JPS59180414A - Remote measuring method of position to be inspected - Google Patents

Remote measuring method of position to be inspected

Info

Publication number
JPS59180414A
JPS59180414A JP58055422A JP5542283A JPS59180414A JP S59180414 A JPS59180414 A JP S59180414A JP 58055422 A JP58055422 A JP 58055422A JP 5542283 A JP5542283 A JP 5542283A JP S59180414 A JPS59180414 A JP S59180414A
Authority
JP
Japan
Prior art keywords
inspected
changing part
geometrical shape
shape
weld bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055422A
Other languages
Japanese (ja)
Inventor
Seiji Nakano
中野 盛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku X Sen Kk
Original Assignee
Chugoku X Sen Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku X Sen Kk filed Critical Chugoku X Sen Kk
Priority to JP58055422A priority Critical patent/JPS59180414A/en
Publication of JPS59180414A publication Critical patent/JPS59180414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To perform accurate and remote measurement and to fix various pieces of equipment under inspection and inspecting probes to a position to be inspected or to scan the positions continuously, by detecting and capturing a geometrical shape-changing part, which is fixed in the vicinity of the position to be inspected by a shape detecting probe. CONSTITUTION:A position to be inspected A1 represents a weld bead. A geometrical shape-changing part A2 is fixed in the vicinity of the weld bead. When the position to be inspected A1 in a body to be inspected A is measured, a scanner 1 is moved along the surface of the body to be inspected A, and the change in reflected wave of an ultrasonic wave in the geometrical shape-changing part A2 is detected by a shape detecting probe 2. Thus the position of the geometrical shape-changing part A2 is captured, and the position to be inspected A1 is indirectly detected from the position of the geometrical shape-changing part A2. A flaw detecting probe 3 is fixed to the position to be inspected A1 or the position is continuously scanned, and the weld bead is inspected.

Description

【発明の詳細な説明】 本発明は被検査位置の遠隔測定方法に関する。[Detailed description of the invention] The present invention relates to a method for telemetry of a location to be inspected.

原子カプラントの供用期間中の検査は、放射能汚染と、
放射線せばくの問題から人が、目視又は触感によって、
各主検査機器や検査用探触子を、一定の位置に固定又は
設定することが出来ない。
Inspections during the service life of nuclear couplants are conducted to detect radioactive contamination and
Due to radiation exposure, people can visually or tactilely
Each main inspection device and inspection probe cannot be fixed or set at a fixed position.

従って、可能な限り、遠隔自動操縦することのできる検
査機器の開発が要求される。
Therefore, it is necessary to develop inspection equipment that can be remotely and automatically operated as much as possible.

従来はその大半が放射線被ばくを覚悟で人力(手動)で
行なはれて居り、遠隔自動化されているのは、一部に過
ぎないのが現状である。又、その自動化されているもの
も、被検査位置がたとえば熔接ビードであるとき、その
熔接ビード及びその近傍の正確な位置に探傷用の超音波
探触子をセントすることは不可能であり、検査したとし
ても、その精度が大巾に低下することは否めない事実で
あった。
Traditionally, most of these procedures have been done manually, at the risk of exposure to radiation, and only some of them have been automated remotely. In addition, even with automated methods, when the location to be inspected is a weld bead, for example, it is impossible to place an ultrasonic probe for flaw detection at an accurate location in and around the weld bead. Even if it were tested, it was an undeniable fact that the accuracy would be greatly reduced.

本発明は叙上問題点を一挙に解決したもので、被検査位
置の近傍に定説されている幾何学的形状変化部を、走査
器の形状用探触子でその幾何学的形状変化部における超
音波の反射波を検知することにより捕捉して、当該幾何
学的形状変化部位置から被検査位置を間接的に測定する
ようにしたことを特徴とする。
The present invention solves the above-mentioned problems all at once, and uses a shape probe of a scanner to detect a geometrically changing part that has been established in the vicinity of a position to be inspected. The present invention is characterized in that the reflected wave of the ultrasonic wave is detected and captured, and the position to be inspected is indirectly measured from the position of the geometrical shape change part.

以下実施例をあげて説明する。This will be explained below by giving examples.

本発明の測定方法に用いる測定システムは形状用探触子
(2)及び探傷用探触子(3)を備えた走査器(1)と
、この走査器(1)と一体運動状の走行機(4)と、超
音波探傷器(5)ト、コントロールユニット(6)と、
[JIユニ7ト(7)とで構成されており、超音波探傷
器(5)は公知のパルス反射式タイプのものであす、コ
ントロールユニット (6)は゛ンイクロコンピュータ
ーを有していて、超音波探傷器(5)とのタイミングコ
ントロールおよび走行機(4)の駆動コントロールさら
に両探触子(2)(3)の接触状況の検知と不良時の警
報等の処理を行うものであり、駆動ユニット(7)はコ
ントロールユニット(6)からの指令にもとすく走行機
(4)のモータ駆動及びモータ駆動状態に関する信号の
コントロールユニノ)(6)への出力を行うものである
The measurement system used in the measurement method of the present invention includes a scanner (1) equipped with a shape probe (2) and a flaw detection probe (3), and a traveling machine that moves integrally with the scanner (1). (4), an ultrasonic flaw detector (5), a control unit (6),
The ultrasonic flaw detector (5) is of the well-known pulse reflection type, and the control unit (6) has a microcomputer and is equipped with a It controls timing with the sonic flaw detector (5), controls the drive of the traveling machine (4), detects the contact status of both probes (2) and (3), and processes alarms in the event of a failure. The unit (7) outputs signals regarding the motor drive of the traveling machine (4) and the motor drive state to the control unit (6) in response to commands from the control unit (6).

また形状用探触子(2)および探傷用探触子(3)は微
調整駆動装置(8)と一体運動状に連繋していて、走行
機(4)による大局的な移動と、微調整駆動装置(8)
による微妙な移動の双方が可能にしている。
In addition, the shape probe (2) and the flaw detection probe (3) are connected to a fine adjustment drive device (8) in an integral motion, and the traveling machine (4) allows global movement and fine adjustment. Drive device (8)
This is made possible by both subtle movements.

今、被検査位置(A1)が溶接ビードで、この溶接ビー
ドの近傍に幾何学的形状変化部(A2)が定説されてい
る被験体(A)におけるその被検査位置(A+)の測定
法について説明すると、走査器(1)を被験体(A)面
に沿い移動させて、形状探触子(2)により幾何学的形
状変化部(A2)における調音波の反射波の変化を検知
することにより、幾何学的形状変化部(A2)位置を捕
捉して、この幾何学的形状変化部(A2)位置から被検
査位置(A+)を関節的に検知し、そして同被検査位置
(A;)に探傷用探触子(3)を固定又は連続的に走査
さゼて溶接ビードを検査する。
Now, regarding the method for measuring the position to be inspected (A+) in a test object (A) where the position to be inspected (A1) is a weld bead and a geometrically changing part (A2) is established in the vicinity of this weld bead. To explain, the scanner (1) is moved along the surface of the subject (A), and the shape probe (2) detects changes in the reflected waves of the harmonic waves at the geometric shape change part (A2). , the position of the geometrical shape changing part (A2) is captured, the position to be inspected (A+) is jointly detected from the position of the geometrical shape changing part (A2), and the same position to be inspected (A; ) to inspect the weld bead by fixing or continuously scanning the flaw detection probe (3).

又、形状用探触子(2)および探傷用探触子(3)が垂
直な探触子タイプである場合(図示ゼず)には、両探触
子(2)(3)の間隔を、被検査位置(A1)と形状変
化部(A2)間と同等に調節しておくことにより、被検
査位置(A1)の検知および探傷が良好になる。
In addition, if the shape probe (2) and flaw detection probe (3) are vertical probe types (not shown), the distance between both probes (2) and (3) should be adjusted. By adjusting the distance between the position to be inspected (A1) and the shape-changing portion (A2) to be the same, the detection and flaw detection of the position to be inspected (A1) can be improved.

したがって本発明によれば、被検査位置の近傍に定説さ
れている幾何学的形状変化部を、形状用探触子によって
検知捕捉゛することにより、その幾何学的形状変化部位
置から被検査位置を関節的に検知するため、その精度が
数關台と正確で、遠隔測定でき、各種検査機器や検査用
探触子を被検査位置に固定又は連続的に走査させ得るも
のであり、特に原子カプラントにおける被検査体の検査
用に好適であり、放射線被爆および放射能汚染の問題を
解消することができる。
Therefore, according to the present invention, by detecting and capturing a geometrical shape changing part established in the vicinity of a position to be inspected using a shape probe, it is possible to move from the position of the geometrical shape changing part to the position to be inspected. Because it detects atomic energy jointly, its accuracy is several orders of magnitude, it can be measured remotely, and various inspection equipment and inspection probes can be fixed or continuously scanned at the location to be inspected. It is suitable for testing objects to be inspected in a couplant, and can eliminate the problems of radiation exposure and radioactive contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明測定方法に用いた測定システムを示すブ
ロック図。第2図は走査器の正面図。 第3図は測定状態の部分断面図である。 図中、 (A)は被験体 (A I)は被検査位置 (A2)は幾何学的形状変化部 (1)は走査器 (2)は形状用探触子
FIG. 1 is a block diagram showing a measurement system used in the measurement method of the present invention. FIG. 2 is a front view of the scanner. FIG. 3 is a partial sectional view of the measurement state. In the figure, (A) is the subject (A I) is the inspected position (A2) is the geometric shape changing part (1) is the scanner (2) is the shape probe

Claims (1)

【特許請求の範囲】[Claims] 被検査位置の近傍に幾何学的形状変化部が定説されてい
る被験体において、走査器の形状用単結子で上記幾何学
的形状変化部における超音波の反射波を検知することに
より捕捉して、その幾何学的形状変化部位置から被検査
位置を関節的に検知することを特徴とする被検査位置の
遠隔測定方法。
In a subject where a geometric shape change area is established near the inspected position, the scanner detects and captures the reflected waves of the ultrasound at the geometric shape change area using the shape single connector of the scanner. , a method for remotely measuring a position to be inspected, characterized in that the position to be inspected is jointly detected from the position of the geometric shape change part.
JP58055422A 1983-03-31 1983-03-31 Remote measuring method of position to be inspected Pending JPS59180414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055422A JPS59180414A (en) 1983-03-31 1983-03-31 Remote measuring method of position to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055422A JPS59180414A (en) 1983-03-31 1983-03-31 Remote measuring method of position to be inspected

Publications (1)

Publication Number Publication Date
JPS59180414A true JPS59180414A (en) 1984-10-13

Family

ID=12998134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055422A Pending JPS59180414A (en) 1983-03-31 1983-03-31 Remote measuring method of position to be inspected

Country Status (1)

Country Link
JP (1) JPS59180414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061333A1 (en) * 1999-03-09 2000-12-20 Siemens Aktiengesellschaft Method of measuring distances using ultrasounds and ultrasonic head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928088A (en) * 1972-07-18 1974-03-13
JPS5357568A (en) * 1976-11-02 1978-05-24 Shell Int Research System for removing oil from water surface
JPS5348000B2 (en) * 1974-07-01 1978-12-25
JPS54116394U (en) * 1978-02-03 1979-08-15
JPS5642987B2 (en) * 1977-08-10 1981-10-08

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928088A (en) * 1972-07-18 1974-03-13
JPS5348000B2 (en) * 1974-07-01 1978-12-25
JPS5357568A (en) * 1976-11-02 1978-05-24 Shell Int Research System for removing oil from water surface
JPS5642987B2 (en) * 1977-08-10 1981-10-08
JPS54116394U (en) * 1978-02-03 1979-08-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061333A1 (en) * 1999-03-09 2000-12-20 Siemens Aktiengesellschaft Method of measuring distances using ultrasounds and ultrasonic head

Similar Documents

Publication Publication Date Title
US5161413A (en) Apparatus and method for guided inspection of an object
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
US5311128A (en) Eddy current imaging system using spatial derivatives for flow detection
CN108431592A (en) Equipment and its implementation for controlling and measuring the weld defect on cylindrical wall
EP0461763A2 (en) Non-destructive examination system
JPS59180414A (en) Remote measuring method of position to be inspected
KR101216754B1 (en) Apparatus for inspecting inside diameter surfaces and threads of a stud
KR100220084B1 (en) Portable automatic supersonic probe using multi-axis portable scanner
KR102359624B1 (en) Quality inspection device for internal welding part of water supply pipe
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3719879B2 (en) Ultrasonic inspection method and apparatus
JPH09325136A (en) Automatic defect evaluating method for centrifugal type impeller
JP3212541B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JPH0412456Y2 (en)
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JPS6342744B2 (en)
JP7242579B2 (en) Ultrasonic flaw detection system and ultrasonic flaw detection method
JP3533506B2 (en) Ultrasonic testing of boiler pipe butt welds
JP2000329890A (en) Nondestructive inspection device
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JPH04366761A (en) Method for ultrasonic inspection
JPS6252455A (en) Method and apparatus for ultrasonic flaw detection
Winfree Recent advances in NDE technologies for aircraft inspection
Lebowitz Evaluation of an automated ultrasonic scanner
CN118275542A (en) Diffraction time difference ultrasonic scanning method and scanning frame for large-thickness butt weld