JPS59202040A - Liquid sampling container - Google Patents

Liquid sampling container

Info

Publication number
JPS59202040A
JPS59202040A JP58076183A JP7618383A JPS59202040A JP S59202040 A JPS59202040 A JP S59202040A JP 58076183 A JP58076183 A JP 58076183A JP 7618383 A JP7618383 A JP 7618383A JP S59202040 A JPS59202040 A JP S59202040A
Authority
JP
Japan
Prior art keywords
liquid
sludge
solution
gas
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58076183A
Other languages
Japanese (ja)
Other versions
JPS616330B2 (en
Inventor
Yoshiaki Komori
小森 芳昭
Koji Yoshikawa
由川 幸次
Hajime Yamana
山名 元
Yudo Taisho
大正 雄堂
Takeshi Miyasugi
宮杉 武
Akinori Kurima
昭典 栗間
Shinichi Kosaka
小坂 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP58076183A priority Critical patent/JPS59202040A/en
Publication of JPS59202040A publication Critical patent/JPS59202040A/en
Publication of JPS616330B2 publication Critical patent/JPS616330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0093Radioactive materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measurement Of Radiation (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To sampling a solution necessary for a highly accurate analysis while preventing clogging due to a sludge by communicating a liquid drain port on the side of a liquid storage section to a sludge discharge port on the bottom thereof after the liquid storage section and an air separation section are divided with a baffleplate. CONSTITUTION:As a baffleplate 12 is provided vertically in a container 10 to divide the air separation section 24 and a liquid storage section 18, a gas in the gas-liquid-mixed phase flown in runs through an upper clearance 13 while a solution flows through a lower clearance 14 to ensure a sufficient gas separation. As there is no retention in the liqud storage section 18, a liquid necessary for analysis can be sampled at a hollow needle 19 to enable a highly accurate analysis without errors in the analysis. The sludge in the solution is so hard to settle as hindered by no retention of liquid that the pressure in the container 10 reduces when no jug is stuck into the needle 19. This allows air to flow into the liquid storage section 18 through the needle 19 and runs through a sludge discharge port 17 upward as shown by the arrow C bubbling thereby preventing clogging due to sludge generated at the discharge port 17.

Description

【発明の詳細な説明】 本発明は液体のサンプリング容器に関し、より詳細には
エアリフト、真空吸引等によって気液混和状態で移送さ
れてきた放射性溶液や有毒物質溶液から気相を分離した
のちに、液相を安全かつ高精度で採取できるようにした
溶液のサンプリング容器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid sampling container, and more specifically, after separating the gas phase from a radioactive solution or a toxic substance solution that has been transferred in a gas-liquid state by air lift, vacuum suction, etc. This invention relates to a solution sampling container that allows the liquid phase to be collected safely and with high precision.

従来、放射性溶液あるいはシアン、ノ・ロゲン等の有毒
物質を含む溶液などの液体は放射線による生体被曝、あ
るいは安全性等の問題から通常用いられるようなす′ン
プリング法は採用できず、密閉系におけるサンプリング
が用いられてきた。
Conventionally, the sampling method normally used for liquids such as radioactive solutions or solutions containing toxic substances such as cyanide and nitrogen cannot be used due to the risk of biological exposure to radiation or safety issues, and sampling in a closed system has not been possible. has been used.

たとえば、従来の放射性溶液のサンプリングでは、貯槽
から距離を置いて、鉛の遮蔽体で囲まれた金属ボックス
を設置し、この金属ボックスの中に第1図に示すような
サンプリング容器1を置き、貯槽からサンプリング容器
1へはエアリフト、真空吸引等によって放射性溶液を移
送していた。
For example, in conventional sampling of radioactive solutions, a metal box surrounded by a lead shield is installed at a distance from the storage tank, and a sampling container 1 as shown in FIG. 1 is placed inside the metal box. The radioactive solution was transferred from the storage tank to the sampling container 1 by air lift, vacuum suction, etc.

すなわち第1図において、放射性溶液は気液混相状態で
溶液供給口2からサンプリング容器1内に流入し、容器
下部に形成されている制限オリフィス乙によって流出す
る液量が制限されて液溜部4に滞留し、溶液排出口5か
ら溢流し、矢印Aに沿って排出される。
That is, in FIG. 1, the radioactive solution flows into the sampling container 1 from the solution supply port 2 in a gas-liquid mixed phase state, and the amount of liquid flowing out is limited by the restriction orifice B formed at the bottom of the container, and the amount of the liquid flows into the liquid reservoir 4. The solution accumulates in the solution outlet 5, overflows from the solution outlet 5, and is discharged along arrow A.

一方、液溜部4には中空の針6が挿入されており、この
針6に高真空に吸引されたサンプル瓶(以後、ジャグと
称する)7のゴム栓8を刺し込めばサンプリング容器1
とジャグ7との真空度差によりジャグ7に放射性溶液が
吸引されてサンプリングが行なわれ、ジャグ7は針6か
ら引き抜かれた後に気送によって、たとえば分析室に送
られていた。
On the other hand, a hollow needle 6 is inserted into the liquid reservoir 4, and when a rubber stopper 8 of a sample bottle (hereinafter referred to as a jug) 7 that has been suctioned to a high vacuum is inserted into the needle 6, the sampling container 1
The radioactive solution is sucked into the jug 7 due to the vacuum difference between the jug 7 and the jug 7, and sampling is performed, and after the jug 7 is pulled out from the needle 6, it is sent to, for example, an analysis laboratory by pneumatic feeding.

しかしながら、かかる従来の溶液サンプリング容器1−
Cは、液溜部4における気液分離が不十分なために、液
中に混入された気相がサンプリングの際に気泡状で液と
共に針6を経てジャグ7に送られるので、ジャグ7に採
取した液量が変動し分析に支障を起たすこととなる。
However, such conventional solution sampling containers 1-
C is due to insufficient gas-liquid separation in the liquid reservoir 4, and the gas phase mixed into the liquid is sent to the jug 7 through the needle 6 together with the liquid in the form of bubbles during sampling. The amount of sampled liquid will fluctuate, which will interfere with analysis.

1だ1前記欠点を回避するためにサンプリング容器内に
所定量の液が充てんされた時点で液のサンプリング容器
内への供給を止め、液が前記制限オリフィスを通過して
排出される間にサンプリングを行う方法が知られている
が、この方法であると、ある決められた時間内にサンプ
リングを行なわなければならないこと、又サンプリング
用時間を引き延ばすためには、サンプリング容器の容量
を大きくしなければならず、そのだめ被曝量が増大する
という問題があった。
1. In order to avoid the above drawbacks, the supply of liquid into the sampling container is stopped when a predetermined amount of liquid is filled in the sampling container, and sampling is performed while the liquid is being discharged through the restriction orifice. However, with this method, sampling must be performed within a certain fixed time, and in order to extend the sampling time, the capacity of the sampling container must be increased. However, there was a problem in that the amount of radiation exposure increased.

さらに、液溜部4では十分な液置換が行なわれず、溶液
供給口2から供給された液は、液溜部4の上層のみを流
れて直ちに溢流、排出され、液溜部下部では十分な液置
換が行なわれずゲットスペースが形成される。
Furthermore, sufficient liquid replacement is not performed in the liquid reservoir 4, and the liquid supplied from the solution supply port 2 flows only through the upper layer of the liquid reservoir 4 and immediately overflows and is discharged, and the liquid is not sufficiently replaced in the lower part of the liquid reservoir. A get space is formed without liquid replacement.

したがって、液溜部4の溶液は常に流入性液を代表する
性状を有するとは云いがたく、サンプリング誤差を招く
問題点があった。
Therefore, it cannot be said that the solution in the liquid reservoir 4 always has properties representative of the inflowing liquid, resulting in a problem of sampling errors.

もしも液溜部4の土層からサンプリングするように針6
の位置を変更すれば、上述した気相の混入が一層増大す
る。
If the needle 6 were to be sampled from the soil layer in the liquid reservoir 4,
If the position of the gas phase is changed, the above-mentioned mixing of the gas phase will further increase.

更に放射性溶液中には金属微粉その他の固形分(以下、
スラッジと称する)が含まれている場合には、かかるス
ラッジがオリフィス6に沈澱、堆積し、サンプリング終
了後に溶液がオリフィス6から排出された後も容器1内
に残留して放射線量増大の原因となった。
Furthermore, the radioactive solution contains fine metal powder and other solids (hereinafter referred to as
(referred to as sludge), such sludge will precipitate and accumulate in the orifice 6 and remain in the container 1 even after the solution is discharged from the orifice 6 after sampling, causing an increase in radiation dose. became.

更に残留したスラッジが乾固し、オリフィスを詰まらせ
て放射性浴液の排出をさまたげたり、場合によってはオ
リフィス6を完全に閉塞してし甘い、容器1には閉塞を
取除く機構が全くないのでサンプリング容器として使用
できなくなるばかりでなく、排出不能になった溶液によ
る放射線量の増大という問題も新らだに発生した。
Furthermore, the remaining sludge dries up, clogging the orifice and preventing the discharge of the radioactive bath liquid, or in some cases completely blocking the orifice 6, since the container 1 has no mechanism to remove the blockage. Not only could it no longer be used as a sampling container, but a new problem arose: the radiation dose would increase due to the solution that could no longer be drained.

そこで本発明は、かかる従来の欠点を解消すへくなされ
たものであり、液溜部4への気泡の混入を防止し、液溜
部で液体の十分な液置換が行なわれるので流入した液体
を代表する性状の溶液をサンプリングすることができ、
かつオリフィスの目詰りを防止することができるなどの
特長を有するものである。
Therefore, the present invention has been devised to eliminate such conventional drawbacks, and it prevents air bubbles from entering the liquid reservoir 4, and since the liquid is sufficiently replaced in the liquid reservoir, the inflowing liquid It is possible to sample a solution with properties representative of the
It also has the advantage of being able to prevent clogging of the orifice.

すなわち本発明の液体のサンプリング容器は、容器本体
内に邪魔板を設けて該容器不体内を気液分離部と液7貿
部とに区分し、前記気液分離部の側面才たば」二面に液
体供給口を、前記液溜部の側面に液体排出口を夫々設け
、前記液溜部に容器本体を貫通ずる中空針を取付けると
共に前記液溜部又は気液分離部の底面に形成した液体及
びスラッジ排出口を前記液体排出口と連通せしめたこと
を特徴とするものである。
That is, in the liquid sampling container of the present invention, a baffle plate is provided in the container body to divide the inside of the container into a gas-liquid separation section and a liquid section, and the side wall of the gas-liquid separation section is A liquid supply port is provided on the surface, a liquid discharge port is provided on the side surface of the liquid reservoir, a hollow needle is attached to the liquid reservoir to penetrate through the container body, and a hollow needle is formed on the bottom of the liquid reservoir or gas-liquid separation section. The present invention is characterized in that a liquid and sludge discharge port is communicated with the liquid discharge port.

以下、本発明を図面に示した実施例にもとづき説明する
The present invention will be described below based on embodiments shown in the drawings.

第2図は本発明の第1実施例を示し、容器本体10の側
方に液体供給口11が設けられており、この液体供給口
11に対向して容器本体10内に邪魔板12が垂直に設
けられており、邪魔板12の液体供給口11側に気液分
離部24が形成されている。
FIG. 2 shows a first embodiment of the present invention, in which a liquid supply port 11 is provided on the side of the container body 10, and a baffle plate 12 is vertically disposed within the container body 10, facing the liquid supply port 11. A gas-liquid separation section 24 is formed on the liquid supply port 11 side of the baffle plate 12.

邪魔板12の上方、および下方には間隙16゜14が夫
々形成されてお9、間隙16は気相1間隙14は液相の
流路に供される。
Gaps 16 and 14 are formed above and below the baffle plate 12, respectively.The gaps 16 are used for the gas phase and the gaps 14 are used for the liquid phase flow path.

寸だ、容器本体10の液体供給口11に対向する側の側
面と上記邪魔板12との間隙に溢流堰16が設けられて
いる。
In fact, an overflow weir 16 is provided in the gap between the baffle plate 12 and the side surface of the container body 10 facing the liquid supply port 11.

これにより、邪魔板12と溢流堰16の間に、液溜部1
8が、又溢流堰16と上記側面との間に溢流部20か形
成されることとなる。
As a result, the liquid reservoir 1 is placed between the baffle plate 12 and the overflow weir 16.
8, an overflow portion 20 is also formed between the overflow weir 16 and the side surface.

この溢流部20は、容器本体1oの下部に設置されだ液
体排出口15と連絡している。
This overflow part 20 communicates with a liquid discharge port 15 installed at the lower part of the container body 1o.

液溜部18の底面には、液体及びスラッジ排出口17が
形成され、液体排出口15と連通している。
A liquid and sludge discharge port 17 is formed at the bottom of the liquid reservoir 18 and communicates with the liquid discharge port 15 .

液体及びスラッジ排出口17の設定位置は、気液分離部
又は液溜部の任意位置に選定できるが、後述するスラッ
ジの排出効果を高めるだめには、邪魔板12と溢流堰1
6の間の底面に設けるのが好ましい。
The setting position of the liquid and sludge discharge port 17 can be selected at any position in the gas-liquid separation section or the liquid storage section, but in order to enhance the sludge discharge effect, which will be described later, it is necessary to
It is preferable to provide it on the bottom surface between 6 and 6.

更にまだ邪魔板12と溢流堰16とによって形成された
液溜部18にはL字型中空針19が取付けられ、この針
19は容器本体1oの側壁を貫通して容器本体10外に
出ている。中空針19はL字型に限定されるものではな
く、容器本体10の上面を貫通する直線状針を用いるこ
ともできる。
Furthermore, an L-shaped hollow needle 19 is attached to the liquid reservoir 18 formed by the baffle plate 12 and the overflow weir 16, and this needle 19 penetrates the side wall of the container body 1o and comes out of the container body 10. ing. The hollow needle 19 is not limited to an L-shape, and a straight needle penetrating the upper surface of the container body 10 may also be used.

次に本発明のサンプリング容器の機能を放射性溶液を例
にして述べる。
Next, the function of the sampling container of the present invention will be described using a radioactive solution as an example.

エアリフト等によって貯槽(図示せず)から連続的に移
送されてきた気液混合相は、液体供給口11から容器本
体10内に矢印Bに沿って気液分離部24に流入する。
The gas-liquid mixed phase that has been continuously transferred from a storage tank (not shown) by an air lift or the like flows into the container body 10 from the liquid supply port 11 into the gas-liquid separation section 24 along arrow B.

すると、この気液混合相は邪魔板12に衝突して気液分
離され、空気は上方の間隙16を経て溢流部20へ流れ
、又溶液は下方の間隙14を経て、液溜部18に至り、
同じく溢流部20へ流れる。
Then, this gas-liquid mixed phase collides with the baffle plate 12 and is separated into gas and liquid, and the air flows into the overflow part 20 through the upper gap 16, and the solution flows into the liquid reservoir part 18 through the lower gap 14. Finally,
Similarly, it flows to the overflow part 20.

溶液は、その一部が液体及びスラッジ排出口17から排
出されるが、大部分は液溜部18から溢流堰16を越え
てオーバーフローする。
A portion of the solution is discharged from the liquid and sludge discharge port 17, but most of the solution overflows from the liquid reservoir 18 over the overflow weir 16.

なお、ジャグ22への溶液サンプリングは従来と同様に
行なわれ、たとえば1O−2Torr程度の真空に引い
たジャグ22のゴム栓26に針19を刺し込めば、ジャ
グ22と容器本体10との圧力差によって溶液がジャグ
22内に流入し、溶液のサンプリングが行なわれる。
Note that sampling of the solution into the jug 22 is performed in the same manner as before. For example, by inserting the needle 19 into the rubber stopper 26 of the jug 22 which is evacuated to about 10-2 Torr, the pressure difference between the jug 22 and the container body 10 is reduced. The solution flows into the jug 22 and the solution is sampled.

このように液体流入口11に対向して邪魔板12を設け
、上部間隙16を気体が、下部間隙14を溶液が流れる
ようにしたので、気液混合相で供給される溶液の十分な
気液分離が行なわれ、液溜部18への気泡の巻き込みを
防止することができる。
In this way, the baffle plate 12 is provided opposite the liquid inlet 11, and the gas flows through the upper gap 16 and the solution flows through the lower gap 14, so that sufficient gas and liquid of the solution supplied in the gas-liquid mixed phase can be obtained. Separation is performed, and air bubbles can be prevented from being drawn into the liquid reservoir 18.

(〜たがって、サンプリングの際に気体が針19全通っ
て/ヤグに流入することがなく、サンプリング液量が増
大し、分析に必要な一定量の溶液を常に高イ′へ度でジ
ャグに採取することができる。
(Therefore, during sampling, gas does not pass through the entire needle 19/flow into the jug, and the amount of sampled liquid increases, allowing a certain amount of solution required for analysis to be constantly fed into the jug at high pressure.) Can be collected.

また溶液は邪魔板12の下部間隙14から液溜部18を
経て溢流部20に流れるので、従来のように液面部18
に溶液が滞留することがなく、常に流入溶液に等しい性
状の溶液をサンプリングすることができるので、分析誤
差を解消することができる。
In addition, the solution flows from the lower gap 14 of the baffle plate 12 through the liquid reservoir 18 to the overflow part 20, so that the liquid level part 18 is different from the conventional one.
Since the solution does not stagnate and a solution having the same properties as the inflow solution can always be sampled, analysis errors can be eliminated.

一方、溶液中に含まれているスラッジは、液溜部18に
液が滞留しないので、スラッジは沈澱しに<<、大部分
は液体排出口15から排出される。
On the other hand, since the sludge contained in the solution does not stay in the liquid reservoir 18, most of the sludge settles and is discharged from the liquid outlet 15.

スラッジの一部は液溜部18で沈澱するが、液溜部18
の底部21は液体及びスラッジ排出口17に向って傾斜
しているので、スラッジはこの傾斜に沿って沈下し、ス
ラッジ排出口17がら排出される。このとき、スラッジ
によって液体及びスラッジ排出口17が目詰りする可能
性がある。
Some of the sludge settles in the liquid reservoir 18;
Since the bottom 21 of the sludge is inclined towards the liquid and sludge outlet 17, the sludge sinks along this inclination and is discharged from the sludge outlet 17. At this time, the liquid and sludge discharge port 17 may be clogged with sludge.

しかしながら本発明では、たとえ液体及びスラッジ排出
口17の目詰りを生じたとしても、液体及びスラッジ排
出口17を流れる気液の上向流によってスラッジ目詰シ
を排除すること(以後、逆洗効果と称する)ができる。
However, in the present invention, even if the liquid and sludge discharge port 17 is clogged, the sludge clogging is eliminated by the upward flow of gas flowing through the liquid and sludge discharge port 17 (hereinafter referred to as backwashing effect). ) can be done.

この逆洗効果を第3図にもとづき説明する。This backwashing effect will be explained based on FIG. 3.

針19にジャグを刺し込まない状態のときは、上述のよ
うに真空吸引とエアリフトによって放射性溶液が容器本
体10内に供給されているので、容器本体10内は外気
圧に比して減圧下にあり、空気が針19を通して液溜部
18に流入する。
When the jug is not inserted into the needle 19, the radioactive solution is supplied into the container body 10 by vacuum suction and air lift as described above, so the inside of the container body 10 is under reduced pressure compared to the outside pressure. There, air flows into the liquid reservoir 18 through the needle 19.

この空気は気泡となって液溜部18の溶液中を上昇する
ので、液溜部18内の溶液の見かけ密度は低下し、液体
排出口15の連通部と液溜部18とに逆差圧が発生する
Since this air becomes bubbles and rises in the solution in the liquid reservoir 18, the apparent density of the solution in the liquid reservoir 18 decreases, and a reverse pressure difference is created between the communication part of the liquid outlet 15 and the liquid reservoir 18. Occur.

したがって、液体及びスラッジ排出口17を矢印Cのよ
うに気液が上方に向けて流れるようになる。
Therefore, gas and liquid flow upward through the liquid and sludge discharge port 17 as shown by arrow C.

このように、上記した矢印Cで示す下方から上方への流
れは逆流となり、しかもかかる逆流によって、液体及び
スラッジ排出口17の目詰りは、詰りとは逆方向の、抗
力が弱い方向からの力が作用するので容易に除去するこ
とができる。
In this way, the flow from below to above indicated by the arrow C becomes a backflow, and due to this backflow, the liquid and sludge discharge port 17 is clogged by a force from the direction opposite to the direction of the clogging, where the resistance is weak. can be easily removed.

前記第1図に示した従来のサンプリング容器では液溜部
の部下に液体排出口がないから圧力損失が発生し、逆差
圧が起りづらく、本発明のような逆洗効果が期待出来な
い。
In the conventional sampling container shown in FIG. 1, since there is no liquid outlet below the liquid reservoir, a pressure loss occurs, and a reverse pressure difference is difficult to occur, so that the backwashing effect as in the present invention cannot be expected.

そして、本発明のサンプリング容器における逆洗効果は
、サンプリング容器の下記特徴によって更に高めること
ができる。
The backwashing effect of the sampling container of the present invention can be further enhanced by the following features of the sampling container.

(イ) 液体及びスラッジ排出口17をスロート状にし
て整流効果を高め、わずかな逆差圧で逆洗効果を向上せ
しめる。
(a) The liquid and sludge discharge port 17 is made into a throat shape to enhance the rectification effect, and the backwashing effect is improved with a slight reverse differential pressure.

(ロ)液体及びスラッジ排出口17は直管状でも逆洗効
果を生ずるが、スロート状の整流効果が失なわれない範
囲で、下方に向うにつれて内径が大きくなる円錐管状と
する。
(b) Although the liquid and sludge discharge port 17 can produce a backwashing effect even if it is straight, it should be shaped like a conical tube whose inner diameter increases toward the bottom as long as the straightening effect of the throat shape is not lost.

(ハ) 針19の末端の位置は、気泡の上昇に件なう溶
液の見掛は密度の減少の効果を最大にするために、液体
及びスラッジ排出口17の直−ヒの位置とするのが好ま
しい。
(c) The end of the needle 19 should be located directly in front of the liquid and sludge outlet 17 in order to maximize the effect of reducing the apparent density of the solution due to the rise of air bubbles. is preferred.

かかる本発明のサンプリング容器は、たとえば下記のよ
うな仕様を有する。
The sampling container of the present invention has, for example, the following specifications.

液溜部1815〜100CC− 液体及びスラッジ排出口17 上部孔径         2〜lQmmφ下部孔径 
       3〜15mmφ長    さ     
           5〜3Q  mm液体及びスラ
ッジ排出口17 と針19末端捷での距離    15〜3Qmmここで
通常、液溜部18の容量は、必要サンプリング量の2倍
以上にするのが好ましい。
Liquid reservoir 1815~100CC- Liquid and sludge discharge port 17 Upper hole diameter 2~lQmmφ Lower hole diameter
3~15mmφ length
5 to 3 Q mm Distance between the liquid and sludge discharge port 17 and the end of the needle 19 15 to 3 Q mm Here, it is usually preferable that the capacity of the liquid reservoir 18 be at least twice the required sampling amount.

また容器本体10.邪魔板12および溢流堰16は通常
では金属で形成される。
Also, the container body 10. Baffle plate 12 and overflow weir 16 are typically formed of metal.

なお、上述した条件は、混入スラッジの粒度。The above-mentioned conditions are based on the particle size of the mixed sludge.

濃度、溶液の流入量、ガスホールドアンプ等の値によっ
て適宜変更することができる。
It can be changed as appropriate depending on the concentration, solution inflow rate, gas hold amplifier, etc. values.

第4図は本発明の第2実施例であシ、容器本体内に配置
する邪魔板12を断面り字状とした場合を示している。
FIG. 4 shows a second embodiment of the present invention, in which the baffle plate 12 disposed inside the container body has a cross-sectional shape.

かかる邪魔板12では、平板部60の上端に沿って、直
交するつば部61が接続されているので、気液分離され
た空気に同伴して溶液が邪魔板12を乗り越えて邪魔板
12の上方から液溜部18に入ることによる/ヨードパ
スを防止することができる。
In this baffle plate 12 , the perpendicular collar portion 61 is connected along the upper end of the flat plate portion 60 , so that the solution, accompanied by the gas-liquid separated air, passes over the baffle plate 12 and flows above the baffle plate 12 . It is possible to prevent the iodine from entering the liquid reservoir 18 from entering the liquid reservoir 18.

なお、本願発明においての邪魔板12は、図示しである
ような垂直である必要は必らずしもなく、傾斜しても差
支えない。
Note that the baffle plate 12 in the present invention does not necessarily have to be vertical as shown in the drawing, and may be inclined.

寸だ、上記つは部61についても、必らずしも直交であ
る必要はない。
However, the above-mentioned points do not necessarily have to be perpendicular to each other regarding the portion 61 as well.

以上述へたように、本発明によれば、容器本体内に邪魔
板が設けられているので気液混和流の気液分肉1(が促
進され、気体が気泡状で巻き込外れることが防止される
。したがって、高精度で分析に必要量の溶液を中空針か
らジャグに採月又することができる。
As described above, according to the present invention, since the baffle plate is provided in the container body, the gas-liquid separation 1 (of the gas-liquid mixing flow) is promoted, and the gas is prevented from being entrained in the form of bubbles. Therefore, the amount of solution required for analysis can be collected from the hollow needle into the jug with high precision.

また液体は液溜部に邪魔板の下部間隙から供給され、溢
流堰からオーバーフローするので、液溜部に液体が滞留
することがなく、供給液体に等しい組成の液体をジャグ
に採取することができ、サンプリング誤差の発生を防止
することができる。
In addition, the liquid is supplied to the liquid reservoir from the lower gap of the baffle plate and overflows from the overflow weir, so the liquid does not remain in the liquid reservoir and it is possible to collect liquid with the same composition as the supplied liquid into the jug. This makes it possible to prevent sampling errors from occurring.

更に液溜部におけるスラッジの沈澱が極力防止され、た
とえスラッジによりスラッジ制出口が閉塞しても液溜部
中の液体にはジャグが針に刺し込まれるまでは針から空
気が吸引されているので液体の見掛は密度の低下を生じ
、溶液抽出口を流れる気液がスラッジ排出口から流入す
る逆洗効果によって閉塞したスラッジを除去することが
できる。
Furthermore, sedimentation of sludge in the liquid reservoir is prevented as much as possible, and even if the sludge outlet is blocked by sludge, air is sucked into the liquid in the liquid reservoir from the needle until the jug is inserted into the needle. The apparent density of the liquid decreases, and the clogged sludge can be removed by the backwashing effect of the gas and liquid flowing through the solution extraction port flowing in from the sludge discharge port.

このように、本発明は、とりわけ放射性溶液のサンプリ
ング容器として有用である。
Thus, the present invention is particularly useful as a sampling container for radioactive solutions.

放射性溶液のサンプリング容器の容量及び重量は、単な
るコスト面の要請のみならず、極力少なく抑える必要が
ある。
The capacity and weight of the radioactive solution sampling container must be kept as low as possible, not only from a cost perspective.

それは対象が被曝物質であり、被曝の危険性を回避する
ため小容量にしなければならないし、またジャグの遠隔
操作(マニュピュレークー。
Since the target is irradiated material, the volume must be small to avoid the risk of radiation exposure, and the jug can be controlled remotely.

トング)の操作性を考慮すると小容量及び小重量にしな
ければならないからである。
This is because, in consideration of the operability of the tongs, the capacity and weight of the tongs must be small.

反面このことは、分析サンプルの適格なる採取及び分析
精度の向上という本来的目的に少なからず障害を起たす
こととなる。
On the other hand, this poses a considerable obstacle to the original purpose of properly collecting samples for analysis and improving analytical accuracy.

例えば、繰返して行うサンプリングにおいて、前回のサ
ンプル時の液が、器壁等に残留し、分析誤差となって表
われるからである。
For example, in repeated sampling, the liquid from the previous sampling may remain on the vessel wall, etc., resulting in analysis errors.

このような意味から、本発明は、放射性溶液のサンプリ
ングにとり、著しい効果を示すものである。
In this sense, the present invention exhibits remarkable effects in sampling radioactive solutions.

しかし、本発明の液体のサンプリング容器は、放射性溶
液のみならず、有毒物質を含有する溶液や、スラッジを
含む溶液等の液体サンプリングに好適に用いることがで
きる。
However, the liquid sampling container of the present invention can be suitably used for liquid sampling of not only radioactive solutions but also solutions containing toxic substances, solutions containing sludge, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液体サンプリング容器の縦断面説明図、
第2図は本発明の第1実施例を示す縦断面図、第3図は
本発明の液体サンプリング容器における液体の流れを示
す説明図、第4図は本発明の第2実施例を示す説明図で
ある。 10・・・容器本体、11・・・液体供給口、12・・
邪魔板、15・・・液体排出口、17・・・スラッジ排
出口、19・・・中空針。 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士 斎 下 和 彦 賜 1 図 第3図 第4図 第1頁の続き ■出 願 人 千代田化工建設株式会社横浜市鶴見区鶴
見町1580番地
Figure 1 is a vertical cross-sectional explanatory diagram of a conventional liquid sampling container.
FIG. 2 is a longitudinal sectional view showing the first embodiment of the present invention, FIG. 3 is an explanatory diagram showing the flow of liquid in the liquid sampling container of the present invention, and FIG. 4 is an explanatory diagram showing the second embodiment of the present invention. It is a diagram. 10... Container body, 11... Liquid supply port, 12...
Baffle plate, 15...Liquid discharge port, 17...Sludge discharge port, 19...Hollow needle. Agent: Makoto Ogawa, Patent Attorney - Teru Noguchi, Patent Attorney Kazuhiko Saishita, Patent Attorney 1 Figure 3 Figure 4 Continued from page 1 Applicant Chiyoda Corporation 1580 Tsurumi-cho, Tsurumi-ku, Yokohama City street address

Claims (1)

【特許請求の範囲】[Claims] 容器本体内に邪魔板を設けて該容器本体内を気液分離部
と液溜部とに区分し、前記気液分離部の側面または上面
に液体供給[]を、前記液溜部の側面に液体排出口を夫
々設け、前記液溜部に容器本体を貫通する中空針を取付
けると共に前記液溜部又は気液分離部の底面に形成した
液体及びスラッジ排出口を前記液体排出口と連通せしめ
たことを特徴とする液体のサンプリング容器。
A baffle plate is provided inside the container body to divide the inside of the container body into a gas-liquid separation section and a liquid reservoir section, and a liquid supply [] is supplied to the side or top surface of the gas-liquid separation section and to the side surface of the liquid reservoir section. A liquid discharge port is provided respectively, and a hollow needle passing through the container body is attached to the liquid reservoir, and a liquid and sludge discharge port formed on the bottom surface of the liquid reservoir or gas-liquid separation unit is communicated with the liquid discharge port. A liquid sampling container characterized by:
JP58076183A 1983-05-02 1983-05-02 Liquid sampling container Granted JPS59202040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076183A JPS59202040A (en) 1983-05-02 1983-05-02 Liquid sampling container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076183A JPS59202040A (en) 1983-05-02 1983-05-02 Liquid sampling container

Publications (2)

Publication Number Publication Date
JPS59202040A true JPS59202040A (en) 1984-11-15
JPS616330B2 JPS616330B2 (en) 1986-02-25

Family

ID=13597997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076183A Granted JPS59202040A (en) 1983-05-02 1983-05-02 Liquid sampling container

Country Status (1)

Country Link
JP (1) JPS59202040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096544A (en) * 1989-05-12 1992-03-17 The Research Corporation Of The University Of Hawaii Seawater pre-deaerator for open-cycle ocean thermal energy conversion applications
US5207875A (en) * 1989-05-12 1993-05-04 University Of Hawaii Seawater pre-deaerator process for open-cycle ocean thermal energy conversion applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096544A (en) * 1989-05-12 1992-03-17 The Research Corporation Of The University Of Hawaii Seawater pre-deaerator for open-cycle ocean thermal energy conversion applications
US5207875A (en) * 1989-05-12 1993-05-04 University Of Hawaii Seawater pre-deaerator process for open-cycle ocean thermal energy conversion applications

Also Published As

Publication number Publication date
JPS616330B2 (en) 1986-02-25

Similar Documents

Publication Publication Date Title
US7328809B2 (en) Solvent extraction method and apparatus
CN87104475A (en) Be used to analyze the device of liquor sample
US3666108A (en) Separator for liquids of different specific gravities
US11550342B2 (en) Gas separator and apparatus for measuring flow of one or more components of a multiphase medium, especially a natural gas-water mixture
PT1815900E (en) Separation apparatus and method
EP0079283B1 (en) System for continuously circulating a liquid in order to sample or to check the liquid
JP2659403B2 (en) Biogas reactor
JPS59202040A (en) Liquid sampling container
JPS59202041A (en) Method and apparatus for sampling liquid sample
US2770319A (en) Dust separator
DE1657658A1 (en) Device for emptying centrifuges
US3999438A (en) Sampling device
JP2640123B2 (en) Liquid continuous circulation system and liquid sampling device using this system
EP1051610B1 (en) Dropping mercury electrode with mercury purification and recycling by means of contact with oxygenated water
US6276936B1 (en) Dental separator for solids from a solids/liquid mixture
WO2023119712A1 (en) Separation device
JP3347204B2 (en) Two-liquid separation device and liquid / solid separation device
DE19517432C1 (en) Fluid sepn. appts.
GB2093716A (en) Apparatus for removing at least one phase from a moving mixed phase
CN216366733U (en) Large-density waste liquid automatic separation device for laboratory
CN216366734U (en) Small-density waste liquid automatic separation device for laboratory
CN220834247U (en) Volatile oil extraction element
CN117531287A (en) Overflowing type oil-water separation method
JPH0245728A (en) Filling station for sampling specimen from radioactive process solution
JPS6342348Y2 (en)