JPS5947719B2 - Hydrocarbon conversion method - Google Patents

Hydrocarbon conversion method

Info

Publication number
JPS5947719B2
JPS5947719B2 JP48113339A JP11333973A JPS5947719B2 JP S5947719 B2 JPS5947719 B2 JP S5947719B2 JP 48113339 A JP48113339 A JP 48113339A JP 11333973 A JP11333973 A JP 11333973A JP S5947719 B2 JPS5947719 B2 JP S5947719B2
Authority
JP
Japan
Prior art keywords
catalyst
alumina
pbw
pore volume
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48113339A
Other languages
Japanese (ja)
Other versions
JPS4974204A (en
Inventor
マ−ルテン アドリアヌス ブロンク カレル
チヨン シ− スワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS4974204A publication Critical patent/JPS4974204A/ja
Publication of JPS5947719B2 publication Critical patent/JPS5947719B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は操作中脱硫反応容器に存在する触媒の連続的ま
たは周期的な補充を行なわない120ppmwを超える
全バナジウムおよびニッケル含有量を有する残留炭化水
素油の接触水添脱硫法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is suitable for the catalytic hydrodesulfurization of residual hydrocarbon oils having a total vanadium and nickel content of more than 120 ppmw without continuous or periodic replenishment of the catalyst present in the desulfurization reaction vessel during operation. Regarding the law.

残留炭化水素油は一般にかなりの量の硫黄化合物を含ん
でいる。
Residual hydrocarbon oils generally contain significant amounts of sulfur compounds.

これらの油を燃料として使用した場合、硫黄化合物中に
存在する硫黄は二酸化硫黄に転化して大気中に排出され
る。
When these oils are used as fuel, the sulfur present in the sulfur compounds is converted to sulfur dioxide and emitted into the atmosphere.

これらの油の燃焼においてできるだけ大気汚染を抑制す
るためには硫黄含有量を低下させるのが望ましい。
In order to suppress air pollution as much as possible during the combustion of these oils, it is desirable to reduce the sulfur content.

これは油の接触水添脱硫によって達成できる。This can be achieved by catalytic hydrodesulfurization of the oil.

この目的のために、操作中脱硫反応容器に存在する触媒
の連続的または周期的な補充を行なう方法またはこのよ
うな補充を行なわない方法を適用することができる。
For this purpose, processes with continuous or periodic replenishment of the catalyst present in the desulfurization reaction vessel during operation or without such replenishment can be applied.

簡単のため、本発明による方法をその一例として含む後
者の方法を本特許出願においては゛触媒を補充しない接
触水添脱硫″と呼ぶ。
For the sake of simplicity, the latter process, of which the process according to the invention is an example, is referred to in the present patent application as "catalytic hydrodesulfurization without catalyst supplementation".

残留炭化水素油の接触水添脱硫はこの方法を炭化水素油
留出油の水添脱硫に適用した場合には起こらない或種の
問題が含んでいる。
Catalytic hydrodesulfurization of residual hydrocarbon oils involves certain problems that do not occur when this method is applied to hydrodesulfurization of hydrocarbon distillate oils.

これらの問題は常圧下または減圧下において原油を蒸留
して得た残渣のような多くの残留炭化水素油がアスファ
ルチンおよびアスファルテンにかなりの部分結合してい
る金属化合物、特にバナジウムおよびニッケル化合物の
ような高分子の非蒸留性化合物を含んでいるという事実
に由来している。
These problems are exacerbated by the fact that many residual hydrocarbon oils, such as those obtained by distillation of crude oil under normal or reduced pressure, contain metal compounds, particularly vanadium and nickel compounds, which have a significant portion bound to asphaltins and asphaltenes. This is due to the fact that it contains high-molecular, non-distillable compounds.

水添脱硫中アスファルテンとバナジウムおよびニッケル
化合物は触媒粒子上に堆積する傾向がある。
During hydrodesulfurization asphaltenes and vanadium and nickel compounds tend to deposit on the catalyst particles.

触媒粒子上に堆積した高分子化合物の一部はコークスに
転化する。
A portion of the polymer compounds deposited on the catalyst particles is converted into coke.

触媒上のバナジウム、ニッケルおよびコークスの濃度が
増大する結果、極めて急速な触媒の脱活性化が起こる。
The increasing concentration of vanadium, nickel and coke on the catalyst results in very rapid catalyst deactivation.

触媒の活性が低下するにしたがって、所望の脱硫率を維
持するために温度を一層高くしなければならない。
As the activity of the catalyst decreases, the temperature must be increased to maintain the desired desulfurization rate.

しかしながら、高温においては水添分解反応がより重要
な役割を演じ始めて、種々の品質を有する燃料油が得ら
れる。
However, at high temperatures, the hydrocracking reaction begins to play a more important role, resulting in fuel oils with different qualities.

触媒寿命を延ばすために装入原料を脱硫する前にそれか
らアスファルテンを除去し、次に分離したアスファルテ
ンを脱硫生成物と再び混合する方法が既に提案されてい
る。
In order to extend the catalyst life, it has already been proposed to remove asphaltenes from the charge before desulfurization and then to mix the separated asphaltenes back with the desulfurization product.

しかしながら、この操作方法は付加的なプロセス段階、
すなわち脱アスファルテンを必要とし、更にその他の或
種の欠点も存在する。
However, this method of operation requires additional process steps,
That is, deasphaltenization is required, and there are also certain other drawbacks.

それ故原料をそのまま、すなわちアスファルテンを含む
原料を処理する水添脱硫法が選択される。
Therefore, a hydrodesulfurization method is selected in which the raw material is treated as it is, that is, the raw material containing asphaltene is treated.

しかしながらこの方法を具体化するためには現在この目
的のために一般に推せんされている触媒よりも脱活性に
対して優れた抵抗性を有する触媒が要求される。
However, the implementation of this process requires catalysts that have better resistance to deactivation than the catalysts currently being generally promoted for this purpose.

120 ppmwを超える全バナジウムおよびニッケル
含有量を有する残留炭化水素油の触媒を補充しない接触
水添脱硫の研究によって、担体上に水添活性を有する1
種またはそれ以上の金属からなるこの目的のために最適
の触媒はそれらの粒子直径と孔隙率に関する多くの要求
に従わなければならないことがわかっている。
Catalytic hydrodesulfurization studies without catalyst supplementation of residual hydrocarbon oils with total vanadium and nickel contents exceeding 120 ppmw revealed that 1 with hydrogenation activity on a support was
It has been found that catalysts suitable for this purpose, consisting of one or more metals, must comply with a number of requirements regarding their particle diameter and porosity.

最適の触媒に対するこれらの要求は一部水添脱硫を実施
する水素分圧に依存している。
These requirements for optimal catalysts depend in part on the hydrogen partial pressure at which the hydrodesulfurization is carried out.

この特許出願において、触媒を補充しない残留炭化水素
油の水添脱硫のために最適の触媒とは触媒が急速な脱活
性を示す前に触媒ゆ当り満足な量の残留炭化水素油を脱
硫づきるほど十分長い寿命を持ち、しかも満足な空間速
度において所望の低い硫黄含有量を有する最終製品が得
られるほど十分高い平均活性を有する触媒を意味する。
In this patent application, the most suitable catalyst for the hydrodesulfurization of residual hydrocarbon oil without replenishing the catalyst is one that desulfurizes a satisfactory amount of residual hydrocarbon oil before the catalyst exhibits rapid deactivation. It is meant to have a sufficiently long life span and an average activity high enough to yield a final product with the desired low sulfur content at satisfactory space velocities.

120ppmwを超える全バナジウムおよびニッケル含
有量を有する残留炭化水素油の触媒を補充しない接触水
添脱硫において、担体上に担持した1種またはそれ以上
の水添活性を有する金属からなる最適の触媒の粒子直径
と孔隙率に関する必要条件は次の通りである。
Optimal catalyst particles consisting of one or more hydrogenation-active metals supported on a support in the non-catalytic hydrodesulfurization of residual hydrocarbon oils with a total vanadium and nickel content of more than 120 ppmw The requirements regarding diameter and porosity are as follows.

まず第一に触媒粒子は商p/(d)°°″/Ji45X
10−’X (PH2)2<pAd)”’〈9×10−
4×(PH2)2、式中PH2は適用した水素分圧であ
る(pはnm、dはm屈、PH2パールを表わす)、の
要求を満たすような比平均細孔直径(p)と比平均粒子
直径を持つべきである。
First of all, the catalyst particles are quotient p/(d)°°″/Ji45X
10-'X (PH2)2<pAd)"'<9×10-
4×(PH2)2, where PH2 is the applied hydrogen partial pressure (p is nm, d is m, and represents PH2 pearl), and the ratio is should have an average particle diameter.

更に触媒は0.45 ml/ 9を越える全細孔容積を
有し、該全細孔容積の小くとも0.4ml/9は0.7
Xp以上ないし1.7Xp以下の直径を有する細孔中に
存在しなければならない。
Furthermore, the catalyst has a total pore volume greater than 0.45 ml/9, and at least 0.4 ml/9 of the total pore volume is 0.7
It must be present in pores with a diameter greater than or equal to Xp and less than or equal to 1.7Xp.

最後に、触媒は(a)全細孔容積の20係以下が0.7
X pより小さな直径を有する細孔中に存在し、 (b) 全細孔容積の20%以下が1.7Xpより大き
な直径を有する細孔中に存在し、そして (c)全細孔容積の10係以下が100 nmより大き
な直径を有する細孔中に存在する。
Finally, the catalyst has (a) a coefficient of 20 or less of the total pore volume of 0.7
(b) not more than 20% of the total pore volume is present in pores with a diameter greater than 1.7Xp, and (c) less than 20% of the total pore volume 10 or less are present in pores with diameters greater than 100 nm.

ことによって特徴づけられる鋭い細孔直径分布を持たな
ければならない。
It must have a sharp pore diameter distribution characterized by

dを測定する方法は触媒粒子の形状によって決まる。The method of measuring d depends on the shape of the catalyst particles.

触媒の粒子直径分布が篩分析によって決定できるような
形状を触媒粒子が持っている場合、dは次のようにして
決定される。
If the catalyst particles have a shape such that the particle diameter distribution of the catalyst can be determined by sieve analysis, d is determined as follows.

ASTM標準規格、パート30第96〜101頁(AS
TM Ell−61)(1969年)に記載の1組の
標準篩を用いてそれぞれの触媒試料の完全な篩分析を実
施した後、各々の連続した篩部分に関する重量係を触媒
試料の全重量を基にして、当の篩部分の相加平均粒子直
径の関数として累積的にプロットしたグラフからdを読
み取ると、dは全重量の50係に相当する粒子直径であ
る。
ASTM Standards, Part 30, pages 96-101 (AS
After performing a complete sieve analysis of each catalyst sample using a set of standard sieves as described in E.TM. If d is read from a graph plotted cumulatively as a function of the arithmetic average particle diameter of the sieve section in question, then d is the particle diameter corresponding to the 50th factor of the total weight.

この方法は球形および粒形の材料および長さ/直径比が
0.9ないし1.1である押出成型物およびペレットの
ような同様な形状を有する材料のdを決定するのに使用
することができる。
This method can be used to determine d for spherical and granular materials and materials with similar shapes such as extrudates and pellets with a length/diameter ratio of 0.9 to 1.1. can.

長さ/直径比が0.9よりも小さいまたは1.1よりも
大きい押出成型物およびペレットおよび篩分析によって
粒子直径分布を決定できない同様な円筒状の材料のdの
決定は次のようにして実施する。
Determination of d for extrudates and similar cylindrical materials for which the particle diameter distribution cannot be determined by pellet and sieve analysis with length/diameter ratios less than 0.9 or greater than 1.1 is as follows: implement.

それぞれの触媒試料の完全な長さ分布分析(長さ/直径
の比が0.9よりも小さな場合)または完全な直径分布
分析(長さ/直径比が1.1よりも大きな場合)を実施
した後、触媒の全重量を基にしたそれぞれ各連続した長
さおよび直径部分に関する重量係を当の部分の相加平均
寸法の関数として累積的にプロットしたグラフからdを
読み取ると、dは全重量の50係に相当する値である。
Perform a complete length distribution analysis (if the length/diameter ratio is less than 0.9) or a complete diameter distribution analysis (if the length/diameter ratio is greater than 1.1) of each catalyst sample. d is then read from a graph that cumulatively plots the weight coefficient for each successive length and diameter section based on the total weight of the catalyst as a function of the arithmetic mean size of that section. This value corresponds to the 50th factor of weight.

触媒試料の完全な細孔直径分布を決定した後、0〜10
100n細孔直径範囲に関し、2nmの直径間隔で区分
された細孔にみられる細孔容積の増加分であって細孔容
積の10係よりも小さいまたは等しい各連続した細孔容
積の増加分に関して、細孔容積の増加分と、対応する細
孔直径間隔との商を当の細孔直径の間隔上の相加平均細
孔直径の関数として累積的にプラントしたグラフからp
を読み取ると、pは1100nにおける全体の商の50
%に相当する細孔直径である。
After determining the complete pore diameter distribution of the catalyst sample, from 0 to 10
Regarding the 100n pore diameter range, the increase in pore volume observed in pores separated by 2 nm diameter intervals, and for each successive increase in pore volume that is less than or equal to a factor of 10 of the pore volume. , from a graph in which the quotient of the increase in pore volume and the corresponding pore diameter interval is cumulatively plotted as a function of the arithmetic mean pore diameter over the pore diameter interval, p
, p is 50 of the total quotient at 1100n
% of the pore diameter.

1〜2000バールの水銀圧力を適用する水銀浸透法(
Industrial and Engineerin
gChemistry、Analytical Edi
tion 17,787(1945)においてH,L、
Ri t terおよびり、C。
Mercury infiltration method applying a mercury pressure of 1 to 2000 bar (
Industrial and Engineering
gChemistry, Analytical Edi
tion 17, 787 (1945), H.L.
Ritter and C.

Drakeが記載した方法)と組合せた窒素吸着/脱着
法(Analytical Chemistry 32
、532(1960)においてE、V、Ba I l
o uおよび0.K。
Nitrogen adsorption/desorption method (Analytical Chemistry 32
, 532 (1960), E. V. Ba I l
o u and 0. K.

Doo l enが記、載した方法)によって触媒の完
全な細孔直径分布の決定が極めて好適に遂行される。
Determination of the complete pore diameter distribution of the catalyst is carried out very successfully by the method described and published by Dooleyn.

この場合、7.5nm以下の細孔直径における触媒の細
孔直径分布は好ましくはJournal of Ca−
talysis 10,377(1968)においてJ
、C,P。
In this case, the pore diameter distribution of the catalyst with pore diameters below 7.5 nm is preferably Journal of Ca-
J in lysis 10, 377 (1968)
,C,P.

BroekhoffおよびJ、H−de Boerが記
載した方法による窒素脱着等温式(円筒状の細孔と仮定
して)から計算されそして7.5nmを超える細孔直径
範囲の触媒の細孔直径分布は好ましくは次の一般式によ
って計算される。
The pore diameter distribution of the catalyst is calculated from the nitrogen desorption isotherm (assuming cylindrical pores) according to the method described by Broekhoff and J. H-de Boer and in the pore diameter range above 7.5 nm. is calculated by the following general formula:

商p/(d)0・9が4.0 < p / d(d)0
°9<20.0の要求を満たす上記の触媒は既に我々の
英国特許出願56803/71号(完全明細書)に新規
な組成物として記載されている。
Quotient p/(d)0・9 is 4.0 < p/d(d)0
The abovementioned catalysts meeting the requirement of °9<20.0 have already been described as novel compositions in our British Patent Application No. 56803/71 (full specification).

したがって、本特許出願は担体上に担持した1種または
それ以上の水添活性を有する金属からなり、そして商p
ad)0・9が45 X 10−5X (PH,2)2
< p/(d)0・9< 9 X 10−’ X (P
H,) 2の条件、(式中PH2は適用する水素分圧
である)を満たすような比平均細孔直径(p)および比
平均粒子直径(a)を有し、そして更に0.45 yr
tl/ iを超える全細孔容積を有し、該全細孔容積の
少くとも0.4 TILl/ gは0.7 X p以上
ないし1.7Xp以下の直径を有する細孔中に存在し、
しかも (a) 全細孔容積の20係以下が0.7 X pより
も小さな直径を有する細孔中に存在し、 (b) 全細孔容積の20係以下が1.7Xpよりも
犬な直径を有する細孔中に存在し、そして (c)全細孔容積の10%以下が1100nより大きな
直径を有する細孔中に存在すること(pはnm、dはm
m、PHはバールで表わす)によって特徴づけられた鋭
い細孔直径分布を有する触媒を適用する。
Accordingly, the present patent application consists of one or more hydrogenation-active metals supported on a carrier and commercially available.
ad) 0.9 is 45 X 10-5X (PH, 2) 2
<p/(d)0・9< 9 X 10-'
H,) 2, where PH2 is the applied hydrogen partial pressure, and a specific average particle diameter (a) of 0.45 yr.
having a total pore volume greater than tl/i, at least 0.4 TIL/g of the total pore volume being present in pores having a diameter of 0.7 x p or more and 1.7 x p or less;
Moreover, (a) 20 parts or less of the total pore volume exists in pores having a diameter smaller than 0.7Xp, and (b) 20 parts or less of the total pore volume has a diameter smaller than 1.7Xp. and (c) no more than 10% of the total pore volume is present in pores with a diameter greater than 1100 nm, where p is nm and d is m
A catalyst with a sharp pore diameter distribution characterized by m, PH in bar) is applied.

120ppmwを超える全バナジウムおよびニッケル含
有量を有する残留炭化水素油の触媒を補充しない接触水
添脱硫法に関する。
The present invention relates to a catalytic hydrodesulfurization process without catalyst replenishment of residual hydrocarbon oils having a total vanadium and nickel content of more than 120 ppmw.

本発明によって適用される触媒は与えられた水素分圧に
おけるそれらの平均細孔直径と平均粒子直径との間に与
えられた関係および触媒の平均細孔直径に依存する細孔
直径範囲内に与えられた細孔直径分布によって特徴づけ
られる。
The catalysts applied according to the invention are given within a pore diameter range that depends on the relationship given between their average pore diameter and average particle diameter at a given hydrogen partial pressure and on the average pore diameter of the catalyst. characterized by a pore diameter distribution.

触媒の特徴づけのために使用される平均細孔直径が比平
均細孔直径と比平均粒子直径のために上に特定した方法
にしたがって決定されることは必須であるが、その理由
は触媒の特徴づけのために比平均細孔直径と比平均粒子
直径のため上記に特定した方法以外の方法によって決定
された平均細孔直径と平均粒子直径を使用すると(例え
ば細孔容積と表面積の商を4倍して計算した平均細孔直
径または相加平均として計算した平均粒子直径)全く異
った結果が得られるからである。
It is essential that the average pore diameter used for catalyst characterization is determined according to the methods specified above for specific average pore diameter and specific average particle diameter, because the Using mean pore diameters and mean particle diameters determined by methods other than those specified above for specific mean pore diameters and mean particle diameters for characterization (e.g., using the quotient of pore volume and surface area) The average pore diameter calculated by multiplying by 4 or the average particle diameter calculated as the arithmetic mean) gives completely different results.

p、dおよびPHの間に発見された関係は3通りの異っ
た目的をかなえる。
The relationship discovered between p, d and PH serves three different purposes.

第1にこの関係は与えられたpとdを有する触媒によっ
て良好な結果を得るために選択すべきPHの範囲を決定
する可能性を提供する。
Firstly, this relationship provides the possibility of determining the range of pH that should be selected in order to obtain good results with a catalyst with given p and d.

更にこの関係は与えられたPHにおいて良好な結果を得
るために与えられたpによって触媒材料の選択すべきd
の範囲を決定するのに使用される。
Furthermore, this relationship shows that d, which catalyst material should be selected according to the given p, in order to obtain good results at a given pH.
used to determine the range of

最後にこの関係は与えられたPHにおいて良好な結果を
得るために与えられたdによって触媒材料の選択すべき
pの範囲を決定することを可能にする。
Finally, this relationship makes it possible to determine the range of p in which the catalyst material should be selected with a given d in order to obtain good results at a given pH.

見出された範囲内におけるPH2,dおよびpのそれぞ
れに対する最も適した値は就中脱硫されるべき炭化水素
油の組成によつて決まる。
The most suitable values for each of PH2, d and p within the ranges found depend inter alia on the composition of the hydrocarbon oil to be desulfurized.

本発明方法において適用される触媒は好ましくは50m
/、?以上の表面積を有し、そして特に100m2/g
以上の表面積を有する。
The catalyst applied in the process of the invention is preferably 50 m
/,? with a surface area of 100 m2/g or more, and especially 100 m2/g
It has a surface area of more than

本発明にしたがって使用される触媒は好ましくは担体1
00 pbw当り0.5〜20pbwそして特に0.5
〜10pbwのニッケルおよび/またはコバルトおよび
2.5〜60pbwそして特に2.5〜30pbwのモ
リブデンおよび/またはタングステンからなる。
The catalyst used according to the invention preferably supports 1
0.5 to 20 pbw and especially 0.5 per 00 pbw
It consists of ~10 pbw nickel and/or cobalt and 2.5-60 pbw and especially 2.5-30 pbw molybdenum and/or tungsten.

一方のニッケルおよび/またはコバルトおよび他方のモ
リブデンおよび/またはタングステンの間の原子比は広
く変化してよりか、好ましくは0.1ないし5である。
The atomic ratio between nickel and/or cobalt on the one hand and molybdenum and/or tungsten on the other hand varies widely and is preferably from 0.1 to 5.

本触媒における極めて好適な金属の組合せの例はニッケ
ル/タングステン、■ ニッケル7モリブデン、コバルト/モリブデンおよびニ
ッケル/コバルト/モリブデンである。
Examples of very suitable metal combinations in the present catalyst are nickel/tungsten, nickel 7 molybdenum, cobalt/molybdenum and nickel/cobalt/molybdenum.

金属は担体上において金属の状態またはそれらの酸化物
または硫化物の状態で存在してよい。
The metals may be present on the support in the metallic state or in the form of their oxides or sulfides.

本発明による触媒としては金属が担体上で硫化物の状態
で存在する触媒が選択される。
Catalysts according to the invention are selected in which the metal is present in the form of a sulfide on a support.

本触媒の硫化は本技術分野において周知である触媒の硫
化方法のいずれによって遂行してもよい。
Sulfurization of the catalyst may be accomplished by any of the methods of sulfurization of catalysts that are well known in the art.

硫化は、例えば触媒を硫黄含有ガス、例えば水素と硫化
水素との混合物、水素と二硫化炭素との混合物、または
水素とメルカプタン、例えばブチルメルカプタンとの混
合物と接触させることによって遂行してよい。
Sulfurization may be carried out, for example, by contacting the catalyst with a sulfur-containing gas, such as a mixture of hydrogen and hydrogen sulfide, a mixture of hydrogen and carbon disulfide, or a mixture of hydrogen and a mercaptan, such as butyl mercaptan.

硫化はまた触媒を水素および硫黄含有炭化水素油、例え
ば硫黄を含む灯油または軽油と接触させて遂行してもよ
い。
Sulfidation may also be accomplished by contacting the catalyst with hydrogen and a sulfur-containing hydrocarbon oil, such as sulfur-containing kerosene or gas oil.

上記の触媒として活性な金属の他に、触媒は更に別の触
媒として活性な金属および促進剤、例えば燐、はう素お
よび弗素および塩素のようなハロゲンを含んでいてもよ
い。
In addition to the catalytically active metals mentioned above, the catalysts may also contain further catalytically active metals and promoters, such as phosphorus, boronate and halogens such as fluorine and chlorine.

本触媒における極めて好適な担体は元素の周知律表の第
■族、第■族または第■族の元素の酸化物またはこれら
の酸化物の混合物、例えばシリカ、アルミナ、マグネシ
ア、ジルコニア、トリア、ボリア、ハフニア、シリカ−
アルミナ、シリカ−マグネシア、アルミナ−マグネシア
およびシリカ−ジルコニアである。
Very suitable supports for the present catalyst are oxides of elements of Groups I, II or III of the Well-known Table of Elements, or mixtures of these oxides, such as silica, alumina, magnesia, zirconia, thoria, boria. , hafnia, silica
They are alumina, silica-magnesia, alumina-magnesia and silica-zirconia.

本発明にしたがって使用される触媒の製造は、担体上に
金属を沈着させた後本発明の要求を満たす触媒が得られ
るような細孔直径分布と特定の平均細孔直径を有する担
体に関係する金属をそのまままたは比平均触媒粒子直径
が増大または減少した後に沈着させることによって遂行
される。
The preparation of the catalyst used according to the invention involves a support having a pore diameter distribution and a specific average pore diameter such that after depositing the metal on the support a catalyst is obtained that meets the requirements of the invention. This is accomplished by depositing the metal as is or after the specific average catalyst particle diameter is increased or decreased.

仕上げられた触媒の孔隙率は成程度適用した金属の負荷
量によって決まる。
The porosity of the finished catalyst is determined by the amount of metal loading applied.

一般に、与えられた孔隙率を有する担体から出発した場
合、金属負荷量を増大させるほど低い孔隙率を有する触
媒が得られる。
In general, starting from a support with a given porosity, increasing the metal loading results in a catalyst with a lower porosity.

この現象は比較的低い金属負荷量、すなわち担体110
0pb当り約20 ’pbwまたはそれ以下の金属負荷
量を適用した場合に小さな役割を演するに過ぎない。
This phenomenon is due to relatively low metal loading, i.e. support 110
It only plays a minor role when metal loadings of about 20' pbw per 0 pb or less are applied.

これは比較的低い金属負荷量においては仕上げられた触
媒の孔隙率は主に使用した担体の孔隙率によって決まり
、更に比較的低い金属負荷量を有する本発明触媒を製造
するに当っては仕上げられた触媒の所望の孔隙率と僅か
に相違するだけの孔隙率を有する担体を選択すべきこと
を意味している。
This is because, at relatively low metal loadings, the porosity of the finished catalyst is determined primarily by the porosity of the support used, and furthermore, in producing the catalyst of the invention with relatively low metal loadings, the porosity of the finished catalyst is determined primarily by the porosity of the support used. This means that a support should be selected with a porosity that differs only slightly from the desired porosity of the catalyst.

しかしながら、より高い金属負荷量においては、孔隙率
に対する金属負荷量の影響はより重要となって、高い金
属負荷量を適用することは孔隙率が高過ぎる担体から出
発して本発明による触媒を製造するための手段として役
立つ。
However, at higher metal loadings, the effect of metal loading on porosity becomes more important, and applying high metal loadings makes it difficult to produce catalysts according to the invention starting from supports with too high a porosity. It serves as a means to

担体の孔隙率はまた水蒸気の存在下または不存在下にお
ける高温処理によっても影響を受ける。
The porosity of the support is also affected by high temperature treatment in the presence or absence of water vapor.

担体の孔隙率は主に担体を製造した方法に依存する。The porosity of the carrier depends primarily on the method by which the carrier was manufactured.

金属酸化物型の触媒担体は通常関係する金属の塩の水溶
液1種またはそれ以上に1種またはそれ以上のゲル化剤
を加え、その結果金属が金属水酸化物ゲルの状態で沈澱
し、続いてこれを成型して■焼することによって製造す
る。
Metal oxide type catalyst supports are usually prepared by adding one or more gelling agents to an aqueous solution or salts of the metals involved, so that the metals are precipitated in the form of a metal hydroxide gel; It is manufactured by molding it and baking it.

通常成型する前に金層水酸化物ゲルを或期間熟成させる
The gold layer hydroxide gel is usually aged for a period of time before molding.

担体を製造する間、担体の孔隙率に影響を及ばず十分な
機会が存在する。
During the manufacture of the carrier, there is ample opportunity to not affect the porosity of the carrier.

最後に得られた担体の孔隙率は他の因子は別として特に
ゲル化剤の添加速度およびゲルを形成させる間に適用し
た温度と、Hに影響される。
The porosity of the support finally obtained is influenced by, among other factors, the rate of addition of the gelling agent and the temperature applied during the formation of the gel, and H, among other factors.

最後に得られた担体の孔隙率はゲルに或種の薬剤、例え
ば燐および/またはハロゲン化合物を添加することによ
っても影響を受ける。
The porosity of the support finally obtained can also be influenced by adding certain agents to the gel, such as phosphorus and/or halogen compounds.

熟成させた場合、最後に得られた担体の孔隙率は熟成時
間および熟成中に適用した温度と、Hにも影響される。
When aged, the porosity of the final support is influenced by the aging time and temperature applied during aging, and also by H.

金属酸化物を混合した担体を製造する場合には、最後に
得られた担体の孔隙率に関する重要な別の見地は金属水
酸化物のゲルを同時にまたは別々に、例えば一方を他方
の上部に沈澱させる方法である。
When producing mixed metal oxide supports, another important aspect regarding the porosity of the final support is whether the metal hydroxide gels are precipitated simultaneously or separately, e.g. one on top of the other. This is the way to do it.

最後に得た担体の孔隙率は更に担体粒子の成型方法1.
成型中に適用した条件および■焼中に適用した温度に影
響される。
The porosity of the finally obtained carrier is further determined by the carrier particle molding method 1.
It is influenced by the conditions applied during molding and the temperature applied during firing.

成型中担体粒子の孔隙率は例えば担体製造のこの段階中
で通常添加される触膠剤および結合剤の型および量、或
種の薬剤の添加および少量の不活性物質、例えばシリカ
および/またはジルコニアの添加によって影響を受ける
The porosity of the carrier particles during molding is influenced by, for example, the type and amount of catalytic agents and binders normally added during this stage of carrier manufacture, the addition of certain agents and small amounts of inert substances such as silica and/or zirconia. is affected by the addition of

担体粒子を押出成型によって成型した場合には、最後に
得られた担体の孔隙率は適用した押出圧力によって影響
を受ける。
If the carrier particles are formed by extrusion, the porosity of the final carrier is influenced by the extrusion pressure applied.

噴霧乾燥法を利用した場合、担体の孔隙率は適用した噴
霧温度と噴霧圧力に影響される。
When using a spray drying method, the porosity of the carrier is influenced by the spray temperature and spray pressure applied.

本発明によって適用される触媒は本技術分野において周
知である多成分支持触媒の製造技術のいずれによって製
造してもよい。
The catalysts applied according to the invention may be made by any of the techniques for making multicomponent supported catalysts that are well known in the art.

触媒として活性な金属を仕上げた担体に沈着させる必要
はなく、金属を担体の製造中に、例えば成、型の前で担
体物質と結合させてもよい。
It is not necessary that the catalytically active metal be deposited on the finished support; the metal may be combined with the support material during the manufacture of the support, for example before molding.

触媒製造の初期の段階において触媒として活性な金属を
担体に結合させるとやはり仕上げた触媒の孔隙率に大き
な影響を与える。
Bonding a catalytically active metal to a support during the early stages of catalyst production also has a significant effect on the porosity of the finished catalyst.

本発明によって適用される触媒は好ましくは1種または
それ以上のニッケルおよび/またはコバルト化合物およ
び1種またはそれ以上のモリブデンおよび/またはタン
グステン化合物を含む水溶液による担体の1段階または
多段階の共含浸とそれに続く乾燥および烟焼によって製
造する。
The catalyst applied according to the invention preferably involves one-stage or multi-stage co-impregnation of the support with an aqueous solution containing one or more nickel and/or cobalt compounds and one or more molybdenum and/or tungsten compounds. Produced by subsequent drying and roasting.

含浸を数段階で実施した場合、所望ならば含浸の連続し
た段階の間で材料を乾燥し次いで烟焼してよい。
If the impregnation is carried out in several stages, the material may be dried and then calcined between successive stages of impregnation, if desired.

乾燥と暇焼は好ましくはそれぞれ50ないし150°C
および150ないし550℃の温度で遂行する。
Drying and baking preferably at 50 to 150°C, respectively.
and carried out at a temperature of 150 to 550°C.

本触媒の製造において使用するニッケル、コバルト、モ
リブデンおよびタングステンの適用な水溶性化合物の例
はニッケルおよびコバルトの硝酸塩、塩化物、炭酸塩、
蟻酸塩および酢酸塩、モリブデン酸アンモニウムおよび
タングステン酸アンモニウムである。
Examples of suitable water-soluble compounds of nickel, cobalt, molybdenum and tungsten used in the preparation of the present catalysts are nickel and cobalt nitrates, chlorides, carbonates,
formate and acetate, ammonium molybdate and ammonium tungstate.

これらの化合物の溶解度を増大させ、溶液を安定化する
ために或種の化合物、例えば水酸化アンモニウム、モノ
エタノールアミンおよびソルビトールを溶液に加えても
よい。
Certain compounds may be added to the solution to increase the solubility of these compounds and stabilize the solution, such as ammonium hydroxide, monoethanolamine and sorbitol.

本発明触媒のための担体としてはアルミナおよびシリカ
−アルミナが好ましい。
Alumina and silica-alumina are preferred as supports for the catalysts of the invention.

アルミナゲルを噴霧乾燥し、続いで噴霧乾燥した微粒子
を例えば押出成型によってより大きな粒子に成型して製
造したアルミナ粒子および周知の油滴下法によって得た
球状のアルミナ粒子が極めて好適な担体である。
Very suitable supports are alumina particles prepared by spray-drying an alumina gel and subsequent shaping of the spray-dried microparticles into larger particles, for example by extrusion, and spherical alumina particles obtained by the well-known oil dropping method.

後者の方法はアルミナヒドロシルを生成させ、このヒド
ロシルを適当なゲル化剤と混合しそしてその混合物を昇
降下に保たれた油の中に小滴として分散させることから
なり、その小滴が固化して球状のヒドロゲル粒子になる
まで小滴を油の中に保持し、次いでそのヒドロゲル粒子
を分離し、洗浄し、乾燥しそして■焼する。
The latter method consists of forming an alumina hydrosil, mixing this hydrosil with a suitable gelling agent, and dispersing the mixture as droplets in an oil held in an ascending and descending manner until the droplets solidify. The droplets are held in oil until they become spherical hydrogel particles, which are then separated, washed, dried and baked.

本触媒のために極めて適したシリカ−アルミナ担体はシ
リカヒドロゲル上の水酸化アルミニウムゲルの共ゲルで
ある。
A highly suitable silica-alumina support for the present catalyst is a cogel of aluminum hydroxide gel on silica hydrogel.

これらの共ゲルは好ましくは鉱酸を添加することによっ
て珪酸イオンを含む水溶液からシリカヒドロゲルをまず
最初に沈澱させ、続いて混合物に水溶性のアルミニウム
塩を加えてからアルカリとして作用する化合物を添加し
て水酸化アルミニウムゲルを沈澱させることによって製
造する。
These cogels are preferably prepared by first precipitating a silica hydrogel from an aqueous solution containing silicate ions by adding a mineral acid, followed by adding a water-soluble aluminum salt to the mixture and then adding a compound that acts as an alkali. It is prepared by precipitating an aluminum hydroxide gel.

共ゲルの製造を続ける前に製造したシリカヒドロゲルを
或期間昇温下で熟成させるのが好ましい。
Preferably, the produced silica hydrogel is aged at elevated temperature for a period of time before continuing to produce the cogel.

熟成条件、特に熟成時間および熟成温度は最後に得た共
ゲルの孔隙率に大きな影響を与える。
The aging conditions, especially the aging time and aging temperature, have a great influence on the porosity of the final cogel.

上記の共ゲルを基にした本発明による触媒の製造は次の
ように遂行してよい。
The preparation of the catalyst according to the invention based on the above cogel may be carried out as follows.

まず最初に共ゲルを例えば押出成型ニヨって成型し、続
いてヒドロゲル粒子を乾燥しそして■焼する。
The cogel is first formed, for example by extrusion, and the hydrogel particles are subsequently dried and baked.

次にこのようにして得たキセロゲル粒子を窒素塩基で中
和して乾燥する。
The xerogel particles thus obtained are then neutralized with a nitrogen base and dried.

最後に、関係する金属の塩を含む水溶液の1種またはそ
れ以上で担体を含浸することによってその上に触媒とし
て活性な金属を沈着させ、続いてこの組成物を乾燥して
から■焼する。
Finally, the catalytically active metal is deposited thereon by impregnating the support with one or more aqueous solutions containing salts of the metals concerned, and the composition is subsequently dried and calcined.

上記の共ゲルを基体とした本発明による触媒の製造を更
に次の簡略化した処理によって遂行してもよい。
The preparation of the catalyst according to the invention based on the cogel described above may be further carried out by the following simplified procedure.

共ゲルを関係する金属の塩を含む1種またはそれ以上の
水溶液とともに混合することによってその中に触媒とし
て活性な金属を結合させ、その後例えば押出成型によっ
て成型した組成物を乾燥後暇焼する。
The catalytically active metal is bound therein by mixing the cogel with one or more aqueous solutions containing salts of the metals concerned, and the shaped composition is then dried and baked, for example by extrusion.

触媒を補充しない残留炭化水素油の接触水添脱硫は好ま
しくは昇温昇圧下においておよび1箇またはそれ以上の
固定触媒床からなる1基またはそれ以上の垂直に配置さ
れた反応容器に上方、下方または半径方向において水素
の存在下炭化水素油を通すことによって遂行される。
Catalytic hydrodesulfurization of residual hydrocarbon oils without catalyst supplementation is carried out preferably at elevated temperature and pressure and in one or more vertically arranged reaction vessels consisting of one or more fixed catalyst beds, above and below. or by passing a hydrocarbon oil in the presence of hydrogen in the radial direction.

脱硫されるべき炭化水素油は水素によって完全にまたは
部分的に飽和されそして反応容器には炭化水素相と触媒
相の他に水素含有ガスの相が存在している。
The hydrocarbon oil to be desulfurized is completely or partially saturated with hydrogen and, in addition to the hydrocarbon phase and the catalyst phase, a hydrogen-containing gas phase is present in the reaction vessel.

更に、溶解した水素、硫化水素および/または炭化水素
ガスを含むまたは含まない液体生成物の一部を触媒床に
再循環してもよい。
Additionally, a portion of the liquid product, with or without dissolved hydrogen, hydrogen sulfide and/or hydrocarbon gas, may be recycled to the catalyst bed.

水添脱硫は単一の反応容器においてまたは2基またはそ
れ以上の反応容器において遂行してよい。
Hydrodesulfurization may be performed in a single reaction vessel or in two or more reaction vessels.

概して水添脱硫反応容器は1箇よりも多い触媒床を含ん
でいる。
Generally, the hydrodesulfurization reaction vessel contains more than one catalyst bed.

別箇の触媒床および/または別箇の反応容器において使
用される触媒はそれらのpおよび/またはdおよび/ま
たは化学組成に関して互いに相違していてもよい。
The catalysts used in the separate catalyst beds and/or in the separate reaction vessels may differ from each other with respect to their p and/or d and/or chemical composition.

数基の反応容器を利用する場合、これらの反応容器すべ
てを脱硫反応を遂行するため同時に使用することができ
る。
If several reaction vessels are utilized, all of these reaction vessels can be used simultaneously to carry out the desulfurization reaction.

脱硫のため反応容器を交互に使用することもでき、その
場合脱硫を1基またはそれ以上の反応容器で遂行し、触
媒を別の反応容器に移し換える。
It is also possible to use reactors alternately for desulfurization, in which case desulfurization is carried out in one or more reactors and the catalyst is transferred to another reactor.

触媒を補充しない残留炭化水素油の水添脱硫は触媒床の
膨張が起こるような液体および/またはガス速度を適用
して炭化水素油を水素とともに垂直に配置された触媒床
を上向き方向に通すことによって極めて好適に遂行され
る。
Hydrodesulfurization of residual hydrocarbon oil without catalyst replenishment involves passing the hydrocarbon oil with hydrogen in an upward direction through a vertically arranged catalyst bed applying liquid and/or gas velocities such that expansion of the catalyst bed occurs. This is very suitably carried out by.

その他の触媒を補充しない残留炭化水素油の水添脱硫の
魅力的な具体例は炭化水素油を水素とともに垂直に配置
された固定床を上向き方向に通し、そして脱硫された製
品の一部を触媒床に再循環することおよび/または種々
の位置において水素を触媒床に注入することによって水
添脱硫反応から生ずる断熱的な温度上昇を20℃以下に
保つ例である。
An attractive embodiment of the hydrodesulfurization of residual hydrocarbon oils without supplementation of other catalysts is to pass the hydrocarbon oil with hydrogen in an upward direction through a vertically arranged fixed bed and then pass a portion of the desulfurized product over the catalyst. This is an example of keeping the adiabatic temperature rise resulting from the hydrodesulfurization reaction below 20° C. by recycling to the bed and/or injecting hydrogen into the catalyst bed at various locations.

触媒を補充しない残留炭化水素油の接触水添脱硫におい
て、一般に0.5〜2.5 mvtの比平均粒子直径を
有する触媒粒子を使用する。
In the catalytic hydrodesulfurization of residual hydrocarbon oils without catalyst supplementation, catalyst particles having a specific average particle diameter of 0.5 to 2.5 mvt are generally used.

脱硫されるべき炭化水素油を水素とともに上方または下
方に垂直に配置された固定触媒床に通すことによって脱
硫を達成する場合には、0.6〜2.0 mmの比平均
粒子直径を有する触媒粒子を使用するのが好ましい。
If the desulfurization is achieved by passing the hydrocarbon oil to be desulfurized together with hydrogen through a fixed bed of catalyst arranged vertically above or below, a catalyst with a specific average particle diameter of 0.6 to 2.0 mm; Preferably, particles are used.

pおよびdおよびPH2の間に発見された関係は与えら
れたPH2において残留炭化水素油の水添脱硫のために
最適の性能を示す触媒の製造を可能にする。
The relationship discovered between p and d and PH2 allows the production of catalysts that exhibit optimal performance for the hydrodesulfurization of residual hydrocarbon oils at a given PH2.

与えられたPH2においてdがpに関して最適でない触
媒または触媒担体を利用する場合には、dをpに調整す
ることに、ぐっでそれから最適の触媒または触媒担体を
製造することができる。
If a catalyst or catalyst support is utilized in which d is not optimal with respect to p at a given PH2, then an optimal catalyst or catalyst support can be produced by adjusting d to p.

これは触媒または触媒担体の粒子寸法を増大または減少
することによって(例えば結合剤を使用してまたは使用
しないで粒子を結合するかまたは粒子を粉砕することに
よって)簡単な方法で達成できる。
This can be achieved in a simple manner by increasing or decreasing the particle size of the catalyst or catalyst support (for example by bonding the particles with or without a binder or milling the particles).

或種の触媒または触媒担体材料から出発して本発明によ
る最適の脱硫触媒を製造する場合に以下下の問題が生ず
る。
The following problems arise when producing the optimal desulfurization catalyst according to the invention starting from certain catalysts or catalyst support materials.

与えられたPH2において触媒を製造しなければならな
い材料のpに対応する最適のdが小さ過ぎるとこのよう
な小さな触媒粒子を接触水添脱硫に使用した場合困難を
生ずる。
If the optimum d corresponding to p of the material from which the catalyst has to be made at a given pH2 is too small, difficulties arise when using such small catalyst particles for catalytic hydrodesulfurization.

この場合pおよびPH2に関してdが最適である小さな
粒子から凝集体を形成させ、この凝集体が1100nを
超える直径を有する細孔においてその細孔容積のうちの
10%よりも多くを占めるのが好ましい。
Agglomerates are preferably formed from small particles, in which case d is optimal with respect to p and PH2, and these agglomerates occupy more than 10% of the pore volume in pores with a diameter of more than 1100 nm. .

小さな粒子から直径100 nmを超える細孔に凝集体
の細孔容積の25%よりも多くを占める凝集体を形成さ
せるのが好ましい。
Preferably, small particles form aggregates in which pores with a diameter of more than 100 nm occupy more than 25% of the pore volume of the aggregates.

これらの多孔質の触媒凝集体を残留炭化水素油の水添脱
硫において使用すると、これらの小さな触媒粒子を使用
したときの固有の欠点を示さない小さな最適の触媒粒子
を使用したのと同じ利益を提供する。
The use of these porous catalyst aggregates in the hydrodesulfurization of residual hydrocarbon oils provides the same benefits as using small optimal catalyst particles without the inherent drawbacks when using these small catalyst particles. provide.

凝集体に結合させ、次いで蒸発、燃焼、溶解、浸出また
はその他の方法によってそれから除去する物質の存在下
結合剤を使用しまたは使用しないで小窩な最適の粒子を
結合させ、そして凝集体に1100nを超える直径を有
する満足な細孔を残すことによってその粒子から多孔質
の触媒または触媒担体の凝集体が極めて好適に製造され
る。
The particles of choice are bonded to the agglomerates with or without binders in the presence of substances that are bonded to the agglomerates and then removed therefrom by evaporation, combustion, dissolution, leaching or other methods, and the agglomerates are exposed to 1100 nm. Porous catalyst or catalyst support aggregates are very advantageously produced from the particles by leaving satisfactory pores with diameters exceeding .

この目的のために適した化合物はセルローズ含有物質、
重合体および有機または無機溶剤に溶解する化合物であ
る。
Compounds suitable for this purpose are cellulose-containing substances,
Compounds that are soluble in polymers and organic or inorganic solvents.

本発明による水添脱硫法に適用される反応条件は広く変
化してよい。
The reaction conditions applied to the hydrodesulfurization process according to the invention may vary widely.

水添脱硫は好ましくは300〜475℃の温度、50〜
200バールの水素分圧、毎時触媒pbv当り新鮮な原
料0.1〜10pbwの空間速度および150〜200
ONIH2/kg原料の水素/原料比において実施され
る。
Hydrodesulfurization is preferably carried out at a temperature of 300-475°C, 50-475°C.
Hydrogen partial pressure of 200 bar, space velocity of 0.1-10 pbw of fresh feed per pbv of catalyst per hour and space velocity of 150-200
Performed at a hydrogen/feed ratio of ONIH2/kg feed.

350〜445℃の温度、80〜180バールの水素分
圧、毎時触媒pbv当り新鮮な原料0.5〜5pbwの
空間速度および250〜1000 NIH2/kg原料
の水素/原料比が特に好ましい。
Temperatures of 350-445° C., hydrogen partial pressures of 80-180 bar, space velocities of 0.5-5 pbw of fresh feed per pbv of catalyst per hour and hydrogen/feed ratios of 250-1000 NIH2/kg feed are particularly preferred.

本特許出願は120ppmWを超えるバナジウムおよび
ニッケル含有量を有する残留炭化水素油の触媒を補充し
ない水添脱硫において触媒の商p/dPQおよび細孔直
径分布に関する或要求を満たす触媒の使用に限定される
The present patent application is limited to the use of catalysts meeting certain requirements regarding catalyst quotient p/dPQ and pore diameter distribution in the non-replenishing hydrodesulfurization of residual hydrocarbon oils with vanadium and nickel contents exceeding 120 ppmW. .

全バナジウムおよびニッケルの含有量が高々120pp
mwである残留炭化水素油の触媒を補充しない水添脱硫
にこれらの触媒を使用することは我々の英国特許出願5
6803/71(完全明細書)に記載されている。
Total vanadium and nickel content at most 120pp
The use of these catalysts for the non-catalytic hydrodesulphurization of residual hydrocarbon oils of mw is disclosed in our UK patent application 5.
6803/71 (complete specification).

本発明による水添脱硫法は脱金属化法を先行させるのが
極めて好適である。
It is very suitable that the hydrodesulfurization method according to the invention is preceded by a demetalization method.

脱金属化の結果、水添脱硫触媒の脱活性化はかなり抑制
される。
As a result of demetalization, deactivation of the hydrodesulfurization catalyst is considerably suppressed.

この結合方法のための原料として使用される残留炭化水
素油はとにか<120ppmwを超える全バナジウムお
よびニッケル含有量を持つべきである。
The residual hydrocarbon oil used as feedstock for this bonding process should have a total vanadium and nickel content of at least <120 ppmw.

関係する残留炭化水素油の脱金属化は120ppmw以
上の全バナジウムおよびニッケル含有量が減少した製品
が得られるような方法で遂行すべきである。
The demetalization of the residual hydrocarbon oil involved should be carried out in such a way that a product is obtained with a total vanadium and nickel content reduction of 120 ppmw or more.

残留炭化水素油の脱金属化は好ましくは昇温昇圧下およ
び水素の存在下に適当な触媒粒子の固定床または移動床
からなる1基またはそれ以上の垂直に配置された反応容
器に炭化水素油を上方、下方または半径方向に通すこと
によって遂行される。
The demetalization of the residual hydrocarbon oil is preferably carried out by introducing the hydrocarbon oil into one or more vertically arranged reaction vessels consisting of a fixed or moving bed of suitable catalyst particles at elevated temperature and pressure and in the presence of hydrogen. This is accomplished by passing it upward, downward or radially.

脱金属化法の極めて魅力的な具体例は操作中新鮮な触媒
を触媒床の頂部に周期的に導入しそして廃触媒をその底
部から抜き出す垂直に配置された触媒床に炭化水素油を
通す方法である(パンカーフロウ操作における脱金属)
A very attractive example of a demetalization process involves passing hydrocarbon oil through a vertically arranged catalyst bed in which during operation fresh catalyst is periodically introduced at the top of the catalyst bed and spent catalyst is withdrawn from the bottom thereof. (demetallization in punker flow operation)
.

別の脱金属化法の極めて魅力的な具体例は交互に脱金属
のために使用される固定触媒床を含む数基の反応容器が
存在し、同時にこれらの反応容器の1基またはそれ以上
において脱金属を遂行し、その他の反応容器で触媒を補
充する方法である(固定床の切換操作における脱金属→
A very attractive embodiment of another demetallation process is in which there are several reaction vessels containing fixed catalyst beds that are alternately used for demetallation, and at the same time in one or more of these reaction vessels. This is a method of carrying out demetalization and replenishing the catalyst in other reaction vessels (demetallization in fixed bed switching operation →
.

所望ならば脱硫すべき炭化水素油に触媒を懸濁させて脱
金属を遂行してもよい(スラリー相操作における脱金属
)。
If desired, demetalization may be accomplished by suspending a catalyst in the hydrocarbon oil to be desulfurized (demetallization in slurry phase operation).

残留炭化水素油の脱金属のために優れた触媒は担体上に
水添活性を有する金属1種またはそれ以上を含む触媒で
、次の条件を満たしている。
An excellent catalyst for the demetallization of residual hydrocarbon oils is a catalyst containing one or more hydrogenation-active metals on a carrier, and which satisfies the following conditions:

(1)細孔容積は0.4 rrtl/ gよりも大きく
、(2) 100 n m(v)を超える直径の細孔
からなる細孔容積のパーセントが50よりも小さく、そ
して(3)pおよびdの商が10−0.15vよりも大
きい。
(1) the pore volume is greater than 0.4 rrtl/g, (2) the percentage of the pore volume consisting of pores with a diameter greater than 100 nm(v) is less than 50, and (3) p and the quotient of d is greater than 10-0.15v.

本発明による脱硫の前に脱金用化を先行させる場合、脱
金属化はパンカーフロウ操作または固定床の切換操作で
そして脱硫は慣用の固定床操作で実施するのが好ましい
If the desulfurization according to the invention is preceded by demetalization, it is preferred that the demetallization is carried out in a puncher flow operation or fixed bed switching operation and the desulfurization in a conventional fixed bed operation.

本発明による水添脱硫法(脱金属化法が先行するかまた
はしない)に使用する原料の例は原油および常圧および
減圧下で原油を蒸留して得た残渣である。
Examples of raw materials used in the hydrodesulphurization process according to the invention (with or without a preceding demetalization process) are crude oil and residues obtained by distilling crude oil under normal and reduced pressure.

脱硫すべき原料は50ppmwよりも少ないそして特に
25ppmwよりも少ないアルカリ金属および/または
アルカリ土類金属を含むべきである。
The feedstock to be desulfurized should contain less than 50 ppmw and especially less than 25 ppmw alkali metals and/or alkaline earth metals.

原料中のアルカリ金属および/またはアルカリ土類金属
の含有量が高過ぎる場合は、例えば原料を脱塩してそれ
を減少させる。
If the content of alkali metals and/or alkaline earth metals in the raw material is too high, it is reduced, for example by desalting the raw material.

本発明は以下の実施例によってここに明らかになるであ
ろう。
The invention will now be elucidated by the following examples.

実施例 1 触媒の製造 触媒 A アルミナ100 pbw当りコバルト4.7pbwおよ
びモリブデン11.4pbwを含む触媒を次のようにし
て製造した。
Example 1 Production of Catalyst Catalyst A A catalyst containing 4.7 pbw of cobalt and 11.4 pbw of molybdenum per 100 pbw of alumina was produced as follows.

モリブデン酸アンモニウム1051gの水溶液(本特許
出願の実施例において使用したモリブデン酸アンモニウ
ムはモリブデンを54.3重量%含んでいた)を硝酸コ
バルト6水塩1163.9の水溶液と混合した。
An aqueous solution of 1051 g of ammonium molybdate (the ammonium molybdate used in the examples of this patent application contained 54.3% by weight molybdenum) was mixed with an aqueous solution of 1163.9 g of cobalt nitrate hexahydrate.

25%のアンモニア水350m1を加えた後混合物を水
で希釈してその容量を3800mlにした。
After adding 350 ml of 25% aqueous ammonia, the mixture was diluted with water to a volume of 3800 ml.

この混合物を1.5mmのアルミナ押出成型物5000
gを含浸するのに使用した。
This mixture was made into a 1.5 mm alumina extrusion molded product.
It was used to impregnate g.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間暇焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒 B アルミナ100 pbw当りコバルト4.7pbwおよ
びモリブデン11.4 pbwを含む触媒を次のように
して製造した。
Catalyst B A catalyst containing 4.7 pbw of cobalt and 11.4 pbw of molybdenum per 100 pbw of alumina was prepared as follows.

モリブデン酸アンモニウム35.1 gの水溶液を硝酸
コバルト6水塩38.9gの水溶液と混合した。
An aqueous solution of 35.1 g of ammonium molybdate was mixed with an aqueous solution of 38.9 g of cobalt nitrate hexahydrate.

25%のアンモニア水10rrLlを加えた後混合物を
水で希釈して125TLlの容量にした。
After adding 10 rrLl of 25% aqueous ammonia, the mixture was diluted with water to a volume of 125TLl.

この混合物を15mmのアルミナ押出成型物166.9
gを含浸するのに使用した。
This mixture was made into a 15 mm alumina extrusion molded 166.9 mm.
It was used to impregnate g.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

触媒 C アルミナ100 pbw当りコバルト4.7pbwおよ
びモリブデン11.4 pbwを含む触媒を次のように
して製造した。
Catalyst C A catalyst containing 4.7 pbw of cobalt and 11.4 pbw of molybdenum per 100 pbw of alumina was prepared as follows.

モリブデン酸アンモニウム29.9gの水溶液を硝酸コ
バルト6水塩33.1.9の水溶液と混合した。
An aqueous solution of 29.9 g of ammonium molybdate was mixed with an aqueous solution of 33.1.9 g of cobalt nitrate hexahydrate.

25%のアンモニア水10m1を加えた後混合物を水で
希釈して108rI′llの容量にした。
After adding 10 ml of 25% aqueous ammonia, the mixture was diluted with water to a volume of 108 rI'll.

この混合物をL5mynのアルミナ押出成型物142.
:lを含浸するのに使用した。
This mixture was added to L5myn alumina extrusion molding 142.
:Used to impregnate.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

触媒りおよびE アルミナ100 pbw当りコバルト3.8pbwおよ
びモリブデン9.5pbwを含む2種の触媒を次のよう
にして製造した。
Catalyst and E Two catalysts containing 3.8 pbw of cobalt and 9.5 pbw of molybdenum per 100 pbw of alumina were prepared as follows.

モリブデン酸アンモニウム876gと30%H2O21
0007711の水溶液を硝酸コバルト6水塩940g
の水溶液と混合した。
876g ammonium molybdate and 30% H2O21
Cobalt nitrate hexahydrate 940g of aqueous solution of 0007711
was mixed with an aqueous solution of

混合物を水で希釈して3450m1の容量にした後、そ
れを0.8mmのアルミナ押出成型物5001を含浸す
るのに使用した。
After diluting the mixture with water to a volume of 3450 ml, it was used to impregnate 0.8 mm alumina extrudates 5001.

30分後金浸した材料を120℃において18時間乾燥
してから500℃において3時間似焼した。
After 30 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

このようにして得た触媒りの一部を粉砕して0.2mm
のdを有する触媒Eを製造した。
A part of the catalyst obtained in this way was crushed to 0.2 mm.
Catalyst E having d was prepared.

触媒FおよびG 珪酸ナトリウム5.256kgを含む水溶液(SiO2
含有量:26.5重量%)23.2kpを40℃に温め
た。
Catalysts F and G Aqueous solution containing 5.256 kg of sodium silicate (SiO2
Content: 26.5% by weight) 23.2kp was warmed to 40°C.

6N硝酸2200m1を撹拌しながら30分間に亘って
添加し、溶液のpHを11.1から6まで低下させた。
2200 ml of 6N nitric acid was added over 30 minutes with stirring to reduce the pH of the solution from 11.1 to 6.

得られたシリカゲルを40℃において24時間熟成させ
た。
The obtained silica gel was aged at 40°C for 24 hours.

A I (NOs ) s・9H201528gを含み
、40℃の温度を有する水溶液2448gを撹拌しなが
らこの混合物に5分間かけて加えた。
2448 g of an aqueous solution containing 1528 g of A I (NOs) s·9H and having a temperature of 40° C. were added to this mixture over a period of 5 minutes with stirring.

更に10分間撹拌した後25%のアンモニア水を添加し
て混合物のpHを4.8迄上昇させた。
After stirring for an additional 10 minutes, 25% aqueous ammonia was added to raise the pH of the mixture to 4.8.

10分後混合物のpHを更に5.5に上昇させた(全体
のアンモニア水消費量は約900m1であった)。
After 10 minutes the pH of the mixture was further increased to 5.5 (total aqueous ammonia consumption was approximately 900 ml).

シリカ−アルミナ共ゲルを戸別しナトリウムを含まなく
なるまで水洗した。
The silica-alumina co-gel was washed with water until it contained no sodium.

ゲルを押出して1.5關の押出成型物にした。The gel was extruded into 1.5 mm extrudates.

その成型物を120℃で乾燥してから500℃において
■焼した。
The molded product was dried at 120°C and then baked at 500°C.

このシリカ−アルミナ共ゲル620gを0.1モルのN
H4N03溶液6.21と25%のアンモニア水15T
llで中和した。
620 g of this silica-alumina cogel was mixed with 0.1 mol of N.
H4N03 solution 6.21 and 25% ammonia water 15T
Neutralized with ll.

シリカ−アルミナを戸別し、水洗してから120℃にお
いて乾燥した。
The silica-alumina was separated, washed with water, and then dried at 120°C.

シリカ−アルミナ100 pbw当りニッケル2pbw
およびモリブデン16pbwを含む2種の触媒のための
担体として上記のシリカ−アルミナ(乾燥物質95重量
%)を使用した。
2 pbw of nickel per 100 pbw of silica-alumina
The above silica-alumina (95% by weight dry matter) was used as a support for two catalysts containing 16 pbw of molybdenum and 16 pbw of molybdenum.

これらの触媒は次のようにして製造した。These catalysts were manufactured as follows.

蟻酸ニッケル2水塩37.7f!の水溶液をモリブデン
酸アンモニウム176.4gの水溶液と混合した。
Nickel formate dihydrate 37.7f! An aqueous solution of 176.4 g of ammonium molybdate was mixed with an aqueous solution of 176.4 g of ammonium molybdate.

混合物にモノエタノールアミン110TLlを加えた後
混合物を水で希釈して700rulの容量にした。
After adding 110 TLl of monoethanolamine to the mixture, the mixture was diluted with water to a volume of 700 rul.

上記のシリカ−アルミナ630g(乾燥物質598.5
g)を含浸するのにこの混合物を使用した。
630 g of the above silica-alumina (dry matter 598.5
This mixture was used to impregnate g).

15分後金浸した材料を120℃において18時間乾燥
してから500°Cにおいて3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

このようにして得た触媒Fの一部を粉砕して0.5 m
mのdを有する触媒Gを製造した。
A part of the catalyst F thus obtained was crushed to a size of 0.5 m.
Catalyst G was prepared with d of m.

触媒 H 珪酸ナトリウム26.25]iを含む水溶液(SiO2
含有量26.5重量%) 116.25kgを40℃に
温めた。
Catalyst H Aqueous solution containing sodium silicate 26.25]i (SiO2
116.25 kg (content 26.5% by weight) was warmed to 40°C.

撹拌しながら30分間に亘って6N硝酸を添加して溶液
のpHを6まで低下させた。
The pH of the solution was lowered to 6 by adding 6N nitric acid over 30 minutes with stirring.

得られたシリカゲルを40℃において撹拌しながら14
0時間熟成させた。
The obtained silica gel was heated at 40°C with stirring for 14 hours.
Aged for 0 hours.

Al(NO3)3・9H207,66kgを含み、40
℃の温度を有する水溶液301を撹拌しながら15分間
に亘ってこの混合物に加えた。
Contains Al(NO3)3.9H207,66kg, 40
An aqueous solution 301 having a temperature of 0.degree. C. was added to this mixture over a period of 15 minutes while stirring.

更に10分間撹拌した後25%のアンモニア水を添加し
て混合物のpHを4.8に上昇させた。
After stirring for an additional 10 minutes, 25% aqueous ammonia was added to raise the pH of the mixture to 4.8.

10分後混合物のpHを更に5.5まで上昇させた。After 10 minutes, the pH of the mixture was further increased to 5.5.

遠心分離によってシリカ−アルミナ共ゲルを分離し、ナ
l−IJウムを含まなくなるまで洗浄した。
The silica-alumina cogel was separated by centrifugation and washed until free of NaI-IJ.

この共ゲル(乾燥物質12.4%)をシリカ−アルミナ
1100pb当りニッケル2pbwおよびモリブデン1
6 pbwを含む触媒のための担体として使用した。
This cogel (12.4% dry matter) was prepared with 2 pbw of nickel and 1 molybdenum per 1100 pb of silica-alumina.
It was used as a support for a catalyst containing 6 pbw.

その触媒は次のようにして製造した。The catalyst was manufactured as follows.

シリカ−アルミナ共ゲル10010O8乾燥物質125
g)を10分間練った。
Silica-alumina co-gel 10010O8 dry matter 125
g) was kneaded for 10 minutes.

続いて蟻酸ニッケル2水塩7.87gを加えてから再び
5分間練った。
Subsequently, 7.87 g of nickel formate dihydrate was added and kneaded again for 5 minutes.

少量の水をH20□を含むモリブデン酸アンモニウム3
6.8.1の水溶液(H2O2/MOモル比:0.25
)を加え、混合物を1時間練った。
Add a small amount of water to ammonium molybdate 3 containing H20□
Aqueous solution of 6.8.1 (H2O2/MO molar ratio: 0.25
) was added and the mixture was kneaded for 1 hour.

生成物を押出して1.2mmの押出成型物にした。The product was extruded into 1.2 mm extrudates.

成型物を120°Cにおいて18時間乾燥してから50
0°Cにおいて3時間■焼した。
The molded product was dried at 120°C for 18 hours and then heated to 50°C.
It was baked at 0°C for 3 hours.

触媒 ■ アルミナ1100pb当りニッケル4.3 pbwおよ
びモリブデン10.9pbwを含む触媒を次のようにし
て製造した。
Catalyst (1) A catalyst containing 4.3 pbw of nickel and 10.9 pbw of molybdenum per 1100 pb of alumina was prepared as follows.

モリブデン酸アンモニウムとして11.9gのモリブデ
ンを含む水溶液とH2O27,1g(H20□/M。
An aqueous solution containing 11.9 g of molybdenum as ammonium molybdate and 7.1 g of H2O2 (H20□/M).

モル比:0.5)を硝酸ニッケルとしてニッケル4.7
3gを含む水溶液と混合した。
Molar ratio: 0.5) as nickel nitrate and nickel 4.7
It was mixed with an aqueous solution containing 3 g.

混合物を水で希釈して110m1の容量にした後、それ
をアルミナ11(Bi’を含浸するのに使用した。
After diluting the mixture with water to a volume of 110 ml, it was used to impregnate alumina 11 (Bi').

15分後含浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the impregnated material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

担体として使用したアルミナは噴霧乾燥したアルミナを
押出成型して得られた。
The alumina used as a carrier was obtained by extrusion of spray-dried alumina.

このアルミナ成型物は次の性状を持っていた。This alumina molded product had the following properties.

細孔容積: Q、 68 m、17g 0.7Xp以上ないし1.7Xp以下の直径を有する細
孔における細孔容積: 0.56 rnl/9表面積:
250 m”/i 0、7 X pよりも小さな直径を有する細孔における
細孔容積の%:9% 1、7 X pよりも大きな直径を有する細孔における
細孔容積の%ニア、4% 100 nmよりも大きな直径を有する細孔における細
孔容積の%:2,0% 比平均細孔直径(p) : 13.Onm比平均粒子直
径(d) : 1.5 mrn触媒 J アルミナ100 pbw当りコバルト4.3pbwおよ
びモリブデン10.9pbwを含む触媒を次のようにし
て製造した。
Pore volume: Q, 68 m, 17 g Pore volume in pores with a diameter of 0.7Xp or more and 1.7Xp or less: 0.56 rnl/9 Surface area:
250 m”/i 0,7 X % of pore volume in pores with diameter smaller than p: 9% 1,7 X % of pore volume in pores with diameter larger than p: 4% % of pore volume in pores with a diameter greater than 100 nm: 2,0% Specific mean pore diameter (p): 13. Onm Specific mean particle diameter (d): 1.5 mrn Catalyst J Alumina 100 pbw A catalyst containing 4.3 pbw of cobalt and 10.9 pbw of molybdenum was prepared as follows.

モリブデン酸アンモニウム28.6.?と30%H2O
228,4mlを含む水溶液を硝酸コバルト6水塩30
、、lの水溶液と混合した。
Ammonium molybdate 28.6. ? and 30% H2O
228.4 ml of cobalt nitrate hexahydrate 30
, , l was mixed with an aqueous solution of .

混合物を水で希釈して108m1の容量にした後触媒■
の製造に使用したのと同じアルミナ押出成型物142.
3.9を含浸するのに使用した。
After diluting the mixture with water to a volume of 108 ml, the catalyst ■
The same alumina extrusion used in the production of 142.
3.9 was used to impregnate.

15分後含浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the impregnated material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒 K アルミナ100 pbw当りコバルト4.3pbwおよ
びモリブデン10.9 pbwを含む触媒を次のように
して製造した。
Catalyst K A catalyst containing 4.3 pbw of cobalt and 10.9 pbw of molybdenum per 100 pbw of alumina was prepared as follows.

モリブデン酸アンモニウム60.22gおよび30%H
2O2193gを含む水溶液を硝酸コバルト63.7g
の水溶液(Co含有量: 20.25重量%)と混合し
た。
60.22g ammonium molybdate and 30%H
An aqueous solution containing 193 g of 2O2 was mixed with 63.7 g of cobalt nitrate.
(Co content: 20.25% by weight).

混合物を水で希釈して240m1の容量にした後、噴霧
乾燥したアルミナを押出して得たアルミナ押出成型物3
00gを含浸するのに使用した。
Alumina extrudate 3 obtained by extruding the spray-dried alumina after diluting the mixture with water to a volume of 240 ml
It was used to impregnate 00g.

20分後含浸した材料を120℃で18時間乾燥してか
ら500°Cにおいて3時間煉焼した。
After 20 minutes the impregnated material was dried at 120°C for 18 hours and then calcined at 500°C for 3 hours.

触媒 L アルミナ1100pb当りニッケル4.3pbwおよび
モリブデン10.9pbwを含む触媒を次のようにして
製造した。
Catalyst L A catalyst containing 4.3 pbw of nickel and 10.9 pbw of molybdenum per 1100 pb of alumina was prepared as follows.

モリブデン酸アンモニウム30.1gと30%H202
7,5rnlを含む水溶液を硝酸ニッケル6水塩31.
1の水溶液と混合した。
30.1g ammonium molybdate and 30% H202
An aqueous solution containing 7.5rnl of nickel nitrate hexahydrate was mixed with 31.0ml of nickel nitrate hexahydrate.
1 was mixed with an aqueous solution of 1.

混合物を水で希釈して200rulの容量にした後、油
滴下法によって得た球形のアルミナ粒子150gを含浸
するのに使用した。
The mixture was diluted with water to a volume of 200 rul and then used to impregnate 150 g of spherical alumina particles obtained by the oil drop method.

15分後含浸した材料を120℃で18時間乾燥してか
ら500℃において3時間焼した。
After 15 minutes the impregnated material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

球形のアルミナ粒子は次の粒子を持っていた。The spherical alumina particles had the following particles.

細孔容積:0.80ml/ 、!il’、0.7Xp以
上ないし1.7Xp以下の直径を有する細孔の容積:0
.58m1/j;l、 表面積: 230 m1g、 0.7Xpよりも小さな直径を有する細孔の容積の%:
18%、 1、7 X pよりも大きな直径を有する細孔の容積の
%:10%、 1100nよりも大きな直径を有する細孔の容積の%:
2.7%、 比平均細孔直径(p) : 22.Onm。
Pore volume: 0.80ml/,! il', volume of pores with a diameter of 0.7Xp or more to 1.7Xp or less: 0
.. 58 m1/j; l, surface area: 230 m1g, % of the volume of pores with a diameter smaller than 0.7Xp:
18%, % of the volume of pores with a diameter greater than 1,7 X p: 10%, % of the volume of pores with a diameter greater than 1100n:
2.7%, specific average pore diameter (p): 22. Onm.

比平均粒子直径(d) : 1.7myn。Specific average particle diameter (d): 1.7 myn.

触媒 M アルミナ1100pb当りコバルト4.3 pbwおよ
びモリブデンIO,9pbwを含む触媒を次のようにし
て製造した。
Catalyst M A catalyst containing 4.3 pbw of cobalt and 9 pbw of molybdenum IO per 1100 pb of alumina was prepared as follows.

モリブデン酸アンモニウム20.lと30%H20□2
0gを含む水溶液を硝酸コバルト6水塩21.2gの水
溶液と混合した。
Ammonium molybdate 20. l and 30%H20□2
The aqueous solution containing 0 g was mixed with an aqueous solution of 21.2 g of cobalt nitrate hexahydrate.

混合物を水で希釈して110m1の容量にした後触媒り
の製造に使用したのと同じ球形のアルミナ粒子IoOg
を含浸するのに使用した。
After diluting the mixture with water to a volume of 110 ml, the same spherical alumina particles IoOg as used for the preparation of the catalyst were added.
was used to impregnate.

15分後含浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the impregnated material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒NおよびO アルミナ1100pb当りニッケル4.3pbwおよび
モリブデン10.9pbwを含む2種の触媒を次のよう
にして製造した。
Catalysts N and O Two catalysts containing 4.3 pbw nickel and 10.9 pbw molybdenum per 1100 pb alumina were prepared as follows.

モリブデン酸アンモニウム57.29の水溶液を蟻酸ニ
ッケル2水塩38.6gの水溶液と混合した。
An aqueous solution of 57.29 g of ammonium molybdate was mixed with an aqueous solution of 38.6 g of nickel formate dihydrate.

モノエタノールアミン65TLlを添加した後混合物を
水で希釈して280m1の容量にした。
After adding 65 TLl of monoethanolamine, the mixture was diluted with water to a volume of 280 ml.

この混合物を2つの等しい部分に分けてからこの各々を
475℃で水蒸気処理し続いて3時間500℃または7
00°Cにおいて■焼した球形のアルミナ粒子142.
iを含浸するのに使用した。
The mixture was divided into two equal parts and each was steamed at 475°C followed by 3 hours at 500°C or 7°C.
Spherical alumina particles baked at 00°C 142.
It was used to impregnate i.

球形のアルミナ粒子は触媒りおよびMの製造に使用した
のと同じであった。
The spherical alumina particles were the same as those used in the preparation of catalyst and M.

触媒Nを製造するために700℃において蕨焼したアル
ミナ粒子を使用し、500°Cにおいて■焼したアルミ
ナ粒子は触媒Oの担体として使用した。
Alumina particles fired at 700°C were used to produce Catalyst N, and alumina particles fired at 500°C were used as a carrier for Catalyst O.

15分後金浸した材料を120℃で18時間乾燥してか
ら500°Cにおいて3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒 P アルミナ1100pb当りニッケル4.3pbwおよび
モリブデン10.9pbwを含む触媒を次のようにして
製造した。
Catalyst P A catalyst containing 4.3 pbw of nickel and 10.9 pbw of molybdenum per 1100 pb of alumina was prepared as follows.

モリブデン酸アンモニウム120gの水溶液を蟻酸ニッ
ケル2水塩8゜1gの水溶液と混合した。
An aqueous solution of 120 g of ammonium molybdate was mixed with an aqueous solution of 8.1 g of nickel formate dihydrate.

モノエタノールアミン13.5 mlを添加した後混合
物を水で希釈して60vtlの容量にした。
After adding 13.5 ml of monoethanolamine, the mixture was diluted with water to a volume of 60 vtl.

この混合物を触媒Nの製造に使用したのと同じ水蒸気処
理した球形のアルミナ粒子60gを含浸するのに使用し
た。
This mixture was used to impregnate 60 g of the same steam-treated spherical alumina particles used to prepare catalyst N.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間暇焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒 Q 珪酸ナトリウム2628gを含む水溶液(SI02含有
量:26.5重量%)11600gを40℃に温めた。
Catalyst Q 11,600 g of an aqueous solution (SI02 content: 26.5% by weight) containing 2,628 g of sodium silicate was warmed to 40°C.

撹拌しながら6N硝酸1160Wllを30分間で加え
て溶液のpHを11.6から6に低下させた。
The pH of the solution was lowered from 11.6 to 6 by adding 1160 Wll of 6N nitric acid over 30 minutes while stirring.

pH= l O,5おいてゲル化が起きた。得られたシ
リカゲルを40℃において140時間熟成した。
Gelation occurred at pH=10,5. The obtained silica gel was aged at 40°C for 140 hours.

A、l (NO3) s・9H20781を含む水溶液
1224gを撹拌しながら5分間かけてこの混合物に加
えた。
1224 g of an aqueous solution containing A,l(NO3)s.9H20781 was added to this mixture over 5 minutes with stirring.

濃アンモニウム水435m1を20分間で加えて混合物
のpHを4.8まで上昇させた。
435 ml of concentrated ammonium water was added over 20 minutes to raise the pH of the mixture to 4.8.

20分後金アンモニア水20m1lを加えて混合物のp
nを更に5.5まで上昇させた。
After 20 minutes, add 20ml of gold ammonia water to reduce the mixture's pH.
n was further increased to 5.5.

遠心分離によってシリカ−アルミナ共ゲルを分離してか
らナトリウムが無くなるまで各回157の水で6回洗浄
した。
The silica-alumina cogel was separated by centrifugation and washed 6 times with 157 g of water each time until sodium free.

ゲルを1.5 vanの押出成型物にした。成型物を1
20°Cで18時間乾燥してから500℃において3時
間■焼した。
The gel was made into a 1.5 van extrudate. 1 molded item
It was dried at 20°C for 18 hours and then baked at 500°C for 3 hours.

このシリカ−アルミナ共ゲル377gを0.1モ#NH
4N033770 mと混合した。
377 g of this silica-alumina co-gel was added to 0.1 mo#NH
4N033770 m.

濃アンモニア水7.8 mlを加えてこの混合物のpH
を4.6から7に上昇させた。
Adjust the pH of this mixture by adding 7.8 ml of concentrated ammonia water.
increased from 4.6 to 7.

2時間後シリカーアルミナを戸別し、21の水で洗浄し
てから100℃において乾燥した。
After 2 hours, the silica alumina was taken out, washed with 21 parts of water, and dried at 100°C.

上記のシリカ−アルミナ(乾燥物質94.5重量%)を
シリカ−アルミナ100 pbw当りニッケル2pbw
およびモリブデン16 pbwを含む触媒の担体として
使用した。
The above silica-alumina (94.5% by weight dry matter) was mixed with 2 pbw of nickel per 100 pbw of silica-alumina.
and was used as a support for a catalyst containing 16 pbw of molybdenum.

触媒は次のようにして製造した。The catalyst was manufactured as follows.

蟻酸ニッケル2水塩2.1Mの水溶液をモリブデン酸ア
ンモニウム108gの水溶液と混合した。
A 2.1 M aqueous solution of nickel formate dihydrate was mixed with an aqueous solution of 108 g of ammonium molybdate.

モノエタノールアミン707111を加えた後混合物を
水で希釈して5007711の容量にした。
After adding the monoethanolamine 707111, the mixture was diluted with water to a volume of 5007711.

この混合物を上記のシリカ−アルミナ(乾燥物質365
.@)386gを含浸するのに使用した。
This mixture was mixed with the above silica-alumina (dry substance 365
.. @) Used to impregnate 386 g.

15分後金浸した材料を120°Cで18時間乾燥して
から500℃において3時間蕨焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

触媒 R シリカ−アルミナ100 pbwa リニッケル1pb
wおよびモリブデン8 pbwを含む触媒を次のように
して製造した。
Catalyst R Silica-alumina 100 pbwa Re-nickel 1 pb
A catalyst containing w and 8 pbw of molybdenum was prepared as follows.

蟻酸ニッケル2水塩11.6gの水溶液をモリブデン酸
アンモニウム54.5gの水溶液と混合した。
An aqueous solution of 11.6 g of nickel formate dihydrate was mixed with an aqueous solution of 54.5 g of ammonium molybdate.

モノエタノールアミン45m1を加えた後混合物を水で
希釈して500m1の容量にした。
After adding 45 ml of monoethanolamine, the mixture was diluted with water to a volume of 500 ml.

この混合物を触媒Qの製造に使用したのと同じシリカ−
アルミナ388gを含浸するのζこ使用した。
This mixture was prepared using the same silica as used in the preparation of Catalyst Q.
This was used to impregnate 388 g of alumina.

15分後金浸した材料を120°Cで18時間乾燥して
から500°Cにおいて3時間暇焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒 S アルミナ1100pb当りコバルト4.3 pbwおよ
びモリブデン10.9pbwを含む触媒を次のようにし
て製造した。
Catalyst S A catalyst containing 4.3 pbw of cobalt and 10.9 pbw of molybdenum per 1100 pb of alumina was prepared as follows.

モリブデン酸アンモニウムとして15.25gのモリブ
デンとMoに対して0.5モルのH2O2を含む水溶液
を硝酸コバルトとしてコバルト6.02.?を含む水溶
液と混合した。
An aqueous solution containing 15.25 g of molybdenum as ammonium molybdate and 0.5 mol of H2O2 per Mo is used as cobalt nitrate and cobalt 6.02. ? mixed with an aqueous solution containing

混合物を水で希釈して1307rLlの容量にした後ア
ルミナ140gを含浸するのに使用した。
The mixture was diluted with water to a volume of 1307 rLl and then used to impregnate 140 g of alumina.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

触媒TおよびU 珪酸すl−IJウム26.25kgを含む水溶液(S
t 02含有量:26.5重量%)116.25kgを
40°Cに温めた。
Catalyst T and U: An aqueous solution containing 26.25 kg of sulfur silicate (S
t02 content: 26.5% by weight) 116.25 kg were warmed to 40°C.

6N硝酸を撹拌しながら30分間かけて加え溶液のpH
を6に低下させた。
Add 6N nitric acid over 30 minutes with stirring to adjust the pH of the solution.
was lowered to 6.

得られたシリカゲルを40℃において撹拌しながら14
0時間熟成させた。
The obtained silica gel was heated at 40°C with stirring for 14 hours.
It was aged for 0 hours.

A l (No 3 ) 3・9H207,66に!9
を含み、40℃の温度を有する水溶液30Al’を撹拌
しながら5分間で混合物に加えた。
A l (No 3) 3/9H207,66! 9
An aqueous solution 30Al' containing 30.degree. C. and having a temperature of 40.degree. C. was added to the mixture in 5 minutes with stirring.

更に10分間撹拌した後25%のアンモニア水を添加し
て混合物のpHを4.8に上昇させた。
After stirring for an additional 10 minutes, 25% aqueous ammonia was added to raise the pH of the mixture to 4.8.

10分後混合物のpHを更に5.5まで上昇させた。After 10 minutes, the pH of the mixture was further increased to 5.5.

遠心分離によってシリカ−アルミナ共ゲノ−を分離して
からナトリウムを含まなくなるまで60℃の水で洗浄し
た。
The silica-alumina co-geno was separated by centrifugation and washed with water at 60°C until sodium-free.

このシリカ−アルミナ共ゲル4.6 kg(乾燥物質1
4重量%)を0.1モルのNH4No35.6で3回処
理し、水洗してから戸別した。
4.6 kg of this silica-alumina cogel (dry substance 1
4 wt.

上記のシリカ−アルミナ(乾燥物質12.3重量%)を
シリカ−アルミナ100 pbw当りニッケルlpbw
およびモリブデン8pbwを含む2種の触媒の各々の担
体として使用した。
The above silica-alumina (12.3% by weight dry matter) was mixed with nickel lpbw per 100 pbw of silica-alumina.
and 8 pbw of molybdenum as a support for each of two catalysts.

触媒は次のようにして製造した。The catalyst was manufactured as follows.

シリカ−アルミナ共ゲル3661.?(=乾燥物質45
1)を10分間練った。
Silica-alumina co-gel 3661. ? (=dry substance 45
1) was kneaded for 10 minutes.

続いて蟻酸ニッケル2水塩14.15 gを添加してか
ら再び5分間練った。
Subsequently, 14.15 g of nickel formate dihydrate was added and kneaded again for 5 minutes.

モリブデン酸アンモニウム66.3gの水溶液を加えて
から混合物を1時間練った。
An aqueous solution of 66.3 g of ammonium molybdate was added and the mixture was kneaded for 1 hour.

この生成物からそれぞれ1.3mmおよび1.6mmの
押出成型物に押出して触媒TおよびUを得た。
Catalysts T and U were obtained from this product by extrusion into 1.3 mm and 1.6 mm extrudates, respectively.

成型物を100℃で乾燥してから500℃において3時
間■焼した。
The molded product was dried at 100°C and then baked at 500°C for 3 hours.

触媒 V 水50001nl中に珪酸ナトリウム1500gを含む
水溶液(S102含有量26.5重量%)に6N硝酸を
添加してこの溶液をpHを11,6から6.0に低下さ
せてシリカゲルを製造した。
Catalyst V Silica gel was produced by adding 6N nitric acid to an aqueous solution (S102 content 26.5% by weight) containing 1500 g of sodium silicate in 50001 nl of water to lower the pH of this solution from 11.6 to 6.0.

シリカゲルを100℃において24時間熟成させた。The silica gel was aged at 100°C for 24 hours.

水900m1中にAI (NO3) s ・9H204
37,2gを含む溶液をシリカゲルに加えた。
AI (NO3) s ・9H204 in 900ml of water
A solution containing 37.2 g was added to the silica gel.

濃アンモニア水300m1を添加して混合物のpHを3
.15から6に上昇させた。
Add 300 ml of concentrated aqueous ammonia to bring the pH of the mixture to 3.
.. Increased from 15 to 6.

このようにして得たシリカ−アルミナ共ゲルを戸別し、
ナトリウムが無くなるまで水洗した。
The silica-alumina cogel thus obtained was distributed door to door.
Washed with water until sodium disappeared.

ゲルを120℃で乾燥し、500℃において3時間■焼
してから粉砕して0.76mmのdを有する粒子にした
The gel was dried at 120°C, baked at 500°C for 3 hours, and ground into particles with d of 0.76 mm.

濃アンモニア水を添加して上記のシリカ−アルミナ粒子
99gと0.1モルN)LiNOs 1000 mlの
混合物のT)Hを45から7.0まで上昇させた。
The T)H of the mixture of 99 g of the above silica-alumina particles and 1000 ml of 0.1 mol N)LiNOs was increased from 45 to 7.0 by adding concentrated aqueous ammonia.

シリカ−アルミナを戸別してから1208Cで乾燥した
The silica-alumina was separated and dried at 1208C.

このシリカ−アルミナを(乾燥物質95.6重量%)シ
リカ−アルミナ1100pb当りニッケルlpbwおよ
びモリブデン8pbwを含む触媒の担体として使用した
This silica-alumina was used as a support for a catalyst containing 1 pbw of nickel and 8 pbw of molybdenum per 1100 pb of silica-alumina (95.6% by weight dry matter).

触媒は次のようにして製造した。モリブデン酸アンモニ
ウム13.79とモノエタノールアミンとの水溶液を蟻
酸ニッケル2水塩2.9!lの水溶液と混合した。
The catalyst was manufactured as follows. An aqueous solution of ammonium molybdate 13.79 and monoethanolamine is mixed with nickel formate dihydrate 2.9! 1 of an aqueous solution.

混合物を水で希釈して175m1の容量にした後、それ
を上記の中和したシリカ−アルミナ91を含浸するのに
使用した。
After diluting the mixture with water to a volume of 175 ml, it was used to impregnate the neutralized silica-alumina 91 described above.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

触媒 W アルミナ100 pbw当りコバルト3.8 pbwお
よびモリブデン9.5pbwを含む触媒を次のようにし
て製造した。
Catalyst W A catalyst containing 3.8 pbw of cobalt and 9.5 pbw of molybdenum per 100 pbw of alumina was prepared as follows.

モリブデン酸アンモニウム876gと30%H2O21
000mlを含む水溶液を硝酸コバルト6水塩940S
の水溶液と混合した。
876g ammonium molybdate and 30% H2O21
000ml of cobalt nitrate hexahydrate 940S
was mixed with an aqueous solution of

混合物を水で希釈して350’Omlの容量にした後、
それを1.5朋のアルミナ押出成型物5001を含浸す
るのに使用した。
After diluting the mixture with water to a volume of 350'Oml,
It was used to impregnate 1.5 mm alumina extrudate 5001.

30分後金浸した材料を120°Cで18時間乾燥して
から500℃において3時間■焼した。
After 30 minutes, the gold-soaked material was dried at 120°C for 18 hours and then baked at 500°C for 3 hours.

触媒 X アルミナI00pbw当りニッケル4.3 pbwおよ
びモリブデン10.9 pbwを含む触媒を次のように
して製造した。
Catalyst X A catalyst containing 4.3 pbw of nickel and 10.9 pbw of molybdenum per 100 pbw of alumina was prepared as follows.

モリブデン酸アンモニウム2.01kgの水溶液を硝酸
ニッケル6水塩2.13kgの水溶液と混合した。
An aqueous solution of 2.01 kg of ammonium molybdate was mixed with an aqueous solution of 2.13 kg of nickel nitrate hexahydrate.

25%のアンモニア水61を加えた後混合物を水で希釈
して111の容量にした。
After adding 61 parts of 25% aqueous ammonia, the mixture was diluted with water to a volume of 111 parts.

この混合物をアルミナ10kgを含浸するのに使用した
This mixture was used to impregnate 10 kg of alumina.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間烟焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

触媒 Y アルミナ1100pb当りニッケル4.3 pbwおよ
びモリブデン10.9 pbwを含む触媒を次のように
して製造した。
Catalyst Y A catalyst containing 4.3 pbw of nickel and 10.9 pbw of molybdenum per 1100 pb of alumina was prepared as follows.

モノエタノールアミンを含むモリブデン酸アンモニウム
44.1:lの水溶液をモノエタノールアミンを含む蟻
酸ニッケル2水塩30.74gの水溶液と混合した。
An aqueous solution of 44.1:1 ammonium molybdate containing monoethanolamine was mixed with an aqueous solution of 30.74 g of nickel formate dihydrate containing monoethanolamine.

混合物を水で希釈して190m1の容量にした後それを
アルミナ220gを含浸するのに使用した。
The mixture was diluted with water to a volume of 190 ml and then used to impregnate 220 g of alumina.

15分後金浸した材料を120℃で18時間乾燥してか
ら500℃において3時間■焼した。
After 15 minutes, the gold-soaked material was dried at 120°C for 18 hours and then fired at 500°C for 3 hours.

水添脱流の実験 カリブ海原油の常圧蒸留残渣として得られた全バナジウ
ムおよびニッケル含有量245pbw1C5−アスファ
ルテン含有量7.2重量%および硫黄含有量2.1重量
%を有する残留炭化水素油を触媒を補充しないでそして
触媒A−Yを使用して接触水添脱硫した。
Hydrogenation Deflow Experiment A residual hydrocarbon oil with a total vanadium and nickel content of 245 pbw1C5-asphaltene content of 7.2% by weight and a sulfur content of 2.1% by weight was obtained as an atmospheric distillation residue of Caribbean crude oil. Catalytic hydrodesulfurization was carried out without catalyst replenishment and using catalyst AY.

この目的のため420℃の温度、40ないし200バー
ルに変化する水素分圧、新鮮な原料kg当り25ONN
の出口ガス速度および毎時触媒kg当り油4.35に9
の空間速度において、油を水素とともに円筒状の固定触
媒床に下方へ通した。
For this purpose a temperature of 420°C, a hydrogen partial pressure varying from 40 to 200 bar, 25 ONN/kg of fresh raw material.
Outlet gas velocity of 4.35 to 9 oil per kg of catalyst per hour
The oil was passed down with hydrogen through a cylindrical fixed catalyst bed at a space velocity of .

触媒はその硫化物の状態で使用した。触媒を補充しない
残留炭化水素油の水添脱硫用触媒の性能を以下のように
定義した触媒寿命と平均活性(K平均)によって記載す
る。
The catalyst was used in its sulfide state. The performance of a catalyst for hydrodesulfurization of residual hydrocarbon oil without catalyst replenishment is described in terms of catalyst life and average activity (K average) defined as follows.

触媒寿命(kg原料/に9触媒で表わした)は触媒が急
速な脱活性を示す前に触媒上で水添脱硫できる残渣油の
最大量である。
Catalyst life (expressed in 9 catalyst per kg feedstock) is the maximum amount of residual oil that can be hydrodesulphurized over the catalyst before the catalyst exhibits rapid deactivation.

平均活性(kg原料/kg触媒・時・(S重量%)天で
表わした)は触媒寿命の半分に達した点における触媒の
活性である。
The average activity (expressed in kg feed/kg catalyst/hour/(S weight %) sky) is the activity of the catalyst at the point when half of the catalyst life is reached.

水添脱硫の実験の結果とともに使用した触媒の性状を第
1表に示す。
Table 1 shows the results of the hydrodesulfurization experiment and the properties of the catalyst used.

触媒の比平均細孔直径(p)は前に述べたように、水銀
浸透法と組合せた窒素吸着/脱着法によって決定した児
全な細孔直径分布から計算した。
The specific mean pore diameter (p) of the catalyst was calculated from the overall pore diameter distribution determined by the nitrogen adsorption/desorption method combined with the mercury infiltration method, as described previously.

これらの水添脱硫の実験で適用した条件下において最適
であるべき触媒の基準は次の通りである。
The criteria for a catalyst that should be optimal under the conditions applied in these hydrodesulfurization experiments are as follows.

触媒寿命は少くとも2500kg原料/kL!触媒であ
るべきで平均活性は少くとも1.5kg原料/kg触楳
時(重量%S)2 であるべきである。
Catalyst life is at least 2500kg raw material/kL! The catalyst should have an average activity of at least 1.5 kg feed/kg sieved (wt% S)2.

実験1−24(ここで触媒は2500を超える寿命とに
平均〉1.5を有する)は本発明による水添脱硫の実験
である。
Runs 1-24 (where the catalysts have a lifetime of over 2500 and average > 1.5) are hydrodesulfurization experiments according to the present invention.

これらの実験において使用した触媒はp /(d)”’
と最適の触媒の細孔直径分布に関する要求に従っている
The catalyst used in these experiments was p/(d)"'
and according to the requirements regarding the optimal catalyst pore diameter distribution.

実験25−35(ここで触媒は2500より短かい寿命
および/またはに平均〈1.5を有する)は本発明の範
囲外の水添脱硫の実験である。
Runs 25-35 (where the catalyst has a lifetime shorter than 2500 and/or an average of <1.5) are hydrodesulfurization runs outside the scope of the present invention.

これらの実験において使用した触媒はp/(dP9と最
適の触媒の細孔直径分布に関する要求の少くとも1つを
満足していない。
The catalysts used in these experiments did not meet at least one of the requirements regarding p/(dP9 and optimal catalyst pore diameter distribution.

実験25−33においては使用した触媒は45 X 1
05X (PH2)” p/(d)”99 X 10
’(PH2)2の要求を満たしていない。
In experiments 25-33, the catalyst used was 45 x 1
05X (PH2)” p/(d)”99 X 10
'(PH2)2 requirements are not met.

実験32において使用した触媒Wは0.7×p以上ない
し1.7Xp以下の直径を有する細孔において0.4
yd/ gよりも少ない細孔容積および1.7×pより
も大きな直径を有する細孔において20%よりも多い細
孔容積を持っている。
The catalyst W used in Experiment 32 had a diameter of 0.4
Pore volume less than yd/g and more than 20% in pores with diameter greater than 1.7×p.

実験33および34で使用した触媒Xは067×p以上
ないし1.7 X p以下の直径を有する細孔において
0.4ml/gよりも小さな細孔容積、1.7Xpより
も大きな直径を有する細孔において20%よりも多い細
孔容積および1100nよりも大きな直径を有する細孔
において10%よりも多い細孔容積を持っている。
Catalyst It has a pore volume of more than 20% in pores and more than 10% in pores with a diameter greater than 1100n.

実験35で使用した触媒Yは0.7×p以上ないし1.
7Xp以下の直径を有する細孔において0.4Fril
/9より小さな細孔容積、0.7 X pよりも小さな
直径を有する細孔において20%よりも多い細孔容積お
よび1100nよりも大きな直径を有する細孔において
10%よりも多い細孔容積を有する。
Catalyst Y used in Experiment 35 had a value of 0.7×p or more to 1.
0.4 Fril in pores with a diameter of 7Xp or less
pore volume smaller than /9, 20% more pore volume in pores with diameter smaller than 0.7 have

触媒の性能に対するPH2の影響は以下の実験を比較し
た場合明らかである。
The influence of PH2 on catalyst performance is evident when comparing the following experiments.

触媒Aによる実験1および25 触媒Cによる実験4.5および26 触媒りによる実験6および27 触媒Fによる実験8および28 触媒Nによる実験17および29 触媒Sによる実験22および30 最適な触媒の細孔直径分布に関する要求に従いそして4
5 X 10−5X (P H2)”< p /(d7
”9< 9 X10−4×(PH2)2 の要求を満たすPH2における残渣油の水添脱硫(実験
1.4.5.6.8.17および22)のために最適の
性能を示す触媒A、C,D、F、NおよびSは 45 X 10−5X (PH2)2< p/(dP9
< 9X 10−’×(PH2)2の要求を満たさない
PH2においては(実験25−30)この目的に比較的
適していない
Runs 1 and 25 with catalyst A Runs 4.5 and 26 with catalyst C Runs 6 and 27 with catalyst R Runs 8 and 28 with catalyst F Runs 17 and 29 with catalyst N Runs 22 and 30 with catalyst S Optimal catalyst pores According to the requirements regarding the diameter distribution and 4
5 X 10-5X (PH2)”< p /(d7
Catalyst A showing optimal performance for hydrodesulphurization of residual oils at PH2 (Experiments 1.4.5.6.8.17 and 22) meeting the requirement of ``9 < 9 X10-4 x (PH2)2 , C, D, F, N and S are 45 X 10-5X (PH2)2< p/(dP9
At PH2, which does not satisfy the requirement of < 9X 10-'×(PH2)2 (Experiments 25-30), it is relatively unsuitable for this purpose.

Claims (1)

【特許請求の範囲】 1 120 pprrrwを超える全バナジウムおよび
ニッケル含有量を有する残留炭化水素油の触媒を補充し
ない接触水添脱硫法において、担体上に担持された水添
活性を有する金属1種またはそれ以上を含み、かつ 1)45X10−5X(PH)2<p/(d)0・9<
9×10−4×(P )2の条件〔式中PH2は適用
す2 る水素分圧(バールで表わす)であり、dは比平均粒子
直径(mmで表わす)である〕を満たす比平均細孔直径
p(nmで表わす)、 2)全細孔容積の少なくとも0.4 ml/ gが、p
の値より30係以上小さくなくかつpの値より70係以
上大きくない直径を有する細孔中に存在し、しかも全細
孔容積が0.45 ml/ jiを越える全細孔容積、
および 3)鋭い細孔直径分布であって a)全細孔容積の20係以下がpの値の70係よりも小
さな直径を有する細孔中に存在し、b)全細孔容積の2
0係以下がpの値の170係よりも大きな直径を有する
細孔中に存在し、そして C)全細孔容積の10係以下が100 nmよりも大き
な直径を有する細孔中に存在する、鋭い細孔直径分布、 を有する触媒を適用することを包含する接触水添脱硫法
[Scope of Claims] In a catalytic hydrodesulfurization process without catalyst replenishment of residual hydrocarbon oils having a total vanadium and nickel content exceeding 1 120 pprrw, one or more metals having hydrogenation activity supported on a carrier or more, and 1) 45X10-5X(PH)2<p/(d)0.9<
The ratio average satisfies the following conditions: 9 x 10-4 x (P)2, where PH2 is the applied hydrogen partial pressure (expressed in bars) and d is the specific average particle diameter (expressed in mm). 2) at least 0.4 ml/g of the total pore volume is p
A total pore volume that is present in pores having a diameter that is not more than 30 factors smaller than the value of p and not more than 70 factors larger than the value of p, and the total pore volume exceeds 0.45 ml/ji,
and 3) a sharp pore diameter distribution in which a) less than a factor of 20 of the total pore volume is present in pores with diameters smaller than a factor of 70 of the value of p, and b) a factor of 20 of the total pore volume.
C) a factor of 10 or less of the total pore volume is present in pores with a diameter greater than 100 nm; A catalytic hydrodesulfurization process that involves applying a catalyst with a sharp pore diameter distribution.
JP48113339A 1972-10-13 1973-10-11 Hydrocarbon conversion method Expired JPS5947719B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB4729972A GB1407610A (en) 1972-10-13 1972-10-13 Hydrocarbon conversion process
GB4729972 1972-10-13

Publications (2)

Publication Number Publication Date
JPS4974204A JPS4974204A (en) 1974-07-17
JPS5947719B2 true JPS5947719B2 (en) 1984-11-21

Family

ID=10444455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48113339A Expired JPS5947719B2 (en) 1972-10-13 1973-10-11 Hydrocarbon conversion method

Country Status (12)

Country Link
JP (1) JPS5947719B2 (en)
BE (1) BE805370A (en)
CA (1) CA1012478A (en)
DE (1) DE2351136C2 (en)
FI (1) FI59118C (en)
FR (1) FR2202931B1 (en)
GB (1) GB1407610A (en)
IT (1) IT995791B (en)
NL (1) NL7313986A (en)
NO (1) NO139002C (en)
SE (1) SE400784B (en)
ZA (1) ZA737909B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519371Y2 (en) * 1986-03-31 1993-05-21

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7607551A (en) * 1976-07-08 1978-01-10 Shell Int Research METHOD FOR THE METALIZATION OF HYDROCARBON OILS.
FR2570385B1 (en) * 1984-09-14 1987-08-21 Raffinage Cie Francaise PROCESS FOR HYDROPROCESSING HYDROCARBON CHARGES AND CATALYST FOR CARRYING OUT SAID METHOD
FR2598632B1 (en) * 1986-05-14 1988-11-10 Total France HYDROCARBON HYDROTREATMENT CATALYSTS AND APPLICATIONS THEREOF

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1408759A (en) * 1971-12-07 1975-10-01 Shell Int Research Catalytic hydrodesulphurisation process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519371Y2 (en) * 1986-03-31 1993-05-21

Also Published As

Publication number Publication date
JPS4974204A (en) 1974-07-17
DE2351136C2 (en) 1984-11-22
NL7313986A (en) 1974-04-16
FI59118C (en) 1981-06-10
NO139002B (en) 1978-09-11
ZA737909B (en) 1974-08-28
SE400784B (en) 1978-04-10
IT995791B (en) 1975-11-20
FR2202931A1 (en) 1974-05-10
NO139002C (en) 1978-12-20
GB1407610A (en) 1975-09-24
FI59118B (en) 1981-02-27
AU6129273A (en) 1975-04-17
DE2351136A1 (en) 1974-04-25
BE805370A (en) 1974-03-27
CA1012478A (en) 1977-06-21
FR2202931B1 (en) 1977-03-11

Similar Documents

Publication Publication Date Title
US10058852B2 (en) Hydrotreatment catalyst with a high density of molybdenum, and process for its preparation
US5494568A (en) Hydrocarbon conversion process
US3925197A (en) Hydrodesulfurization process
JPS59150541A (en) Hydrotreating catalyst of hydrocarbon oil, production thereof and catalytic hydrotreatment
US3242101A (en) Nickel-molybdenum-alumina hydrocarbon conversion catalyst
JPS6265750A (en) Catalyst for hydrogenation treatment of heavy oil, etc. and manufacture thereof
JPS63302944A (en) Production of alumina-silica composition
WO1995009049A2 (en) Hydroprocessing catalyst and its use
JPH0154096B2 (en)
TWI736611B (en) An ebullated bed process for high conversion of heavy hydrocarbons with a low sediment yield
US4394302A (en) Hydrodesulfurization catalyst on lithium-containing support and method for its preparation
US4510255A (en) Process for manufacturing a supported catalyst for the hydrotreatment of hydrocarbon oils
JPH0431737B2 (en)
US3948763A (en) Sulfiding process for desulfurization catalysts
US4083771A (en) Hydrorefining of petroleum fraction utilizing a catalyst prepared with an anion complex of a group VI-B and a group VIII metal component
JPS5947719B2 (en) Hydrocarbon conversion method
JPH0122319B2 (en)
US4046714A (en) Method of manufacturing a hydrorefining catalyst
US4447317A (en) Hydroprocessing with lithium-containing catalyst
CN116547069A (en) Hydrodesulfurization process using a catalyst comprising a flash-calcined alumina support
EP0159097A2 (en) Process for the catalytic conversion of heavy hydrocarbon oils
US3546104A (en) Hydrodesulfurization of petroleum hydrocarbons containing asphaltenes
FI74410C (en) Hydrocracking catalyst composition comprising a nickel component and a tungsten component on a silica-alumina support material and process for making the same.
US3213040A (en) Method of preparing an extended catalyst composition consisting of cobalt oxide, molybdenum oxide and alumina
US3147208A (en) Process for the hydrocracking of hydrocarbons with a cobalt-molybdenum on silica-alumina support type catalyst