JPS5937892A - Servo circuit for dc motor - Google Patents

Servo circuit for dc motor

Info

Publication number
JPS5937892A
JPS5937892A JP14836682A JP14836682A JPS5937892A JP S5937892 A JPS5937892 A JP S5937892A JP 14836682 A JP14836682 A JP 14836682A JP 14836682 A JP14836682 A JP 14836682A JP S5937892 A JPS5937892 A JP S5937892A
Authority
JP
Japan
Prior art keywords
motor
transistor
voltage
supplied
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14836682A
Other languages
Japanese (ja)
Inventor
Kuniharu Onozuka
小野塚 国春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP14836682A priority Critical patent/JPS5937892A/en
Publication of JPS5937892A publication Critical patent/JPS5937892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To simplify the structure of a DC motor by detcting the acceleration and the rotating speed with a pulse width modulation pulse in a time division manner and controlling the rotating speed of the motor. CONSTITUTION:When a pulse width modulation pulse PW is ''0'', a transistor Q2 becomes ON, a power source voltage VCC is supplied to a motor M, and when it is ''1'', a trnsistor Q3 becomes ON, and the motor M is shortcircuited through the transistor Q3 and a resistor R1. When the transistor Q3 is ON, the counterelectromotive force VM of the motor M is prouced through the resistor R1, sampled by transistors Q4, Q5 which become ON at this time, and held by the condenser C1. An amplifier A1 outputs a deviation signal Vc between the voltage Vd of the condenser C1 and the reference voltage Vs, and a modulator 3 controls the duty ratio of the pulse width modulation pulse Pw in response to the deviation signal Vc.

Description

【発明の詳細な説明】 この発明は、簡単な構成によシ直流モータの回転速度を
制御できるサーが回路を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a circuit that can control the rotational speed of a DC motor with a simple configuration.

以下その一例について説明しよう。Let's explain one example below.

第1図において、Mは回転速度が制御される直流モータ
を示し、直流電源端子T、と接地との間に、スイッチン
グ用のトランジスタQ2のエミッタ・コレクタ間とモー
タMとが直列接続されると共に、モータMに、スイッチ
ング用トランジスタQ3のコレクタ・エミッタ間と逆起
電圧検出用の小さな値の抵抗器R1との直列回路が並列
接続され、トランジスタQ2+Q3のペースにドライブ
用トランジスタQ1のコレクタ出力が供給される。
In FIG. 1, M indicates a DC motor whose rotational speed is controlled, and the motor M and the emitter-collector of a switching transistor Q2 are connected in series between the DC power supply terminal T and ground. , A series circuit between the collector and emitter of the switching transistor Q3 and a small-value resistor R1 for detecting back electromotive force is connected in parallel to the motor M, and the collector output of the drive transistor Q1 is supplied to the pace of the transistors Q2+Q3. be done.

そして、抵抗器R4に得られる電圧vmが、直流レベル
シフト用のダイオードD1を通じてサンプリングホール
ド回路(1)に供給される。このサンプリングホールド
回路(すは、サンプリング用のトランジスタQ41Q5
と、ホールド用のコンデンサC4とによシ構成され、ト
ランジスタQ 4 + Q 5のペースニハトランジス
タQ1のコレクタ出力が供給される。
Then, the voltage vm obtained across the resistor R4 is supplied to the sampling and holding circuit (1) through the diode D1 for direct current level shift. This sampling hold circuit (sampling transistor Q41Q5)
and a hold capacitor C4, and the collector output of the transistor Q1 of transistors Q4+Q5 is supplied.

そして、このサンプリングホールド回路(1)の出力電
圧Vdが、電圧比較回路(2)を構成するオペアンプA
1の非反転入力端に供給されると共に、可変抵抗器R2
からモータMの回転速度を設定する電圧v8がアンプA
1の反転入力に供給され、その比較出力vcがオグアン
ゾA2の非反転入力に供給される。
The output voltage Vd of this sampling and hold circuit (1) is determined by the operational amplifier A constituting the voltage comparison circuit (2).
1 and is supplied to the non-inverting input terminal of variable resistor R2.
The voltage v8 that sets the rotational speed of the motor M from the amplifier A
The comparison output vc is supplied to the non-inverting input of Oguanzo A2.

このオグアン!A2は、キャリア周波数が1kHz程度
の民変調回路(3)を構成しているもので、電圧veに
対して第2図に示すようなPWM Aシス2wが取シ出
される。そして、このパルスPwがインバータA5を通
じてトランジスタQ、のペースに供給される。
This Oguan! A2 constitutes a private modulation circuit (3) with a carrier frequency of about 1 kHz, and a PWM A system 2w as shown in FIG. 2 is extracted for the voltage ve. This pulse Pw is then supplied to the transistor Q through the inverter A5.

このような構成によれば、Pw−0”のときには、トラ
ンジスタQ1がオンとなるので、トランジスタQ2がオ
ン、トランジスタQ3がオフとなシ、従って、モータM
にはトランジスタQ2を通じて電源電圧Vccが供給さ
れるので、このとき、モータMは加速される。また、P
w=11”のときには、トランジスタQ1がオフとなる
ので、トランジスタQ2がオフ、トランジスタQ3がオ
ンとなシ、従って、モータMは、トランジスタQ、及び
抵抗器R1を通じてショートされるので、このとき、モ
ータMは減速される。
According to this configuration, when Pw-0'', the transistor Q1 is turned on, the transistor Q2 is turned on, and the transistor Q3 is turned off, so that the motor M
Since the power supply voltage Vcc is supplied through the transistor Q2, the motor M is accelerated at this time. Also, P
When w=11'', transistor Q1 is off, transistor Q2 is off, and transistor Q3 is on. Therefore, motor M is short-circuited through transistor Q and resistor R1, so at this time, Motor M is decelerated.

従って、モータMは、パルスPyが10”のとき加速さ
れ、′1”のとき減速されると共に、このとキ、ノクル
スPWのキャリア周波数は1kHz程度なので、モー 
p M ハパルスPwのデユーティ−レシオに対応した
速度で回転することになる。
Therefore, the motor M is accelerated when the pulse Py is 10" and decelerated when the pulse Py is '1".
pM It rotates at a speed corresponding to the duty ratio of Hapulse Pw.

そして、モータMにはその回転速度に比例した逆起電圧
vmを生じているが、トランジスタQ2がオフでトラン
ジスタQ3がオンのとき(pw=”i”のと私その逆起
電圧■□がトランジスタQ3を通じて抵抗器R1に取シ
出され、さらに、この電圧vmが、このときオンになっ
ているトランジスタQ 4 * Q 5によりサンプリ
ングされると共に、コンデンサC4にホールドされて直
流電圧Vdとされる。従って、この電圧vdは、モータ
Mの回転速度を示すことになる。
Then, a back electromotive voltage vm proportional to the rotational speed is generated in the motor M, but when the transistor Q2 is off and the transistor Q3 is on (pw = "i", the back electromotive voltage □ of the transistor This voltage vm is taken out to the resistor R1 through Q3, and further sampled by the transistor Q4*Q5 which is turned on at this time, and is held in the capacitor C4 to become the DC voltage Vd. Therefore, this voltage vd indicates the rotational speed of the motor M.

そして、この電圧Vdが、アンプA1において電圧vs
と比較され、その比較出力vcが変調回路(3)に変調
入力として供給されてノヤルスPwのデユーティ−レシ
オが第2図に示すように制御される。従って、このとき
、モータMの回転速度は一定に制御されると共に、電圧
vsを変更すれば、電圧vcが変化するので、モータM
の回転速度を変更できる。
Then, this voltage Vd becomes the voltage vs
The comparison output vc is supplied to the modulation circuit (3) as a modulation input, and the duty ratio of Noyals Pw is controlled as shown in FIG. Therefore, at this time, the rotational speed of the motor M is controlled to be constant, and if the voltage vs is changed, the voltage vc changes, so the motor M
The rotation speed can be changed.

こうして、この発明によれば、直流モータMが、同時に
発電機でもあることに着目し、加速と回転速度の検出と
を、ノ臂ルスPwによシ時分割式に行ってモータMの回
転速度を制御しているので、その回転速度の検出にエン
コーダなどを必要とせず、構成が簡単である。
In this way, according to the present invention, focusing on the fact that the DC motor M is also a generator at the same time, acceleration and detection of the rotational speed are performed in a time-sharing manner by the armature Pw, and the rotational speed of the motor M is Since the rotation speed is controlled, an encoder or the like is not required to detect the rotation speed, and the configuration is simple.

まだ、モータMは回転しないと、逆起電圧■mを発生し
ないので、極めて大きな負荷を有する場合でも、低速回
転時の起動ができる。
If the motor M does not rotate, the back electromotive force ■m will not be generated, so even if the motor M has an extremely large load, it can be started at low speed rotation.

第3図に示す例においては、サンブリングホールド回路
(3)を簡単化した場合である。
In the example shown in FIG. 3, the sampling and holding circuit (3) is simplified.

’J B 1上述において、抵抗器R1の値を大きくす
ると、モータMの減速時の応答が遅くなるが、同様に制
御できる。
'J B 1 In the above description, if the value of the resistor R1 is increased, the response during deceleration of the motor M becomes slower, but it can be controlled in the same way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図はこの発明の一例の接続図、第2図はそ
の説明のだめの図であるO Mは直流モータ、(3)は界M発振回路である。
1 and 3 are connection diagrams of an example of the present invention, and FIG. 2 is a diagram for explaining the same. OM is a DC motor, and (3) is a field M oscillation circuit.

Claims (1)

【特許請求の範囲】[Claims] 直流電源に対し、第1のスイッチング素子と、直流モー
タとが直列接続され、上記直流モータに対して第2のス
イッチング素子と、上記直流モータの逆起電圧を検出す
る検出素子との直列回路が並列接続され、上記検出素子
に得られる検出出力が直流化されてから溝変調回路に変
調入力として供給され、との瀧変調回路の出カッ4ルス
が上記第1及び第2のスイッチング素子に供給されてこ
れら第1及び第2のスイッチング素子は互いに逆関係に
オンオフされ、これによシ上記直流モータの回転速度が
サーが制御される直流モータのサーブ回路。
A first switching element and a DC motor are connected in series to a DC power supply, and a series circuit of a second switching element and a detection element for detecting a back electromotive force of the DC motor is connected to the DC motor. connected in parallel, the detection output obtained from the detection element is converted into DC and then supplied to the groove modulation circuit as a modulation input, and the output pulse of the waterfall modulation circuit is supplied to the first and second switching elements. The first and second switching elements are turned on and off in an inverse relationship to each other, thereby controlling the rotational speed of the DC motor.
JP14836682A 1982-08-26 1982-08-26 Servo circuit for dc motor Pending JPS5937892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836682A JPS5937892A (en) 1982-08-26 1982-08-26 Servo circuit for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836682A JPS5937892A (en) 1982-08-26 1982-08-26 Servo circuit for dc motor

Publications (1)

Publication Number Publication Date
JPS5937892A true JPS5937892A (en) 1984-03-01

Family

ID=15451154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836682A Pending JPS5937892A (en) 1982-08-26 1982-08-26 Servo circuit for dc motor

Country Status (1)

Country Link
JP (1) JPS5937892A (en)

Similar Documents

Publication Publication Date Title
US4306181A (en) Drive circuitry for electric motor
US3402333A (en) Electronically controlled synchronous motor
US3027505A (en) Motor control having rate feedback
JPS58172992A (en) Drive circuit for motor
US4121141A (en) D.C. motor speed control circuitry
JPS6053556B2 (en) DC motor rotation control method
US4638223A (en) Motor driving circuit
US3976926A (en) Digital DC motor speed control circuit
JPS5937892A (en) Servo circuit for dc motor
JPS6443091A (en) Method of commutation control of coil strand of dc motor
JP2706968B2 (en) Control circuit for polyphase motor
RU2187195C2 (en) Contactless servo drive
JPS634434B2 (en)
KR900007584B1 (en) Arrangement for starting brushless motor
US3588648A (en) D.c. servo system including an a.c. motor
JPS635438Y2 (en)
JPH047673Y2 (en)
JP2551429Y2 (en) Stepping motor control device
JP2567711B2 (en) Motor drive controller
JPS6011757Y2 (en) Brushless motor forward/reverse rotation control device
JP2688703B2 (en) Brushless motor circuit
JPS5927191B2 (en) Electric motor speed control device
SU1686683A1 (en) Electrical drive with dynamic deceleration
JP2575165B2 (en) Drive control device for DC motor
SU1365336A1 (en) Electric drive