加した電圧一定の条件では曲線(I)に示す
ように100%負荷で効−タ(5)が、50%負荷にな
ると71%と12%程度も低下するものである。
Before explaining the content of each of these elements, I will touch on the efficient operation characteristics of a single-phase induction motor.As shown in the graph in Figure 3, the relationship between motor efficiency and motor load is as follows: As shown in curve (I), the efficiency (5) at 100% load decreases by about 12% to 71% at 50% load.

そこで曲線(I)の特性を有するモータ(5)iこ対し
供給する電源電圧を下げてゆくと、曲線(II)、GV
)に示す特性のように、効率の最高値が軽負荷の域に順
次移動し、従って曲線(2)の特性になるまで電圧を下
げると50%負荷時でも効率が83%と変らないように
なり、結果として効率が12%高くなったことになる。
Therefore, when the power supply voltage supplied to the motor (5)i having the characteristics of curve (I) is lowered, curve (II) shows that GV
), the highest value of efficiency gradually moves to the light load region, so if the voltage is lowered until the characteristic of curve (2) is reached, the efficiency will not change to 83% even at 50% load. This results in a 12% increase in efficiency.

空気調和機において実際に使用されている状態は、シー
ズン中を通じ、さらにそのうちの−日だけをみても、最
高負荷域で使用する機会は極めて僅かで殆どの場合最高
効率を示す負荷より軽い負荷になる状態で使用されてい
るので、常に最高効率で運転されるよう調整できれば省
エネルギの効果は大である。
The conditions in which air conditioners are actually used are that throughout the season, and even on just one day of the season, there are very few opportunities to use them in the maximum load range, and in most cases, the load is lighter than the load that shows maximum efficiency. Since the equipment is used under various conditions, if it can be adjusted so that it is always operated at maximum efficiency, it will have a large energy saving effect.

かかる供給電圧変化の手段として、普通には変圧器特に
スライダック等の電圧調整器を使用して行なうことが考
えられるが、スライダック等巻線変圧器は鉄と銅が主要
な材料であって重く、かつ大形でしかもコスト高になる
のが難点である。
As a means of changing the supply voltage, it is usually thought to use a transformer, especially a voltage regulator such as a Slyduc, but a wire-wound transformer such as a Slyduc is mainly made of iron and copper and is heavy. Another disadvantage is that it is large and expensive.

ところで実質的に入力の大きさに関係するのは電流の実
効値であるから、モータに供給される電圧波形の積分値
が、正弦波電圧で供給される実効値電圧と等しくなれば
良い。
Incidentally, since it is the effective value of the current that is substantially related to the magnitude of the input, it is only necessary that the integral value of the voltage waveform supplied to the motor be equal to the effective value voltage supplied as a sine wave voltage.

従って、正弦波形を細か<ON、OFFに分割し、通電
されている積分値(時間を横軸にしたときの面積)を各
半サイクルについて等しくできる装置によって電圧変化
が行なえるものである。
Therefore, the voltage can be changed by a device that divides the sinusoidal waveform finely into <ON and OFF, and makes the integral value (area when time is taken as the horizontal axis) of energization equal for each half cycle.

すなわち、ON、OFFに分割される波形(一般にパル
スと呼ばれる)の巾を制御して、供給電圧を変fヒした
のと同じ効果を得るには、電子回路で構成される装置に
よって可能であり、これが以下述べる電気回路の基本と
なるところである。
In other words, it is possible to obtain the same effect as changing the supply voltage by controlling the width of the waveform (generally called a pulse) that is divided into ON and OFF states using a device composed of electronic circuits. , this is the basis of the electric circuit described below.

しかして前記交流用断続器(6)は、2個の半導体スイ
ッチング素子例えばパワートランジスタ(12−1) 
、 (12−2)を整流用ダイオード(13−1) 、
’(13−2)と夫々直列接続した状態で互いに電流々
流方向を逆にさせて並列に接続して形成していて、パワ
ートランジスタ(12−1)が交流の半波に対して、 
またパワートランジスタ(12−2)が他の半波に対し
て夫々断続用スイッチとして機能するように、前記モー
タ(5)の主固定巻線(5A)に対し直列に接続せしめ
ている。
Therefore, the AC interrupter (6) has two semiconductor switching elements such as a power transistor (12-1).
, (12-2) as a rectifier diode (13-1),
'(13-2) are connected in series with each other, and the current flow directions are reversed and connected in parallel, and the power transistor (12-1)
Further, the power transistor (12-2) is connected in series to the main fixed winding (5A) of the motor (5) so as to function as an on/off switch for each of the other half waves.

次に、三角波発振回路(7)は例えば無安定マルチバイ
ブレークを要素とした電子回路であって、基本的構成は
時間に対し電圧、電流の1直を直線的に変化させる傾斜
波発生回路と、この出力がしきい値に達したことを検出
する比較回路と、該比較回路の出力に応じて同期をとり
波形の繰返し周期を決めるべく前記両回路を制御する制
御回路の三つの要素からなり、第4図(イ)に示す如く
、商用周波数に比し可成り高い高周波数の正電圧で連続
する三角波を発振せしめる回路に構成している。
Next, the triangular wave oscillation circuit (7) is, for example, an electronic circuit using an astable multi-by-break as an element, and its basic configuration is a ramp wave generation circuit that linearly changes voltage and current with respect to time. It consists of three elements: a comparison circuit that detects that this output has reached a threshold, and a control circuit that controls both circuits to synchronize according to the output of the comparison circuit and determine the repetition period of the waveform, As shown in FIG. 4(A), the circuit is configured to oscillate a continuous triangular wave with a positive voltage at a high frequency considerably higher than the commercial frequency.

前記電圧発生回路(8)は、制御回路の直流電圧(El
)が印加される抵抗回路から中間点(a)の分圧を取り
出してこれを指令信号とする回路であって、例えば正電
位側から抵抗(R2)、凝縮器として作用する熱源側コ
イル(2)のコイル温度を検出する温度検出素子04)
、前記正特性サーミスタ05)、抵抗(R1)及び容量
制御検出リレー(17)の常閉接点を直列に接続して有
しており、正特性サーミスタ00抵抗(R1)からなる
直列回路の分電圧(R4)を取り出すようになっている
The voltage generating circuit (8) generates a DC voltage (El
) is applied to a resistor circuit that extracts the partial pressure at the intermediate point (a) and uses this as a command signal. ) Temperature detection element 04) that detects the coil temperature of
, the positive temperature coefficient thermistor 05), the resistor (R1), and the normally closed contact of the capacity control detection relay (17) are connected in series, and the divided voltage of the series circuit consisting of the positive coefficient thermistor 00 resistor (R1) (R4) is taken out.

なお、前記温度検出素子04Jは負特性サーミスタが用
いられていて、熱源側コイル(2)のコイル温度が高い
ときは圧縮機(1)に加わる負荷が大きいことからこれ
を抵抗減少変化として電気的に検出することが可能であ
って、前記電圧発生回路(8)における分電圧(R4)
を高負荷のときは高く、低負荷のときは低くするように
機能するものである。
Note that the temperature detection element 04J uses a negative characteristic thermistor, and when the coil temperature of the heat source side coil (2) is high, the load applied to the compressor (1) is large, so this is electrically detected as a resistance decrease change. The divided voltage (R4) in the voltage generating circuit (8)
The function is to increase the value when the load is high and lower it when the load is low.

しかして、この電圧発生回路(8)は各抵抗(Rt)。Therefore, this voltage generating circuit (8) is connected to each resistor (Rt).

(R2)を適当な値に選定することによって、 前記三
角波のピーク電圧値以下の正電圧域で空調(冷房)負荷
が増大するときは減じ、通に減少するときは増す電圧を
連続的に出力するようシこ形成している。
By selecting (R2) to an appropriate value, it is possible to continuously output a voltage that decreases when the air conditioning (cooling) load increases in the positive voltage range below the peak voltage value of the triangular wave and increases when it decreases steadily. It's shaped like a penis.

ところで、第2図々示例は抵抗(R1) lこ対して始
動リレーα0の常開接点を並列に接続し、一方、前記容
量制御検出リレーαηの常閉接点に対して抵抗(R6)
を並列に接続しており、モータ(5)が始動完了後は抵
抗(R1)は短絡されるので、分電圧(R4)は負特性
サーミスタ04)、正特性サーミスタQ51の抵抗値に
よって決定され、また軽負荷時で圧縮機(1)が容量制
御される場合には前記リレー(lηの常閉接点が開放す
ることによって抵抗(R6)の影響を受けるようになる
By the way, in the example shown in the second figure, the normally open contact of the starting relay α0 is connected in parallel to the resistor (R1), and on the other hand, the normally open contact of the capacity control detection relay αη is connected to the resistor (R6).
are connected in parallel, and the resistor (R1) is short-circuited after the motor (5) has started, so the divided voltage (R4) is determined by the resistance values of the negative characteristic thermistor 04) and positive characteristic thermistor Q51. Further, when the compressor (1) is subjected to capacity control under a light load, the normally closed contact of the relay (lη) opens, so that the compressor (1) is affected by the resistance (R6).

次に比較回路(9)はコンパレータから形成した電気回
路であって、三角波発振回路(7)が発振した三角波と
、電圧発生回路(8)が出力した分電圧(R4)とを比
較して、いずれが大きいかによって極性が異なるが一定
レベルの出力を出力端子(b)から発するようになって
いる。
Next, the comparison circuit (9) is an electric circuit formed from a comparator, and compares the triangular wave oscillated by the triangular wave oscillation circuit (7) with the divided voltage (R4) outputted by the voltage generation circuit (8). Although the polarity differs depending on which one is larger, an output of a constant level is emitted from the output terminal (b).

一方、増巾回路(10)はインバータ08)と、ドライ
バーIcQGを直列的に接続してなる電子回路であって
、比較回路(9)の出力が負のとき(三角波の電圧の方
が高いとき)にインバータ08)が正出力を発して、I
CQ9の出力がL(接地)となり、後述するフォトカプ
ラ(20−1) 、 (20−2)からの電流をアース
線に引き込み、フォトカプラ(20−1)、(20−2
)をON状態にするものである。
On the other hand, the amplifier circuit (10) is an electronic circuit formed by connecting an inverter 08) and a driver IcQG in series, and when the output of the comparator circuit (9) is negative (when the voltage of the triangular wave is higher) ), the inverter 08) outputs a positive output, and I
The output of CQ9 becomes L (ground), and the current from the photocouplers (20-1) and (20-2), which will be described later, is drawn into the ground wire, and the photocouplers (20-1) and (20-2) are connected to each other.
) is turned ON.

最後にアイソレータ(1旧まパルス変換回路(10)の
出力を絶縁的に増幅し得る2個のフォトカプラ(20・
−1) 、 (20−2)を要素としていて、両フォト
カプラ(20−1) 、 (20−2)の入力側ダイオ
ードを直列に接続して前記ICHの出力端に連絡せしめ
ていて、ICQIの出力がL状態になると、各フォトカ
プラ(20−1) 、 (20−2)の出力はパワート
ランジスタ(12−1)、(12−2)をON状態にて
きるベース電流を流し得るよう増巾されて、ベースに加
えるように設けてなる前記パワートランジスタ(12−
1) 、 (12−2)は正出力が出されている間導通
作動せしめられる。
Finally, two photocouplers (20.
-1) and (20-2) as elements, and the input side diodes of both photocouplers (20-1) and (20-2) are connected in series and connected to the output end of the ICH, and the ICQI When the output of the photocouplers (20-1) and (20-2) is in the L state, the outputs of the photocouplers (20-1) and (20-2) are arranged so that a base current that turns on the power transistors (12-1) and (12-2) can flow. The power transistor (12-
1) and (12-2) are rendered conductive while the positive output is being output.

以上、第2図々示回路の構成を説明したが、次にその作
動態様を説明すると、比較回路(9)のO入力端子lこ
は三角波発振回路(7)の連続三角波(第4図(イ)参
照)が入力され、一方■入力端子には電圧発生回路(8
)の分電圧(R4)が入力されるが、 この状態におい
て分電圧(R4)がE′4(第4図(イ)参照)である
と、両電圧の比較結果から、比較回路(9)の出力端に
は電圧E4のレベルよりも三角波パルスが高いか低いか
で極性の異なる方形波パルスが出力されるので、これを
増巾回路(1■によって三角波の方が高いときに出力し
た一方の極性のパルスを増巾して、アイソレータ01)
を介し絶縁的に前記交流用断続器(6)のパワートラン
ジスタ(12−1) 、 (R2−2)にゲート信号を
送り導電作動せしめる。
The configuration of the circuit shown in FIG. 2 has been explained above. Next, the operation mode will be explained. A) is input to the input terminal, while the voltage generating circuit (see 8) is input to the
) is input, but in this state, if the divided voltage (R4) is E'4 (see Figure 4 (a)), from the comparison result of both voltages, the comparator circuit (9) A square wave pulse with a different polarity is output at the output terminal of the voltage E4 depending on whether the triangular wave pulse is higher or lower than the level of the voltage E4. isolator 01) by amplifying the pulse with the polarity of
A gate signal is insulatively sent to the power transistors (12-1) and (R2-2) of the AC interrupter (6) via the AC circuit breaker (6) to activate the conductive operation.

同様に分電圧(R4)がE′4より高いi′4であると
、パルス間隔は同じであるが、パルス中が狭いケート信
号が前記トランジスタ(12−1) 、 (12−2)
に送られる。
Similarly, when the divided voltage (R4) is i'4 higher than E'4, the pulse interval is the same, but the gate signal with a narrow pulse is applied to the transistors (12-1) and (12-2).
sent to.

以上のことから明らかな如く、電圧発生回路(8)が出
力する分電圧(R4)が高くなる程、増巾回路1[11
から出力される方形波パルスはパルス間隔は不変である
がパルス中が短かく換言するならばパルスが出ない零レ
ベルの巾が長い状態となるのであって、この方形波パル
スによって導通作動するパワートランジスタ(12−1
)、(12−2)によりモータ(5)に印加する電圧は
分電圧(R4)がE′4のときは第6図のように断続し
た正弦波電圧となり、R4のときは第7図のように断続
した正弦波電圧となって、電圧実効値(積分値)は前者
の方が後者よりも大きくなることが明らかであり、この
ようにして供給電圧の実効値を容易に制御することが可
能である。
As is clear from the above, the higher the voltage (R4) output from the voltage generating circuit (8), the higher the amplifier circuit 1 [11
Although the pulse interval of the square wave pulses output from the 12-bit pulse is unchanged, the duration of the pulse is short, in other words, the width of the zero level where no pulse is generated is long, and the power that conducts due to this square wave pulse is Transistor (12-1
), (12-2), the voltage applied to the motor (5) becomes an intermittent sine wave voltage as shown in Figure 6 when the divided voltage (R4) is E'4, and as shown in Figure 7 when it is R4. It is clear that the effective value (integral value) of the voltage is larger than the latter, and the effective value of the supply voltage can be easily controlled in this way. It is possible.

従って第2図々示の回路では、圧縮m(1)が容量制御
されていなくて全運転されているときは、抵抗(R6)
が短絡されており、さらにモータ(5)が異常過熱して
いなければ正特性サーミスタQ51の抵抗も非常に低い
ので、前記分電圧(R4)は0に近く、かくしてモータ
(5)に供給される電圧は第5図に示すように電源波形
のままの連続した正弦波形の全電圧となり、最高効率の
運転が成される。
Therefore, in the circuit shown in Figure 2, when the compression m(1) is not controlled in capacity and is in full operation, the resistance (R6)
is short-circuited, and if the motor (5) is not abnormally overheated, the resistance of the positive temperature coefficient thermistor Q51 is also very low, so the divided voltage (R4) is close to 0, and thus is supplied to the motor (5). As shown in FIG. 5, the voltage becomes a continuous sinusoidal waveform of the power supply waveform, and the most efficient operation is achieved.

一方、熱源側コイル(2)のコイル温度が高くて、圧縮
機(1)に加わる負荷が大きいときには負特性サーミス
タ0滲の抵抗値が小さくなり、分電圧(R4)の電圧値
が上がって実効電圧を下げることにより、モータ(5)
電流を制限し得る。
On the other hand, when the coil temperature of the heat source side coil (2) is high and the load applied to the compressor (1) is large, the resistance value of the negative characteristic thermistor 0 becomes small, the voltage value of the divided voltage (R4) increases, and the effective By lowering the voltage, the motor (5)
Can limit current.

冷房負荷が低下してきて圧縮機(1)に対し容量制御指
令が発せられると前記リレーαηの常閉接点が開いて抵
抗(R6)が作用するために分電圧(R4)が上昇して
第4図(ロ)の出力が増巾回路+101から出されるこ
ととなり、その結果、実効電圧が下ってモータ(5)は
その負荷に対して最高効率で運転する。
When the cooling load decreases and a capacity control command is issued to the compressor (1), the normally closed contact of the relay αη opens and the resistor (R6) acts, causing the divided voltage (R4) to rise and the fourth The output shown in Figure (b) will be output from the amplification circuit +101, and as a result, the effective voltage will drop and the motor (5) will operate at maximum efficiency for its load.

なお、第2図々示例は始動時において、電流を抑える働
きを有するものであって、コンデンサ始動のモータ(5
)は始動時に主巻線に高電流が流れて供給されている電
力ラインに電圧降下などの悪影響を与えるおそれがある
ところから、補助巻線(5B)の両端に現れ、る電圧が
回転数の上昇によって高くなる特性を利用して、始動完
了まで消勢させ、かつ始動完了によって付勢する始動リ
レー00の常閉接点で、始動中は抵抗(R工)を回路中
に活かせて分電圧(R4)を高くさせることにより、第
4図(ハ)の出力を増巾回路0口)から出力してモータ
(5)に加える電圧を下げて始動電流の制限を行なわせ
ることが可能であって、始動完了後は抵抗(R工) を
短絡して分電圧(R4)を零近くまで下げ高出力に対処
させることができる。
The example shown in Figure 2 has the function of suppressing the current at the time of starting, and is a capacitor-starting motor (5
), a high current flows through the main winding during startup, which may cause a voltage drop or other negative impact on the power line being supplied. The normally closed contact of starting relay 00 de-energizes until the start is completed and energizes it when the start is completed, making use of the characteristic that the voltage increases as the temperature rises. By increasing R4), it is possible to output the output shown in Fig. 4 (c) from the amplifying circuit 0) to lower the voltage applied to the motor (5) and limit the starting current. After starting, the resistor (R) is short-circuited to reduce the divided voltage (R4) to near zero, allowing for high output.

一方、キュリ一点を有する正特性サーミスタ(IFDは
第8図々示の如き温度−抵抗特性を有するので、モータ
(5)が過熱することなく正常に運転している場合には
例えば20Ω以下で数にΩ〜数十にΩの負特性サーミス
タα4)に比し極めて小さく、比較回路(9)に影響を
もたらさない。
On the other hand, since a positive characteristic thermistor (IFD) with a single Curie point has a temperature-resistance characteristic as shown in Figure 8, if the motor (5) is operating normally without overheating, the resistance is several Ω or less, for example. It is extremely small compared to the negative characteristic thermistor α4), which has a value of Ω to several tens of Ω, and does not affect the comparator circuit (9).

ところがモータ(5)が異常過熱状態になり、コイル温
度が150℃以上になるとサーミスタ09は100にΩ
以上と抵抗値が急増するので、分電圧(R4)は急上昇
して、三角波パルスのピーク電圧値よりも高くなる結果
、比較回路(9)からは正出力が出されて、増巾回路(
]0)の出力が零となり、従ってモータ(51には電圧
が印加されず、圧縮機(1)は停止することとなり、モ
ータ(5)損傷保護が万全に成される。
However, when the motor (5) becomes abnormally overheated and the coil temperature exceeds 150℃, thermistor 09 becomes 100Ω.
As the resistance value increases rapidly, the divided voltage (R4) increases rapidly and becomes higher than the peak voltage value of the triangular wave pulse. As a result, a positive output is output from the comparator circuit (9), and the amplification circuit (
] 0) becomes zero, so no voltage is applied to the motor (51), the compressor (1) stops, and the motor (5) is completely protected from damage.

(発明の効果) 本発明は以上述べたように負荷状態に応じて常に最高効
率でモータ(5)を運転し得るよう、モータ(5)に加
えられる実効電圧を制御するようにしたことによって、
エネルギー有効比(EER)が常時高い状態で年間を通
じ運転することが可能となり、省エネルギーの効果は頗
る大である。
(Effects of the Invention) As described above, the present invention controls the effective voltage applied to the motor (5) so that the motor (5) can always be operated at the highest efficiency depending on the load condition.
It is now possible to operate throughout the year with a constantly high energy efficiency ratio (EER), resulting in significant energy savings.

また、本発明はモータ(5)に加える電圧を、高周波数
でパルス間隔が不変、パルス中が拡狭制御されるパルス
によってオン・オフされる交流用断続器(6)の作用に
より断続させて、実効電圧を変fヒし得る如くしたもの
であって、全電子化された装置で低コスト高信頼性のも
のを提供し得ると共に、装置内における電気ロスは殆ど
なく、経済的にすぐれており、制御の容易、確実な点と
相俟って斯界に益するところ正に多大である。
Furthermore, the present invention intermittents the voltage applied to the motor (5) by the action of an AC interrupter (6) that is turned on and off by pulses whose pulse intervals are constant at high frequency and whose width and narrowing are controlled. , the effective voltage can be varied, and it is possible to provide a fully electronic device with low cost and high reliability, and there is almost no electrical loss within the device, making it economically superior. This, combined with ease and reliability of control, is of great benefit to this industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の1実施例に係る冷凍回路
図および電気回路図、第3図乃至第8図は本発明装置例
に係る理論説明図で:第3図は単相誘導電動機の負荷−
効率特性線図、第4図(イ)〜(ハ)は三角波によるパ
ルス巾制御の説明図、第5図は印加電源電圧波形図、第
6図および第7図は電圧制御後の印加電圧波形図、第8
図は電動機巻線保護用サーミスタの温度抵抗特性線図で
ある。 (1)・・・圧縮機、 (2)・・・熱源側コイル、(
3)・・・減圧器、 (4)・・・利用側コイル、(5
)・・・単相誘導電動機、 (6)・・・交流用断続器
、(7)・・・三角波発振回路、 (8)・・・電圧発
生回路、(9)・・・比較回路、 (1ト・・増巾回路
、011・・・アイソレータ。 特許出願人 ダイキン工業株式会社 ts1図 第2図 第3図 第4図 (ロ) (ハ) 第7図 第8図 遍嵐(0C)
Figures 1 and 2 are refrigeration circuit diagrams and electric circuit diagrams according to one embodiment of the present invention, Figures 3 to 8 are theoretical explanatory diagrams according to examples of the apparatus of the present invention: Figure 3 is a single-phase induction Motor load -
Efficiency characteristic diagram, Figures 4 (a) to (c) are explanatory diagrams of pulse width control using a triangular wave, Figure 5 is an applied power supply voltage waveform diagram, and Figures 6 and 7 are applied voltage waveforms after voltage control. Figure, 8th
The figure is a temperature resistance characteristic diagram of a thermistor for protecting motor windings. (1)...Compressor, (2)...Heat source side coil, (
3)...Pressure reducer, (4)...Using side coil, (5
)...single-phase induction motor, (6)...AC interrupter, (7)...triangular wave oscillation circuit, (8)...voltage generation circuit, (9)...comparison circuit, ( 1 T... Width increase circuit, 011... Isolator. Patent applicant Daikin Industries, Ltd. ts1 Figure 2 Figure 3 Figure 4 (B) (C) Figure 7 Figure 8 Henran (0C)

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機(1)、熱源側コイル(2)、減圧器(3)
及び利用側コイル(4)を備えた空気調和機において、
半導体スイッチング素子を要素となし、前記圧縮機(1
)用の単相誘導電動機(5)の主固定子巻線(5A)に
対し直列に接続した交流用断続器(6)と、高周波数正
電圧の連続する三角波を発振する三角波発振回路(7)
と、前記三角波のピーク電圧値以下の正電圧域で空調負
荷が増大するときは減じ、逆に減少するときは増す電圧
を連続的に出力する電圧発生回路(8)と、前記三角波
発振回路(7)が発振した三角波と前記電圧発生回路(
8)が出力した電圧とを比較して三角波の方が高いとき
と低いときとで極性の異なる交番的な方形波パルスに変
換し出力する比較回路(9)と、この比較回路が出力し
た方形波パルスのうち三角波の方が高いときに出力した
一方の極性の方形波パルスのみを増巾して出力する増巾
回路(101と、該増巾回路(10)の出力に応じたゲ
ート信号を前記交流用断続器(6)に出力するアイソレ
ータ(l])とからなり、空調負荷が軽負荷のときに、
前記電動機(5)に供給する電圧の実効値を該電動機(
5)が高効率となる所定の値に制御する如くなしたこと
を特徴とする空気調和機の高効率運転装置。
1. Compressor (1), heat source side coil (2), pressure reducer (3)
and an air conditioner equipped with a utilization side coil (4),
The compressor (1) includes a semiconductor switching element as an element.
) and a triangular wave oscillation circuit (7) that oscillates a continuous triangular wave of high frequency positive voltage. )
and a voltage generating circuit (8) that continuously outputs a voltage that decreases when the air conditioning load increases in a positive voltage range below the peak voltage value of the triangular wave and increases when it decreases, and the triangular wave oscillator circuit (8). 7) and the triangular wave oscillated by the voltage generating circuit (
A comparator circuit (9) that compares the voltage output by 8) and converts it into an alternating square wave pulse with different polarity depending on when the triangular wave is higher or lower, and outputs the square wave pulse outputted by this comparator circuit. An amplifying circuit (101) that amplifies and outputs only the square wave pulse of one polarity output when the triangular wave is higher among the wave pulses, and a gate signal according to the output of the amplifying circuit (10). It consists of an isolator (l) that outputs to the AC interrupter (6), and when the air conditioning load is light,
The effective value of the voltage supplied to the electric motor (5) is
5) is controlled to a predetermined value that provides high efficiency.
JP58246546A 1983-12-30 1983-12-30 High efficiency operating device of air conditioner Pending JPS60144154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246546A JPS60144154A (en) 1983-12-30 1983-12-30 High efficiency operating device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246546A JPS60144154A (en) 1983-12-30 1983-12-30 High efficiency operating device of air conditioner

Publications (1)

Publication Number Publication Date
JPS60144154A true JPS60144154A (en) 1985-07-30

Family

ID=17150015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246546A Pending JPS60144154A (en) 1983-12-30 1983-12-30 High efficiency operating device of air conditioner

Country Status (1)

Country Link
JP (1) JPS60144154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003969A1 (en) * 1992-08-04 1994-02-17 Rifala Pty. Ltd. Drive circuit for a resonant reciprocating motor
CN102563995A (en) * 2010-12-28 2012-07-11 三洋电机株式会社 Control apparatus and refrigerating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003969A1 (en) * 1992-08-04 1994-02-17 Rifala Pty. Ltd. Drive circuit for a resonant reciprocating motor
CN102563995A (en) * 2010-12-28 2012-07-11 三洋电机株式会社 Control apparatus and refrigerating apparatus

Similar Documents

Publication Publication Date Title
KR101804713B1 (en) Dc power source device, motor drive device, air conditioner, and refrigerator
JP2012200042A (en) Inverter controller and freezing/air conditioning device
US20080089792A1 (en) Operation Control Device And Method Of Compressor
EP1750362B1 (en) DC power supply device for an air conditioner
US7134295B2 (en) Compressor unit and refrigerator using the unit
JP2007525940A (en) Systems and methods for increasing the output horsepower and efficiency of an electric motor
JPS6237093A (en) Control method of number of revolution of air conditioner
JP3215302B2 (en) Air conditioner
KR100376902B1 (en) Refrigerator
JP3488684B2 (en) Rectifier circuit and compressor drive
KR0159617B1 (en) Motor control apparatus and method of compressor
JPS60144154A (en) High efficiency operating device of air conditioner
JPH09224393A (en) Induction motor control device for fan of air-conditioner and induction motor control method for fan
CN107086820B (en) Starting control circuit of single-phase alternating current motor, compressor system and refrigeration equipment
CN211930536U (en) Refrigerator frequency conversion controller adopting efficient anti-surge
KR100445466B1 (en) Method and device for power factor compensation in inverter airconditioner
KR100308563B1 (en) Outdoor unit power supply and method of the separate air conditioner
US20230238893A1 (en) Electric motor driving apparatus, air conditioner, and refrigerator
WO2023238292A1 (en) Power conversion device, motor drive device, and refrigeration cycle applied equipment
CN107086821B (en) Starting control circuit of single-phase alternating current motor, compressor system and refrigeration equipment
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
CN107086822B (en) Starting control circuit of single-phase alternating current motor, compressor system and refrigeration equipment
KR102007851B1 (en) Power transforming apparatus and air conditioner including the same
KR20200090407A (en) Control method for linear compressor
JPS61138043A (en) Method of controlling capability variable freezer