JPS59226204A - Controlling method of steam turbine - Google Patents

Controlling method of steam turbine

Info

Publication number
JPS59226204A
JPS59226204A JP10088083A JP10088083A JPS59226204A JP S59226204 A JPS59226204 A JP S59226204A JP 10088083 A JP10088083 A JP 10088083A JP 10088083 A JP10088083 A JP 10088083A JP S59226204 A JPS59226204 A JP S59226204A
Authority
JP
Japan
Prior art keywords
steam
oil
turbine
operating
fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10088083A
Other languages
Japanese (ja)
Inventor
Keiichi Kuroki
黒木 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10088083A priority Critical patent/JPS59226204A/en
Publication of JPS59226204A publication Critical patent/JPS59226204A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent the unexpected overspeed and vibration at starting from occurring by a method wherein the flow rate of inflowing steam to a steam turbine is limited by setting the opening of a steam regulating valve at intermediate position at the starting of the steam turbine directly coupled to an oil pump and, after that, the steam regulating valve is controlled normally. CONSTITUTION:An operating lever 29, which is operated by supplying pressure oil from an oil pump 16 through an oil line 20 to an oil cylinder 30, is provided at a steam regulating valve 11 interposed in a steam line 8, through which main steam is supplied to a reactor core isolation cooling system (RCIC) turbine 12 to drive an RCIC pump 13 and the oil pump 16. A rocking fulcrum 28, which is one end of the operating lever 29, is journaled by the piston rod of an operating cylinder 23. A piston 24, which is fitted in the cylinder 23, is energized downwards by a spring 25. The operating cylinder 23 is actuated by pressure oil supplied through an oil line 21, which is connected to the delivery side of the oil pump 16 and at the same time in which an orifice 22 is arranged. The position of the fulcrum 28 at the starting of a turbine is rendered to be at the position of the lower fulcrum 26.

Description

【発明の詳細な説明】 ■発明の技術分野] 本発明は改良した蒸気タービンの制御装置に関する。[Detailed description of the invention] ■Technical field of invention] The present invention relates to an improved steam turbine control system.

[発明の技術的費用とその問題点] 蒸気タービンシステムの中に、蒸気源は持っているが、
タービン制御や潤滑のための油圧源や補助動力源を他に
持たず、自ら駆動することにより油ポンプを回転させて
油を供給する機能を果す蒸気タービンシステムがある。
[Technical cost of the invention and its problems] Although the steam turbine system has a steam source,
There is a steam turbine system that has no other hydraulic power source or auxiliary power source for turbine control or lubrication, and functions to supply oil by rotating an oil pump by driving itself.

この種のタービンシステムとしては、例えば駆動信号な
どにわずかの期間だけ利用するに足る直流電源しか持っ
ていない地熱発電システムや、非當時における所内バッ
クアップ電源供給用のタービンや、原子力発電システム
における緊急時のバックアップの原子炉補助系の一つで
ある原子炉隔離性冷却系(以下RCICと称す)に用い
られるRCICタービンポンプシステムなどがある。
This type of turbine system includes, for example, a geothermal power generation system that has only enough DC power to be used for a short period of time, such as a drive signal, a turbine for in-house backup power supply during emergencies, and a nuclear power generation system that is used for emergencies. There is an RCIC turbine pump system used in the reactor isolation cooling system (hereinafter referred to as RCIC), which is one of the backup reactor auxiliary systems.

以下本発明の対象とづる蒸気タービンシステムとしてR
CI Cタービンポンプシステムを代表して説明するこ
とにするが、この原子炉隔離性冷却系(RCI C)は
、原子炉がタービン復水器から隔離されたどきに、復水
貯蔵タンクから原子炉へ冷却水を補給して原子炉の水位
を維持し、炉心の冷1、[Jを行う原子炉補助設備であ
る。
Hereinafter, as a steam turbine system to which the present invention is directed,
The Reactor Isolation Cooling System (RCI C), which will be explained on behalf of the CI C turbine pump system, is a reactor isolation cooling system that removes water from the condensate storage tank to the reactor when the reactor is isolated from the turbine condenser. This is reactor auxiliary equipment that supplies cooling water to maintain the water level of the reactor and cools the reactor core.

すなわち、第1図において、RCIC系は圧力抑制ブル
ーフを有する格納容器1内に配置した原子炉2に補助設
備として付加されている。原子炉2には主蒸気ライン4
および給水ライン5を有し、その主蒸気ライン4から電
動弁9、蒸気止め弁10、蒸気加減弁11を有J−るR
CIG蒸気ライン8を経てR’CI Cタービン12に
蒸気を導き、仕た蒸気タービン排気ライン15を経【圧
力抑制ブルーフにもどすようにしである。このReIC
タービン12のタービン軸14には復水貯蔵タンク3に
つながるRCIC給水ポンプ13とタービン制御装置に
潤滑油を送る油ポンプ16が直結されている。
That is, in FIG. 1, the RCIC system is added as auxiliary equipment to a nuclear reactor 2 placed in a containment vessel 1 having a pressure suppression bluef. Reactor 2 has main steam line 4
and a water supply line 5, and from the main steam line 4 there is an electric valve 9, a steam stop valve 10, and a steam control valve 11.
The steam is led to the R'CI C turbine 12 via the CIG steam line 8 and is returned to the pressure suppression blue through the discharged steam turbine exhaust line 15. This ReIC
A RCIC water supply pump 13 connected to the condensate storage tank 3 and an oil pump 16 that supplies lubricating oil to the turbine control device are directly connected to the turbine shaft 14 of the turbine 12.

そしてこのRCIC系は、原子炉発電システムにおいて
原子炉給水が停止するなどの緊急時に原子炉2が隔離さ
れ、炉水位が低トJることによって電動弁9が間き始め
、原子炉蒸気を通J−口とによってReICタービン1
2が駆動し、さらに直結されたR CI G給水ポンプ
13によって復水貯蔵タンク3から原子炉2に冷却水を
送って炉心を冷却づる機能を有するものである。またR
C,IC起動信号をう番)てReICタービン12およ
びポンプ13は、所定時間内に定格給水量を確保して原
子炉2に冷却水を送出しなりればならないため、ReI
Cタービン12は急速に制限される必要がある。
In this RCIC system, the reactor 2 is isolated in the event of an emergency such as the reactor water supply being stopped in the reactor power generation system, and when the reactor water level becomes low, the electric valve 9 begins to open, allowing the reactor steam to pass through. ReIC turbine 1 by J-mouth
2 is driven, and has the function of cooling the reactor core by sending cooling water from the condensate storage tank 3 to the reactor 2 using the directly connected RCIG water supply pump 13. Also R
The ReIC turbine 12 and the pump 13 must secure the rated water supply amount within a predetermined time and send cooling water to the reactor 2.
C turbine 12 needs to be restricted quickly.

しかして、従来のRCIC系の制御系機構は、第2図に
示すようにRCIC起動信号により電動弁9が冊き始め
、すでに全開状態で待機している蒸気止め弁10と蒸気
加減弁11を通過し、ReICタービン12およびポン
プ13を起動することにより、RCICタービン軸14
に直結した油ポンプ16が駆動して制御油ライン20を
経て制御油圧が確保される。油筒30内のピストンの動
き(こあわぜて操作レバー29が固定された支点2Bを
中心に回転し、蒸気加減弁11の弁開度を制御してRe
ICタービン12の回転数制御を行う。
As shown in FIG. 2, in the conventional RCIC system control system, the electric valve 9 starts to close in response to the RCIC activation signal, and the steam stop valve 10 and steam control valve 11, which are already fully open and waiting, are closed. RCIC turbine shaft 14 by passing through and activating ReIC turbine 12 and pump 13.
An oil pump 16 directly connected to is driven, and control oil pressure is secured through a control oil line 20. The movement of the piston in the oil cylinder 30 (the operation lever 29 rotates around the fixed fulcrum 2B, controls the valve opening of the steam control valve 11, and controls the Re
The rotation speed of the IC turbine 12 is controlled.

しかしながら、RCICの必要性上から常に急速起動か
あるため、起動時蒸気加減弁11制御のため油ポンプ1
6による油圧確立までの間、第3図の砿気加減弁閤度曲
線36に見られるように起動直後しばらくの間はReI
Cタービン12の制ull系が追従できない。すなわち
ReICタービン12の流入蒸気流量を十分に制御でき
ないために、第4図に示すように起動時に゛ありる突発
的なRCICタービン回転数40の過回転や振動を発生
し、ReICタービン12が緊急停止する恐れがあり、
原子炉2はざらに危険な状態へと進むという問題点があ
る。
However, due to the necessity of RCIC, there is always a rapid startup, so the oil pump 1 is required to control the steam control valve 11 at startup.
Until the hydraulic pressure is established by step 6, ReI is maintained for a while immediately after startup, as seen in the smoothness control valve pressure curve 36 in Fig. 3.
The control system of the C turbine 12 cannot follow this. In other words, since the inflow steam flow rate of the ReIC turbine 12 cannot be sufficiently controlled, as shown in FIG. There is a risk of stopping
Reactor 2 has the problem of rapidly progressing to a dangerous state.

[発明の目的] 本発明の目的は、蒸気タービンの起動時にJ3りる突発
的な過回転や振動の発生を防止し、安定し1c回転数の
上昇を行い得る蒸気タービンの制御方法を提供するにあ
る。
[Object of the Invention] An object of the present invention is to provide a method for controlling a steam turbine that can prevent the occurrence of sudden over-rotation or vibration when the steam turbine is started, and can stably increase the number of rotations. It is in.

[発明の概要] 本発明による蒸気タービンの制御方法は、蒸気加減弁に
連結しているレバーの支点部位置をRCIC起動時のみ
、操作シリンダ設置により従来位置より下に下げること
により蒸気加減弁を半開状態にし、通常の蒸気加減弁制
御が開始されるまでの間、流入蒸気流量を制限づ−るこ
とを特徴とするものである。
[Summary of the Invention] The steam turbine control method according to the present invention lowers the fulcrum position of the lever connected to the steam control valve to a position lower than the conventional position by installing an operation cylinder only when the RCIC is started, thereby controlling the steam control valve. It is characterized in that it is kept in a half-open state and the flow rate of incoming steam is restricted until normal steam control valve control is started.

[発明の実施例] 以下本発明による蒸気タービンの制御方法を適用する第
5図に示す制御装置について説明する。
[Embodiments of the Invention] A control device shown in FIG. 5 to which a steam turbine control method according to the present invention is applied will be described below.

ReICタービン12の軸14にRCICポンプ13J
3よび油ポンプ16を直結し、このRCICタービン1
2に対しては蒸気止め弁10J3よび蒸気加減弁11を
右するRCIC蒸気ライン8から主蒸気が供給される。
The RCIC pump 13J is attached to the shaft 14 of the ReIC turbine 12.
3 and oil pump 16 are directly connected, and this RCIC turbine 1
2, main steam is supplied from the RCIC steam line 8 to the right of the steam stop valve 10J3 and the steam control valve 11.

蒸気加減弁11には操作レバー29が備えられ、この操
作レバー29は油筒30tこ制御油ライン20.20か
ら油を供給することによって操作され、その蒸気加減弁
11の開瓜を制御するように構成されている。
The steam control valve 11 is equipped with an operating lever 29, which is operated by supplying oil from a control oil line 20. It is composed of

油ポンプ16は油圧調整弁18を介して油タンク17に
つながり、その吐出油は制御油ライン20により油筒3
0に供給され、潤滑油ライン19によって各機構へ潤滑
油が供給される。しかして本発明においては、油ポンプ
16の吐出側に操作シリンダ油ライン21によりオリフ
ィス22を介して操作シリンダ23を接続したものであ
る。
The oil pump 16 is connected to an oil tank 17 via a hydraulic pressure regulating valve 18, and the discharged oil is sent to an oil cylinder 3 through a control oil line 20.
0, and lubricating oil is supplied to each mechanism through a lubricating oil line 19. According to the present invention, an operating cylinder 23 is connected to the discharge side of the oil pump 16 by an operating cylinder oil line 21 via an orifice 22.

この操作シリンダ23はビス1ヘン24とこれを常時押
圧ツるハネ25を備え、そのピストン24は、前記蒸気
加減弁11の操作レバー29の支点28に連結されてい
る。そして油ライン21からの圧油によって上位支点2
7を占め、圧油の排除によって下位支点26を占めるよ
うになっている。
This operating cylinder 23 is equipped with a screw 1 hem 24 and a spring 25 that constantly presses the screw, and the piston 24 is connected to a fulcrum 28 of an operating lever 29 of the steam control valve 11. Then, the upper fulcrum 2 is
7, and by eliminating the pressure oil, it now occupies the lower fulcrum 26.

次に第5図に示す制御装置を用いて本発明の蒸気タービ
ンの制御方法を説明する。
Next, a method of controlling a steam turbine according to the present invention will be explained using the control device shown in FIG.

RCIC主蒸気ライン8より蒸気が供給されることによ
りRCICタービン12が回転し、RCICタービン軸
14駆動によりRCI C給水ポンプ13と油ポンプ1
6が駆動される。油ポンプ16から制御油ライン20と
操作シリンダ油ライン21と潤滑油ライン19に油が供
給される。なお、制御油ライン20から供給される油は
蒸気加減弁11の制御用として油筒30に流入し、操作
シリンダ油ライン21からは操作シリンダ23内のピス
トン24を移動させるために操作シリンダ23内へ流入
し、潤滑油ライン19からはRCICタービン12の潤
滑油として用いられる。しかし、これらの油はRCIC
タービン12が起動し、油ポンプ16が駆動していると
きだけ供給されるものである。
The RCIC turbine 12 rotates as steam is supplied from the RCIC main steam line 8, and the RCIC turbine shaft 14 drives the RCI C water pump 13 and oil pump 1.
6 is driven. Oil is supplied from the oil pump 16 to a control oil line 20, an operating cylinder oil line 21, and a lubricating oil line 19. Note that oil supplied from the control oil line 20 flows into the oil cylinder 30 for controlling the steam control valve 11, and oil from the operation cylinder oil line 21 flows into the operation cylinder 23 in order to move the piston 24 in the operation cylinder 23. From the lubricating oil line 19, the lubricating oil is used as lubricating oil for the RCIC turbine 12. However, these oils are RCIC
It is supplied only when the turbine 12 is started and the oil pump 16 is driving.

RCICタービン12が停止時及び起動直後は無油圧状
態であるため操作レバー29の支点28に連結されてい
る。操作シリンダ23は、その付属のバネ25の力によ
ってピストン24が下へ押されているため、下位支点2
6にあり、したがって連結しているレバー29は実線の
位置で蒸気加減弁11は第3図の半開状態11aにある
。これにより起動時の急速な蒸気流入を強制的に制限す
る。なお、起動後油ポンプ16により操作シリンダ23
には油圧が供給されるが、この操作シリンダ23は熱気
加減弁11制御油圧より低い低油圧で作動づるため、確
立された制御油圧の多少の変化に対しても動じないもの
とする。
Since the RCIC turbine 12 is in a non-hydraulic state when stopped and immediately after starting, it is connected to the fulcrum 28 of the operating lever 29. Since the piston 24 of the operating cylinder 23 is pushed downward by the force of the attached spring 25, the lower fulcrum 2
6, therefore, the connected lever 29 is in the solid line position and the steam control valve 11 is in the half-open state 11a in FIG. This forcibly limits the rapid inflow of steam at startup. Note that after startup, the operating cylinder 23 is activated by the oil pump 16.
Hydraulic pressure is supplied to the operating cylinder 23, but since this operating cylinder 23 operates at a low oil pressure lower than the control oil pressure of the hot air control valve 11, it is assumed that it will not be affected by slight changes in the established control oil pressure.

ざて、低油圧供給により、操作シリンダ23のイq屈ハ
ネ25の力に抗してピストン24は上がり支点28は上
位支点第3図の27へ移動しレバー29は第5図の破線
の位置どなり、結局蒸気加減弁11は全開状態110と
なるが、その間に確立された蒸気加減弁11の制御油が
油筒30へ導かれて通常の蒸気加減弁制御に移る。この
際、上述のよ・うに操作シリンダ23によるRCICタ
ービン12の起動時における流入蒸気流量制限から通常
の蒸気加減弁制御への切換えのタイミングをはかるため
、また操作シリンダ23が低油圧で作動するために、操
作シリンダ供給油圧ライン21中にオリフィス22を設
け、制御油を調整して徐々に操作シリンダ23内のピス
トン24位置を移動させることにより支点28の位置の
移動をなめらかに行うものとする。
Then, due to the low oil pressure supply, the piston 24 rises against the force of the q-bending spring 25 of the operating cylinder 23, and the fulcrum 28 moves to the upper fulcrum 27 in Fig. 3, and the lever 29 moves to the position indicated by the broken line in Fig. 5. As a result, the steam regulating valve 11 becomes fully open 110, but in the meantime, the established control oil for the steam regulating valve 11 is guided to the oil cylinder 30, and normal steam regulating valve control is started. At this time, as mentioned above, in order to time the switching from inflow steam flow rate restriction to normal steam control valve control at the time of startup of the RCIC turbine 12 by the operation cylinder 23, and also because the operation cylinder 23 operates at low oil pressure. An orifice 22 is provided in the operating cylinder supply hydraulic line 21, and the position of the fulcrum 28 is smoothly moved by adjusting the control oil and gradually moving the position of the piston 24 in the operating cylinder 23.

上述のようにRCT Cタービン12、ポンプ13の通
常運転中は油ポンプ16による高油圧が操作シリンダ2
3に供給されているため、ビスl−ン24は上部に押し
上げられて上位支点27で支点28が上部にある状態で
通常の蒸気加減弁制御を行っているものである。また、
RCICの不要やその他の事故などによりRCI Cタ
ービン12、ポンプ13が停止する時は、油ポンプ16
からの供給油圧が無くなるため操作シリンダ23内の油
が下がり同時にビス1〜ン24及び支点28が下へ移動
し、バネ25の力が勝って下位支点26となり、蒸気加
減弁11は半開状態となり次のRCIC起動を待機する
ことになる。この場合もオリフイス22によりなめらか
な支点28の移動が行われる。
As mentioned above, during normal operation of the RCT C turbine 12 and pump 13, high oil pressure from the oil pump 16 is applied to the operating cylinder 2.
3, the screw latch 24 is pushed upward and performs normal steam control valve control with the upper fulcrum 27 and the fulcrum 28 at the top. Also,
When the RCI C turbine 12 and pump 13 stop due to unnecessary RCIC or other accidents, the oil pump 16
Since the oil pressure supplied from the lower fulcrum 26 disappears, the oil in the operating cylinder 23 drops and at the same time the screws 1 to 24 and the fulcrum 28 move downward, the force of the spring 25 prevails and the lower fulcrum 26 becomes the lower fulcrum 26, and the steam control valve 11 becomes half open. It will wait for the next RCIC activation. In this case as well, the orifice 22 allows the fulcrum 28 to move smoothly.

本発明の制御方法を実施づ−ることにより、第4図の本
発明によるタービン回転数41は、従来システムににる
タービン回転数40に見られる起動向後のパルス的な変
化が改善され、ざらにタービン回転数の安定時間も短縮
できる。また、蒸気加減弁11の開度の変位については
、第3図の従来の開度曲線36のように全開位置11G
から安定開度位置′11bになるまで急激な開度変化が
見られ、制御油圧がi1f立されるまでに若干の時間、
蒸気hU誠弁]コは動かないが、本発明による開度曲線
38はこれらを改善し、起動とほぼ同時に操作シリンダ
23による支点28の操作が行われるため’1.i7時
間のうりに、かつなめらかな蒸気加減弁11の開度変化
となる。
By implementing the control method of the present invention, the turbine rotation speed 41 according to the present invention shown in FIG. The stabilization time of the turbine rotation speed can also be shortened. Regarding the displacement of the opening degree of the steam control valve 11, as shown in the conventional opening degree curve 36 in FIG.
A rapid change in opening is seen from to stable opening position '11b, and it takes some time for the control oil pressure to rise to i1f.
Steam hU Makoto valve] does not move, but the opening curve 38 according to the present invention improves these, and the operation of the fulcrum 28 by the operation cylinder 23 is performed almost simultaneously with the start-up, so '1. After i7 hours, the opening degree of the steam control valve 11 changes smoothly.

なお以上の実施例では、原子炉設備における原子炉隔離
時冷却系のRCICタービン12の制御についで説明し
たが、本発明による制御方法は、例えば起動信号などに
わずかの期間だけ利用できるDC電源しか持っていない
地熱発電システムや、非常時にお(プる所内バックアッ
プ電源供給用タービンなど、いわゆる蒸気源を持つ(い
るが、タービン制御や潤滑のための油圧源や補助動力源
を他に持たず、自ら駆動することにより油ポンプを回転
させて油を供給する機能を果す蒸気タービンシステムに
適用できる。
In the above embodiment, the control of the RCIC turbine 12 of the reactor isolation cooling system in the nuclear reactor equipment was explained, but the control method according to the present invention uses only a DC power source that can be used for a short period of time, for example, for a start signal. It has a geothermal power generation system that it does not have, and a so-called steam source such as a turbine that can be used to supply backup power in the plant in case of an emergency. It can be applied to a steam turbine system that functions to supply oil by rotating an oil pump by driving itself.

[発明の効果] 以上の説明のよう゛に、本発明に係わる蒸気タービン起
動時における制御方法は、蒸気タービンの起動とともに
回転数制御を行い、起動時の突発的な過速度や振動発生
の防止に有効であるとともに、蒸気タービン駆動の油ポ
ンプの供給油でまかなえることにより、他に油圧源を有
しない自刃式蒸気タービンの起動時における迅速な回転
数制御に1ぐれた効果を発揮する。
[Effects of the Invention] As explained above, the control method for starting a steam turbine according to the present invention controls the rotation speed at the time of starting the steam turbine, thereby preventing sudden overspeed and vibrations during startup. In addition, by being able to supply the oil from the steam turbine-driven oil pump, it is extremely effective in quickly controlling the rotation speed at the time of startup of self-blading steam turbines that do not have any other hydraulic power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉発電システムにおける原子炉隔離時冷却
系を示す系統図、第2図は従来の原子炉隔離時冷却系の
RCICタービンの制till装置の系統椙成図、第3
図は原子炉隔朗〔時冷却系の蒸気加減弁の開度曲線図、
第4図はRCICタービン回転数特性を示す曲線図、第
5図は本発明による蒸気タービンの制御方法に適用され
る蒸気加減弁の制御装置の一実施例を示す系統414成
図である。 1・・・格納容器    2・・・圧力容器3・・・復
水貯蔵タンク 4・・・主蒸気ラインb・・給水ライン
   8・・・RCIC蒸気ライン9・・・電動弁  
   10・・・蒸気圧め弁11・・・蒸気加減弁  
12・・・RCICタービン13・・・RCI C給水
ポンプ 15・・・タービン排気ライン 16・・・RCICタービン駆動の油ポンプ17・・・
油タンク   19・・・潤滑油ライン20・・・制i
al油ライン 21・・・操作シリンダ油ライン 22・・・オリフィス  23・・・操作シリンダ24
・・・ピストン   25・・・ハネ26・・・下位支
点   27・・・上位支点28・・・支点 29・・・蒸気加減5↑操作レバー 30・・・肋間 34・・・安定回転数 11a・・・蒸気加減弁半開位置 36・・・従来の蒸気加減弁開度曲線 11b・・・蒸気加減弁安定間度位買 38・・・本発明による蒸気加減弁開度曲線11C・・
・蒸気加減弁全開位置 40・・・従来のタービン回転数 41・・・本発明によるタービン回転数代理人)1α上
貝り 近:’L’:’RJ 、11か16ノ第1図 / 第2図 承 第3図 第4図 鮪r?I− 第5図
Figure 1 is a system diagram showing the reactor isolation cooling system in a nuclear reactor power generation system, Figure 2 is a system diagram of the RCIC turbine till device control system in the conventional reactor isolation cooling system, and Figure 3
The figure shows the opening curve of the steam control valve in the reactor cooling system.
FIG. 4 is a curve diagram showing RCIC turbine rotation speed characteristics, and FIG. 5 is a system 414 diagram showing an embodiment of a steam control valve control device applied to the steam turbine control method according to the present invention. 1...Containment vessel 2...Pressure vessel 3...Condensate storage tank 4...Main steam line b...Water supply line 8...RCIC steam line 9...Electric valve
10...Steam pressure valve 11...Steam control valve
12... RCIC turbine 13... RCI C water supply pump 15... Turbine exhaust line 16... RCIC turbine driven oil pump 17...
Oil tank 19...Lubricating oil line 20...Control i
Al oil line 21...Operating cylinder oil line 22...Orifice 23...Operating cylinder 24
...Piston 25...Spring 26...Lower fulcrum 27...Upper fulcrum 28...Fullin 29...Steam control 5↑Operation lever 30...Intercostal space 34...Stable rotation speed 11a. ...Steam control valve half-open position 36...Conventional steam control valve opening curve 11b...Steam control valve stable position position 38...Steam control valve opening curve 11C according to the present invention...
・Steam control valve fully open position 40...Conventional turbine rotation speed 41...Turbine rotation speed according to the present invention agent) 1α upper shell Near: 'L': 'RJ, 11 or 16 Figure 1/ 2 Illustration 3 Illustration 4 Tuna r? I- Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)蒸気加減弁を介して蒸気の供給をうけ、油ポンプ
を直結した蒸気タービンにおいて、その蒸気タービンの
起動時に前記蒸気加減弁を途中開度にして蒸気タービン
の流入蒸気流量を制限し、しかるのち通常の蒸気加減弁
制御を行うことを特徴とづる蒸気タービンの制御方法。
(1) In a steam turbine that receives steam through a steam control valve and is directly connected to an oil pump, when the steam turbine is started, the steam control valve is opened halfway to limit the flow rate of steam flowing into the steam turbine; A method for controlling a steam turbine, characterized in that the method then performs normal steam control valve control.
(2)蒸気加減弁を介して蒸気の供給をうけ、油ポンプ
を直結した蒸気タービンにおいて、油ポンプから操作油
をう(プる操作シリンダのビス1〜ンを前記蒸気加減弁
の操作レバーの支点に連結し、前配熟気タービンの起動
時に操作シリンダによって蒸気加減弁の操作レバーの支
点を通常運転時の支点位置より下位に下げて蒸気加減弁
を途中開度にして蒸気タービンへの流入蒸気流量を制限
し、通常運転時に達したら前記油ポンプの操作油をうけ
て操作シリンダのピストンの上昇によって蒸気加減弁の
操作レバーの支点を通常運転位置にもどして蒸気加減弁
制御を行うことを特徴とする特許請求の範囲第1項記載
の蒸気タービンの制御方法。
(2) In a steam turbine that receives steam through a steam control valve and is directly connected to an oil pump, drain the operating oil from the oil pump. Connected to the fulcrum, when the pre-seasoning turbine is started, the operating cylinder lowers the fulcrum of the operating lever of the steam control valve to a position lower than the fulcrum position during normal operation, opening the steam control valve halfway to allow inflow into the steam turbine. The steam flow rate is restricted, and when normal operation is reached, the fulcrum of the operating lever of the steam regulating valve is returned to the normal operating position by receiving operating oil from the oil pump and raising the piston of the operating cylinder to control the steam regulating valve. A method for controlling a steam turbine according to claim 1.
(3)油ポンプから操作シリンダへの操作油系統にオリ
フィスを設け、このオリフィスを通して操作シリンダへ
操作油を供給することを特徴とする特許請求の範囲第1
項および第2項記載の蒸気タービンの制御方法。
(3) An orifice is provided in the operating oil system from the oil pump to the operating cylinder, and operating oil is supplied to the operating cylinder through this orifice.
A method for controlling a steam turbine according to paragraphs 1 and 2.
JP10088083A 1983-06-08 1983-06-08 Controlling method of steam turbine Pending JPS59226204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10088083A JPS59226204A (en) 1983-06-08 1983-06-08 Controlling method of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10088083A JPS59226204A (en) 1983-06-08 1983-06-08 Controlling method of steam turbine

Publications (1)

Publication Number Publication Date
JPS59226204A true JPS59226204A (en) 1984-12-19

Family

ID=14285637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10088083A Pending JPS59226204A (en) 1983-06-08 1983-06-08 Controlling method of steam turbine

Country Status (1)

Country Link
JP (1) JPS59226204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791026A (en) * 2015-03-06 2015-07-22 武汉船用机械有限责任公司 Speed adjusting controller for industrial steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104791026A (en) * 2015-03-06 2015-07-22 武汉船用机械有限责任公司 Speed adjusting controller for industrial steam turbine

Similar Documents

Publication Publication Date Title
JP2007303387A (en) Speed governor for hydraulic machine
JPS59226204A (en) Controlling method of steam turbine
JP4155495B2 (en) Cooling equipment for reactor isolation
US2247086A (en) Elastic fluid turbine arrangement
JPH0610404B2 (en) Steam turbine controller
JP2004108965A (en) Controller for steam regulating valve
US3692419A (en) Elastic fluid turbine system
JP3470417B2 (en) How to operate the bleed check valve
US2175874A (en) Turbine protective arrangement
JPS60108793A (en) Cooling device on isolation of nuclear reactor for nuclear power plant
JP3039874B2 (en) Reactor isolation cooling system
US2863289A (en) Hydraulic servo-mechanism for steam turbine intercept valve
JPH01305A (en) Steam turbine control device
JPH07332011A (en) Turbine control method
JPS5950395A (en) Reactor water level lowering control device
JPS6153405A (en) Control device of steam turbine
JPS61112704A (en) Controller for steam turbine
JPS6011605A (en) Steam turbine control
JPH08110392A (en) Reactor water supply equipment
JPS62101808A (en) Device for regulating bearing lubrication pressure
JPH0411727B2 (en)
JPS59157403A (en) Automatic starter for pump
JPS6355309A (en) Device for controlling steam turbine
JPH09250443A (en) Overspeed controller of water wheel generator
JPH05312304A (en) Warming device for supplied water flow rate adjusting valve