JPS587715B2 - Method for producing sulfur-containing electrolytic nickel - Google Patents

Method for producing sulfur-containing electrolytic nickel

Info

Publication number
JPS587715B2
JPS587715B2 JP53099710A JP9971078A JPS587715B2 JP S587715 B2 JPS587715 B2 JP S587715B2 JP 53099710 A JP53099710 A JP 53099710A JP 9971078 A JP9971078 A JP 9971078A JP S587715 B2 JPS587715 B2 JP S587715B2
Authority
JP
Japan
Prior art keywords
nickel
sulfur
electrolytic
liquid
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53099710A
Other languages
Japanese (ja)
Other versions
JPS5528319A (en
Inventor
近藤幸一
建部信也
小川邦生
島田恵介
明星利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP53099710A priority Critical patent/JPS587715B2/en
Publication of JPS5528319A publication Critical patent/JPS5528319A/en
Publication of JPS587715B2 publication Critical patent/JPS587715B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は粗ニッケルまたはニッケルマットを陽極として
最適な硫黄含有電解ニッケルを製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing optimal sulfur-containing electrolytic nickel using crude nickel or nickel matte as an anode.

ニッケルメッキ用陽極として例えば重量で50〜250
ppmの硫黄を含有するためにメッキ業界で好んで用い
られている。
As an anode for nickel plating, for example, 50 to 250 in weight
It is preferred in the plating industry due to its ppm sulfur content.

この硫黄含有ニッケルにはニッケルメッキ用陽極として
用いたとき、一般的に次のような利点がある。
This sulfur-containing nickel generally has the following advantages when used as an anode for nickel plating.

すなわち1)硫黄やカーボン等を含有しない通常の電気
ニッケルの溶解でみられるような不働態化のための局所
的溶解により表面が海綿状になり、ニッケル粒子が不溶
のまゝ脱落するようなことがない。
Namely, 1) The surface becomes spongy due to local dissolution for passivation, as seen in the dissolution of ordinary electrolytic nickel that does not contain sulfur, carbon, etc., and the nickel particles fall off undissolved. There is no.

2)このためスムーズに溶解が進み、チタンバスケット
等への定常的な装入が可能である。
2) Therefore, melting proceeds smoothly and regular charging into titanium baskets, etc. is possible.

3)溶解初期電圧が低く、操業電圧も低いのでガスの発
生も少なく、電力の節約となる。
3) Since the initial voltage for melting is low and the operating voltage is also low, less gas is generated and electricity is saved.

4)種々のメッキ浴組成、電流密度を選んでも活性度が
高い。
4) High activity even when various plating bath compositions and current densities are selected.

5)残渣が少ない。5) Less residue.

このような硫黄を含有した電解ニッケルを製造する方法
は、粗ニッケルを原料とするものに米国特許第2392
708号、第2453757号および第2623848
号明細書にその記載がある。
A method for producing electrolytic nickel containing sulfur using crude nickel as a raw material is disclosed in US Patent No. 2392.
No. 708, No. 2453757 and No. 2623848
There is a statement in the specification of the issue.

米国特許第2392708号明細書は硫黄源としてアル
カリ金属のチオ硫酸塩を電解液中に0.05〜0.25
g/l添加してpHを1.5〜6として硫黄含有量0.
007〜0.11重量%の電解ニッケルを得る方法を示
しているが、この方法によるものはチオ硫酸塩の使用量
が多いため含有硫黄量が一般的に高く且つ硫黄の分布が
均一でなく、たとえSの含有量が低い場合でもメッキに
使用した場合残渣発生量が多いと云う欠点があった。
US Pat. No. 2,392,708 discloses that thiosulfate of an alkali metal is added as a sulfur source to an electrolytic solution at a concentration of 0.05 to 0.25.
g/l to bring the pH to 1.5-6 and the sulfur content to 0.
0.007 to 0.11% by weight of electrolytic nickel, but since this method uses a large amount of thiosulfate, the amount of sulfur contained is generally high and the distribution of sulfur is not uniform. Even when the S content is low, there is a drawback that a large amount of residue is generated when used for plating.

また米国特許第2453757号明細書は硫黄源として
二酸化硫黄、アルカリ金属の亜硫酸塩を添加して電解し
、電解ニッケルを熱処理することにより、切断可能なニ
ッケルを得るものであり、米国特許第2623848号
明細書は二酸化硫黄、可溶性銅塩及びアセチレンを電解
液に添加してCu,C,Sを含有した活性のよい電解ニ
ッケルを得る方法である。
Further, US Pat. No. 2,453,757 discloses that sulfur dioxide and an alkali metal sulfite are added as a sulfur source, electrolysis is performed, and electrolytic nickel is heat-treated to obtain cuttable nickel; US Pat. No. 2,623,848 The specification describes a method for obtaining highly active electrolytic nickel containing Cu, C, and S by adding sulfur dioxide, soluble copper salt, and acetylene to an electrolytic solution.

また特公昭40−27324号明細書は同じく二酸化硫
黄とヒドラクリロニトリルを添加して0.01〜0.0
2重量%の硫黄を含んだ電解ニッケルを得る方法、特公
昭44−2.3746号明細書はニッケルマットを陽極
とし、廃液中に含まれる低級硫黄酸化物を残留するよう
にpH調整し、原則として他より硫黄酸化物を添加しな
いで0.01〜0.04重量%の硫黄を含んだ電解ニッ
ケルを得る方法であるが、前述のこれ等の方法によって
得た電解ニッケルは必ずしも硫黄の分布が均一でなく、
これを小片に切断してニッケルメッキ用陽極として用い
た場合に均一に溶解し且つスライム発生の少ないものを
得ることは容易でなかった。
In addition, Japanese Patent Publication No. 40-27324 also discloses that sulfur dioxide and hydracrylonitrile are added to 0.01 to 0.0
A method for obtaining electrolytic nickel containing 2% by weight of sulfur, disclosed in Japanese Patent Publication No. 44-2.3746, uses a nickel matte as an anode, adjusts the pH so that lower sulfur oxides contained in the waste liquid remain, and, in principle, This is a method for obtaining electrolytic nickel containing 0.01 to 0.04% by weight of sulfur without adding sulfur oxides, but the electrolytic nickel obtained by these methods described above does not necessarily have a sulfur distribution. not uniform,
When this was cut into small pieces and used as an anode for nickel plating, it was difficult to obtain an anode that would dissolve uniformly and generate less slime.

上述のような方法によって得られる電解ニッケルの一枚
の中の硫黄の分布も問題であつて同一平面内および厚さ
方向について硫黄が均一に分布されていることが、これ
を小片に切断してニッケルメッキ陽極として用いる場合
に望ましく、ある特定な場所に硫黄が集中する場合、そ
の場所が粒の核となり、大きな粒にまで成長し、電解ニ
ッケルの表面の平滑性を悪くし、硫黄品位の濃淡の差を
助長することになると推定されるが、これらの均一性の
十分なものを得ることは前述法では困難であった。
The distribution of sulfur in a piece of electrolytic nickel obtained by the method described above is also a problem, and the fact that sulfur is uniformly distributed in the same plane and in the thickness direction is important when cutting it into small pieces. This is desirable when used as a nickel plating anode, and if sulfur is concentrated in a specific location, that location will become the nucleus of the grains, which will grow into large grains, impairing the smoothness of the surface of the electrolytic nickel, and increasing the concentration of sulfur. However, it is difficult to obtain sufficient uniformity with the above-mentioned method.

溶解性を単に良くするのみなら硫黄含有量をある程度増
加させることによって、その目的を達成することができ
るが、この場合スライムの発生が多く、被メッキ物に悪
影響を与えることが多い。
If the solubility is simply to be improved, this objective can be achieved by increasing the sulfur content to some extent, but in this case, a lot of slime is generated, which often has an adverse effect on the object to be plated.

本発明は電解ニツケル一枚内の硫黄分布の均一性が良く
、各種のニッケルメッキ浴組成において良好な溶解性を
示し、且つスライムの発生が極めて少ない含硫黄電解ニ
ッケルの製造方法を提供することにある。
The object of the present invention is to provide a method for producing sulfur-containing electrolytic nickel that has good uniformity in sulfur distribution within a sheet of electrolytic nickel, exhibits good solubility in various nickel plating bath compositions, and generates extremely little slime. be.

この目的を達成するのに本発明は特許請求の範囲に記載
したように構成したものである。
To achieve this object, the invention is constructed as described in the claims.

原料として用いられるニッケル源は硫黄を20重量%前
後含有する所謂ニッケルマットでも金属状の粗ニッケル
でもよく、また電解液としては全硫黄浴でも硫酸塩−塩
化物混合浴でもよく、本発明方法を用いることによって
電解ニッケルとして硫黄を50〜250ppm含有した
ものを得ることができる。
The nickel source used as a raw material may be so-called nickel matte containing about 20% by weight of sulfur or metallic crude nickel, and the electrolyte may be a full sulfur bath or a sulfate-chloride mixed bath. By using this, electrolytic nickel containing 50 to 250 ppm of sulfur can be obtained.

本発明においては硫黄源として添加するチオ硫酸ナトリ
ウムは取扱いが容易で、安価でもあり、電解液自体を汚
染するおそれはないが、尚その使用量を極力減少せしめ
るため、チオ硫酸ソーダを分解する物質を極力減少する
ように十分に電解液の清浄化を行なうようにした。
In the present invention, sodium thiosulfate, which is added as a sulfur source, is easy to handle and inexpensive, and there is no risk of contaminating the electrolyte itself. The electrolyte was thoroughly cleaned to reduce the amount of water as much as possible.

チオ硫酸ナトリウムが電解液中で受ける反応は上記(1
)〜(4)式のようにチオ硫酸ナトリウムはHS−やS
5、S°に変化すると推定される。
The reaction that sodium thiosulfate undergoes in the electrolyte is as described above (1)
) to (4), sodium thiosulfate is HS- and S
It is estimated that the temperature will change to 5.S°.

この他電解液中にCl2,O2重金属イオンなどの強力
な酸化剤が存在していると、下記の反応、例えば上記(
5)〜(9)式の反応に従ってチオ硫酸塩は酸化されて
、極めて安定な硫酸塩、4チオン酸塩などになってチオ
硫酸ナトリウムが無駄となる。
In addition, if strong oxidizing agents such as Cl2 and O2 heavy metal ions are present in the electrolyte, the following reactions, such as the above (
According to the reactions of formulas 5) to (9), thiosulfate is oxidized to become extremely stable sulfate, tetrathionate, etc., and sodium thiosulfate is wasted.

目的とする品質のよい硫黄含有ニッケルを製造するため
には硫黄は硫化物形態で電着されていることが好ましい
ので(1) , (2)式以外の反応は好ましくない。
In order to produce the desired sulfur-containing nickel of good quality, it is preferable that sulfur be electrodeposited in the form of sulfide, so reactions other than those of formulas (1) and (2) are not preferred.

そこで(5)〜(9)式によってチオ硫酸塩が無駄にな
ることを防止するために電解液中のFe,Coを含肴し
た固形物の含有量を0.01g/1以下になるように浄
液工程で、生成した沈澱物を十分に濾過し、且つFe+
++、Co+++の含有量の合計が0.1g/l以下と
なるように十分に浄液工程により不純物を除去しておく
ことが必要である。
Therefore, in order to prevent thiosulfate from being wasted according to equations (5) to (9), the content of solids containing Fe and Co in the electrolyte was set to 0.01 g/1 or less. In the liquid purification process, the generated precipitate is thoroughly filtered, and Fe+
It is necessary to sufficiently remove impurities by a liquid purification step so that the total content of ++ and Co+++ is 0.1 g/l or less.

Fe,Coを含有した固形物の含有量が0.01g/l
以上あると、この固形物含有液がその後のpH調整によ
り液が酸性側へ移行し、この固形物が溶解してあるいは
この固形物中に付着している塩素によリチオ硫酸ナトI
Jウムを消費し、硫黄の均等な電着を妨げるかあるいは
完全には溶解しないで固形物のまゝカソードボックスに
給液されて電着物に巻き込まれて電解ニッケルの品質を
劣化させるので好ましくない。
The content of solids containing Fe and Co is 0.01g/l
If the above is present, the liquid containing solids will shift to the acidic side due to subsequent pH adjustment, and the solids will dissolve or the chlorine attached to the solids will cause lithiosulfate sodium chloride.
It is undesirable because it consumes nickel and prevents uniform electrodeposition of sulfur, or it is not completely dissolved and is supplied to the cathode box as a solid and gets caught up in the electrodeposit and deteriorates the quality of electrolytic nickel. .

また電解液中に陽極から溶け出したCu,Fe,Coな
どの重金属イオンは電解ニッケルの品質を維持するため
に活性ニッケル粉末によって脱銅が、またCl2ガス等
を用いて脱鉄、脱コバルトが行なわれるが、これらの金
属イオンはFe+++およびCo+++の合計値が0.
1g/l以下となるように除去しておかないと、チオ硫
酸ナトリウムを消費して硫黄の均等な電着を妨げるので
好ましくない。
In addition, to maintain the quality of electrolytic nickel, heavy metal ions such as Cu, Fe, and Co dissolved from the anode into the electrolyte are removed by activated nickel powder, and iron and cobalt are removed by using Cl2 gas, etc. However, these metal ions have a total value of Fe+++ and Co+++ of 0.
If it is not removed to a level of 1 g/l or less, sodium thiosulfate will be consumed and uniform electrodeposition of sulfur will be hindered, which is not preferable.

電解液中の酸化剤の働きをする塩素の含有量を0.00
02g/l以下に除去するのは、電解液中に溶出したF
e,Coの除去の際に多量のCl2ガスを用いると、残
存Cl2ガスあるいは液中に溶けたCIO−などの酸化
剤のために(5)式の反応などによりチオ硫酸ナトリウ
ムは分解するので、予め除去しておかないと均質な硫黄
を含有したニッケルを得ることができなくなり、これら
の除去のために活性炭処理が行なわれ、通常活性炭を充
填した層を必要に応じて一層又は数層電解液を通過せし
めて行なう。
The content of chlorine, which acts as an oxidizing agent in the electrolyte, is 0.00.
The F dissolved in the electrolyte is removed to 0.2 g/l or less.
If a large amount of Cl2 gas is used to remove e, Co, sodium thiosulfate will be decomposed by the reaction of formula (5) due to the residual Cl2 gas or an oxidizing agent such as CIO- dissolved in the liquid. If nickel containing sulfur is not removed in advance, it will not be possible to obtain nickel containing homogeneous sulfur, and in order to remove these nickel, activated carbon treatment is performed, and usually a layer filled with activated carbon is mixed with an electrolytic solution in one or several layers as necessary. Let it pass.

カソードボックス内のpHが2.6〜3.2となるよう
に調整する理由は次の通りである。
The reason for adjusting the pH in the cathode box to 2.6 to 3.2 is as follows.

前記(1),(2)式によって生成されたHS−,S5
は電解液中のNiイオンと結合して、次の(10),(
11)式に従って硫化物を生成する。
HS-, S5 generated by the above equations (1) and (2)
combines with Ni ions in the electrolyte to produce the following (10), (
11) Generate sulfide according to the formula.

Ni”+HS−=NjS+H+ (10)5Ni+++
S5+8e=5NiS (11)(3)式のS°生成反
応を制御して(10),(10式の反応を促進させ、且
つ生成した硫化ニッケルが凝集せずにコロイド状のまゝ
でカソードに電着されるためには、pHの影響が大であ
ってコロイド状の硫化ニッケルはpH3.5以上となる
き凝集を起こし、一旦凝集を起こすと徐々に粗大化して
遂には粒状となり、電着物が外観上好ましくなくなる他
、硫黄の均一分布が望めなくなる。
Ni”+HS-=NjS+H+ (10)5Ni+++
S5+8e=5NiS (11) By controlling the S° production reaction of equation (3), (10), (promoting the reaction of equation 10, and allowing the generated nickel sulfide to remain colloidal and reach the cathode without agglomeration) In order to be electrodeposited, the influence of pH is significant, and colloidal nickel sulfide aggregates when the pH reaches 3.5 or above. In addition to the unfavorable appearance, uniform distribution of sulfur cannot be expected.

そこで硫化ニッケルの凝集の防止、電気ニッケルの電着
状況、電流効率を勘案してカソードボックス内のpHが
2.6〜3.2が最も都合がよいために定めた値である
Therefore, taking into account the prevention of agglomeration of nickel sulfide, the state of electrodeposition of electrolytic nickel, and the current efficiency, a pH of 2.6 to 3.2 in the cathode box is determined as the most convenient value.

チオ硫酸ナトリウムの含有量は電解槽から流出する陽極
液中のFe,Co含有固形物や、Fe+++、Co++
+を前述のように除去し、且つ塩素の含有量も活性炭処
理により0.0002g/l以下に除去してあれば、チ
オ硫酸ナトリウムの含有量を時々測定して0.003〜
0.01g/lの含有量を保つように不足分を補給すれ
ば、得られる電解ニッケルの硫黄含有量を0.005〜
0.025重量%に維持でき、且つ硫黄の分布をほゞ均
一に保つことができる。
The content of sodium thiosulfate is determined by Fe, Co-containing solids in the anolyte flowing out from the electrolytic cell, Fe+++, Co++
+ is removed as described above, and the chlorine content is also removed to 0.0002 g/l or less by activated carbon treatment, the sodium thiosulfate content can be measured from time to time to 0.003~
If the shortage is replenished to maintain the content of 0.01g/l, the sulfur content of the electrolytic nickel obtained can be increased to 0.005~
The sulfur content can be maintained at 0.025% by weight, and the sulfur distribution can be kept approximately uniform.

チオ硫黄ナトリウムの含有量が0.01g/1以上とな
ると前記(3>式によるS°の先成反応がおこりやすく
硫黄の分布を不均一にする傾向があるので好ましくない
If the content of sodium thiosulfur is 0.01 g/1 or more, it is not preferable because the preforming reaction of S° according to the above-mentioned formula (3) tends to occur and the distribution of sulfur tends to be uneven.

不純物が除去され、pH調節され、チオ硫酸ナトリウム
を補給した電解液は電解槽内の各カソードを収納してい
るカソードボックス内に適当量供給されるが、その給供
量はカソードの大きさや電流密度によって一定の範囲内
であって、且つカソードボックス内の液が適当に撹拌が
行なわれることが必要で、このために各カソードボック
スに給液する給液管の端末において20〜100cm/
secの流速をもってカソ一ドボックス液面直上より絡
下せしめて撹拌を行い、且つ給供液量は100〜400
ml/A.Hの範囲に入ることが必要である。
An appropriate amount of the electrolyte from which impurities have been removed, pH adjusted, and sodium thiosulfate replenished is supplied to the cathode box that houses each cathode in the electrolytic cell, but the amount supplied depends on the size of the cathode and the current. It is necessary that the density is within a certain range and that the liquid in the cathode box is appropriately stirred.For this purpose, the liquid must be within a certain range at a distance of 20 to 100 cm/cm at the end of the liquid supply pipe that supplies liquid to each cathode box.
Stirring is carried out from just above the liquid surface of the cathode box at a flow rate of 100 to 100 seconds, and the amount of supplied liquid is 100 to 400.
ml/A. It is necessary to fall within the range of H.

こゝで供給液量の単位をml/A.Hで示したが、この
値は1ヶのカソードボックスに1時間に供給する液量m
l/Hを、カソードに流れる電流量AmPで除したもの
であって、(カソードに流れる電流量をカソード両面の
面積で除したものがカソード電流密度としてA/dm2
で表現している。
Here, the unit of supply liquid amount is ml/A. This value is the amount of liquid m supplied to one cathode box per hour.
l/H divided by the amount of current AmP flowing through the cathode, (the amount of current flowing through the cathode divided by the area of both sides of the cathode is the cathode current density A/dm2
It is expressed as.

)単にカソードボックスへの単位時間当りの供給液量m
l/分またはml/Hの値ではカソードの大きさが大き
くなり、また通電電流量も電流密度として大きな値とす
れば給液量を増やしてカソ一ドボックス内の電解液の濃
度分極を防ぐ必要があり、またカソードボックス内の液
面の高さをボックス外よりもや\高く保って不純物の多
い電解液がカソードボックスへの給液量は前記のことを
考慮して管理する必要があるので供給液量をml/A.
Hで表わしたものである。
) Simply the amount of liquid supplied to the cathode box per unit time m
If the value of l/min or ml/H is set, the size of the cathode becomes large, and if the amount of current applied is also set to a large value as the current density, the amount of liquid supplied will be increased to prevent concentration polarization of the electrolyte in the cathode box. In addition, it is necessary to maintain the liquid level inside the cathode box slightly higher than that outside the box, and to manage the amount of electrolyte containing many impurities that is supplied to the cathode box, taking the above into account. Therefore, the amount of liquid to be supplied is ml/A.
It is represented by H.

A.H当りの供給液量がたとえ一定であっても供給管の
直径が変化すれば端末の流速は変化するわけであるが、
給液管の端末の流速が20〜100cm/Secの流速
で且つ供給液量が100〜400ml/A.Hの両者の
条件を満足する範囲で給液することが、硫黄含有量の均
−な分布を持つ電解ニッケルを得るのに必要である。
A. Even if the amount of liquid supplied per H is constant, if the diameter of the supply pipe changes, the flow velocity at the terminal will change.
The flow rate at the end of the liquid supply pipe is 20 to 100 cm/Sec, and the amount of liquid to be supplied is 100 to 400 ml/A. In order to obtain electrolytic nickel having a uniform distribution of sulfur content, it is necessary to supply the liquid within a range that satisfies both conditions.

給液管の端末の流速が20cm/SeC以下だとカソー
トボックス内の液の撹拌が不十分となり電解液の濃度分
極がおこりやすくなり、また100cm/sec以上だ
と電解液が空気を巻き込んでチオ硫酸ナトリウムの分解
がおこりやすく、また給液部近くの電解ニッケルの表面
が黒変しやすく、粒状物の発生もおこりやすくなる。
If the flow rate at the end of the liquid supply pipe is less than 20cm/Sec, stirring of the liquid in the cathode box will be insufficient and concentration polarization of the electrolyte will easily occur, and if it is more than 100cm/sec, the electrolyte will entrain air. Decomposition of sodium thiosulfate is likely to occur, and the surface of electrolytic nickel near the liquid supply section is likely to turn black, and particulate matter is likely to occur.

供給液量の適当な範囲については、電解槽中のニッケル
イオン濃度とチオ硫酸ナトリウム濃度を適正に保つ必要
があり、濃度分極を発生させないニッケルイオンを供給
し、且つ電解ニッケル中に所定の硫黄を含有させるため
のチオ硫酸ナトリウムを供給する必要があり、供給量が
100ml/A.H以下だとこの目的が達成されず、ま
た400ml/A.H以上だと電解液の循還量が増して
不経済であり、場合によっては電解液がカンードボック
スから溢流することがあるからである。
Regarding the appropriate range of the supply liquid amount, it is necessary to maintain the nickel ion concentration and sodium thiosulfate concentration in the electrolytic cell appropriately, and to supply nickel ions that do not cause concentration polarization, and to add a certain amount of sulfur to the electrolytic nickel. It is necessary to supply sodium thiosulfate for inclusion, and the supply amount is 100ml/A. If it is less than 400 ml/A. If the temperature is higher than H, the amount of electrolyte to be circulated increases, which is uneconomical, and in some cases, the electrolyte may overflow from the cand box.

陰極電流密度が0.5A/dm2程度であれば供給液量
は200〜400ml/A.H、20A/dm2であれ
ば100〜250ml/A.Hの範囲にあることが一層
好ましい。
If the cathode current density is about 0.5 A/dm2, the supply liquid amount is 200 to 400 ml/A. H, 20A/dm2, 100-250ml/A. More preferably, it is in the range of H.

この両者の条件を満足しない場合には同一ニッケル板内
の硫黄の分布が不均一になる傾向を増してきて好ましく
ない。
If both of these conditions are not satisfied, the distribution of sulfur within the same nickel plate tends to become uneven, which is undesirable.

カソ一ドの大きさが1.00m×O.80mで陰極電流
密度が0.5〜2.0A/dm2とすると、給液管の内
径が3〜11mmの範囲内で供給量100〜400d/
A.Hとなる。
The size of the cathode is 1.00m×O. If the cathode current density is 0.5 to 2.0 A/dm2 at 80 m, the supply amount is 100 to 400 d/dm when the inner diameter of the liquid supply pipe is 3 to 11 mm.
A. It becomes H.

本発明に従って製造された電解ニッケル陰極は、その中
に含まれる硫黄が実質的に均一に分布されており、また
硫黄含有量は0.005〜0.025重量%のように非
常に低い水準にあっても、ニッケルメッキ用陽極として
使用した場合には活性が高く、不動態化することがなく
且つ発生スライムが極めて少ない。
The electrolytic nickel cathode produced according to the present invention has a substantially uniform distribution of sulfur therein and a very low sulfur content, such as 0.005-0.025% by weight. However, when used as an anode for nickel plating, it has high activity, does not become passivated, and generates very little slime.

また一枚の電解ニッケル板中の硫黄の分布が均一である
のでこれを小片に切断してニッケルメッキ用陽極として
使用した場合溶解状態が均一でムラがないなどの利点を
有する。
Furthermore, since the distribution of sulfur in a single electrolytic nickel plate is uniform, when this plate is cut into small pieces and used as an anode for nickel plating, it has the advantage that the melting state is uniform and even.

尚電解槽内の液温は45〜75℃の範囲内であれば特に
支障なく本発明を実施できる。
The present invention can be carried out without any particular problem as long as the temperature of the liquid in the electrolytic cell is within the range of 45 to 75°C.

実施例 1 陽極としてNi90.0%、S0.02%、Fe4.3
%、Cu3.4%、Co0.6%(各重量%)大きさ6
75mm×775mm×35mmの粗金属ニッケル板を
用い、陰極として大きさ700mm×800mm×1.
4mmの電気ニッケル種板を内寸780mm×880m
rrt×70vmのカソードボックス内に入れ、1電解
槽内に陽極37枚、陰極36枚を用い、電解液はNi6
39/l,SO484g/l,Cl55g/1,Na2
3g/l,H3B0315g/1の組成のものを循環し
、電解槽からの発液を脱銅、脱鉄、脱コバルト等を行な
い、これを2段濾過を行なった後、液中に含まれている
0.009g/1のCl2+ClO−を活性炭層を通過
せしめて吸着除去し、次いで硫酸を添加してpH2.7
±0.05に調整し、さらにチオ硫酸ナトリウムを添加
して、給液温度を55℃で、電解液中のその他の組成が
Co++”0.004g/l,Fe+++tr,Cu+
+0.0003g/l、チオ硫酸ナトリウム0.005
2g/l,Cl2+ClO−0.0001g/1,Fe
,Co含有固形物0.0004g/lを含有したものを
、各カソードボックスの液面上から内径3mmの給液管
を用いて362ml/分の割合(給液管の端末速度86
cm/秒)で給液し、陰極電流密度1.0A/dm2で
電解した。
Example 1 Ni90.0%, S0.02%, Fe4.3 as anode
%, Cu3.4%, Co0.6% (each weight%) Size 6
A crude metal nickel plate measuring 75 mm x 775 mm x 35 mm was used as a cathode, and a size of 700 mm x 800 mm x 1.
4mm electrolytic nickel seed plate with inner dimensions 780mm x 880m
rrt x 70vm cathode box, 37 anodes and 36 cathodes are used in one electrolytic tank, and the electrolyte is Ni6.
39/l, SO484g/l, Cl55g/1, Na2
3g/l, H3B0315g/1 is circulated, and the liquid emitted from the electrolytic cell is removed from copper, iron, cobalt, etc., and then subjected to two-stage filtration. 0.009g/1 of Cl2+ClO- is adsorbed and removed by passing through an activated carbon layer, and then sulfuric acid is added to adjust the pH to 2.7.
±0.05, further added sodium thiosulfate, and the supply liquid temperature was set at 55℃.
+0.0003g/l, sodium thiosulfate 0.005
2g/l, Cl2+ClO-0.0001g/1, Fe
, containing 0.0004 g/l of Co-containing solid matter, from the liquid level of each cathode box using a liquid supply pipe with an inner diameter of 3 mm at a rate of 362 ml/min (terminal speed of the liquid supply pipe 86
cm/sec), and electrolysis was carried out at a cathode current density of 1.0 A/dm2.

(給液量195ml/A.H)この結果カソードボック
ス内pHは2.9±0.05に維持され、電解ニッケル
としてNi99.98%、Co0.01%、Fe0.0
01%、Cu0.002%、S0.013%(各重量%
)の組成のものを得た。
(Supplied liquid amount: 195ml/A.H) As a result, the pH inside the cathode box was maintained at 2.9±0.05, and the electrolytic nickel contained 99.98% Ni, 0.01% Co, and 0.0% Fe.
01%, Cu0.002%, S0.013% (each weight%
) was obtained.

この電着ニッケルの一枚の中の硫黄分布を調査したとこ
ろほゞ均一でS0.013重量%を示したが両肩部分は
給液側が0.015重量%、その反対側は0.012重
量%であった。
When we investigated the sulfur distribution in one sheet of this electrodeposited nickel, it was found to be almost uniform with S content of 0.013% by weight, but in both shoulders, the liquid supply side had 0.015% by weight and the opposite side had 0.012% by weight. %Met.

本発明法で製造された硫黄含有電解ニッケルがメッキ用
陽極としてすぐれていることを確認するために上記実施
例で製造した電解ニッケルをメッキ用陽極として使用し
て下記の条件下で溶解せしめた所、陽極電流効率は良好
で、スライム発生率は非常に少なく、従来品に比して非
常にすぐれていることが確認された。
In order to confirm that the sulfur-containing electrolytic nickel produced by the method of the present invention is excellent as an anode for plating, the electrolytic nickel produced in the above example was used as an anode for plating and was melted under the following conditions. It was confirmed that the anode current efficiency was good, the slime generation rate was very low, and it was extremely superior to conventional products.

溶解条件 使用後(ワット浴)温度 50〜55゜CNiS042
40g/1通電時間24時間NiOl2 45g/l陰
極電流密度8A/dm2H3BO3 30g/l pH 4.0 結果 陽極電流効率 98.2% スライム発生率 0.06% 実施例 2 陽極としてNi71.5%、S20.5%、Fe0.5
%、Cu6.O%、Co0.7%(各重量%)、大きさ
775mm×975mm×45mmのニッケルマットを
用い、陰極さして大きさ800mm×1000mm×1
.4mmの電気ニッケル種板を内寸870mm×110
0mm×40のカソードボックス内に入れ、1電解槽内
に陽極39枚、陰極38枚を用い、電解液はNi47g
/l,S0478g/l,C147g/l、Na21g
/l、H3BO313g/lの組成のものを循還し、電
解槽からの廃液を脱銅、脱鉄、脱コバルト等を行ない、
2段濾過を行なった後、液中に含まれている0.008
g/lのCl2+ClO−を活性炭層を通過せしめて吸
着除去し、次いで硫酸を添加してpH2.6±0.05
に調整し、さらにチオ硫酸ナトリウムを添加して、給液
温度52℃で、電解液中のその他の組成がCo+++0
.10g/l,Fc+++tr,Cu++0.0004
9/1、チオ硫酸ナトリウム0.0058g/l,Cl
2+ClO−0.0001g/l,Fe,Co含有固形
物0.0005g/lを含有したものを各カソードボッ
クスの液面上から内径6mmの給液管を用いて632m
l/分の割合(給液管の端末速度38cm/秒)で給液
し、陰極電流密度1.04A/dm2で電解した(給液
量226ml/A.H)。
Melting conditions After use (Watt bath) temperature 50-55° CNiS042
40g/1 energization time 24 hours NiOl2 45g/l Cathode current density 8A/dm2H3BO3 30g/l pH 4.0 Results Anode current efficiency 98.2% Slime generation rate 0.06% Example 2 Ni71.5%, S20 as anode .5%, Fe0.5
%, Cu6. Using a nickel mat with a size of 775 mm x 975 mm x 45 mm and a size of 800 mm x 1000 mm x 1 using a cathode with O% and Co 0.7% (each weight %).
.. 4mm electrolytic nickel seed plate with internal dimensions 870mm x 110
Placed in a 0 mm x 40 cathode box, 39 anodes and 38 cathodes in one electrolytic cell, and the electrolyte was 47 g of Ni.
/l, S0478g/l, C147g/l, Na21g
/l, H3BO3 composition of 13g/l is circulated, and the waste liquid from the electrolytic tank is decoppered, iron-free, cobalt-free, etc.
After performing two-stage filtration, the 0.008 contained in the liquid
g/l of Cl2+ClO- was adsorbed and removed by passing through an activated carbon layer, and then sulfuric acid was added to adjust the pH to 2.6±0.05.
Then, sodium thiosulfate was added, and the other composition in the electrolyte was Co+++0 at a supply temperature of 52°C.
.. 10g/l, Fc+++tr, Cu++0.0004
9/1, sodium thiosulfate 0.0058g/l, Cl
2+ClO-0.0001g/l, Fe, Co-containing solids 0.0005g/l were added 632m above the liquid surface of each cathode box using a liquid supply pipe with an inner diameter of 6mm.
The liquid was supplied at a rate of 1/min (terminal speed of the liquid supply pipe 38 cm/sec), and electrolysis was performed at a cathode current density of 1.04 A/dm2 (liquid supply amount 226 ml/A.H).

この結果カソードボックス内pHは2.7±0.05に
維持され、電解ニッケルとしてNi99.98%、Co
O.02%、FeO.002%、CuO.003%、8
0.0013%(各重量%)を得た。
As a result, the pH inside the cathode box was maintained at 2.7±0.05, and the electrolytic nickel contained 99.98% Ni and Co
O. 02%, FeO. 002%, CuO. 003%, 8
0.0013% (each % by weight) was obtained.

この電解ニッケルの一枚の中の硫黄分布は四隅部を除い
ては均一で給液側の肩部は0.016重量%、反対側の
肩部は0.012重量%、給液側の下隅で0.014重
量%、反対側の下隅部は中央部と同じ0.013重量%
であった。
The sulfur distribution in this piece of electrolytic nickel is uniform except for the four corners, with the shoulder on the liquid supply side being 0.016% by weight, the shoulder on the opposite side being 0.012% by weight, and the lower corner on the liquid supply side. 0.014% by weight, and the lower corner on the opposite side is 0.013% by weight, the same as the center part.
Met.

本実施例で得られた電解ニッケルを用いて実施例1と同
様の使用浴AおよびNiSO4240g/l、NiCl
215g/lその他使用液Aと同様の使用液B及びスル
ファミン酸Ni250g/l、H3B0330g/l、
pH4.0の使用液Cで、他はすべて同条件でメッキ試
験を行なった結果 使用液 陽極電流効率 スライム発生率 (A) 1fJ7.0% 0.03重量%(B
) 107.0% 〃 (C) 94.7% 0.旧重量%の結果を
えた。
Using the electrolytic nickel obtained in this example, use bath A similar to Example 1, NiSO4240g/l, NiCl
215g/l Other working liquid B similar to working liquid A and sulfamic acid Ni250g/l, H3B0330g/l,
Results of plating tests conducted using solution C with pH 4.0 under all other conditions. Solution used: Anode current efficiency Slime generation rate (A) 1fJ7.0% 0.03% by weight (B
) 107.0% 〃 (C) 94.7% 0. I got the result of old weight %.

実施例3,4,5 陽極としてニッケルマットを用い、その大きさ陰極及び
カソードボックスの大きさ使用枚数は実施例2と同様に
して試験を行なった。
Examples 3, 4, and 5 A test was conducted using a nickel mat as the anode, and using the same size and number of cathode and cathode boxes as in Example 2.

その他の異なる条件、結果を第1表に示す。Other different conditions and results are shown in Table 1.

これらの実施例で得られた電解ニッケル一枚中の硫黄の
分布のバラツキを測定したところ硫黄の最大値と最小値
との差は実施例3で0.004重量%、実施例4で0.
004重量%、実施例5で0.003重量%であった。
When we measured the variation in the distribution of sulfur in each electrolytic nickel sheet obtained in these Examples, the difference between the maximum and minimum sulfur values was 0.004% by weight in Example 3 and 0.004% by weight in Example 4.
0.004% by weight, and 0.003% by weight in Example 5.

またメッキ試験を実施例2と同様の方法で行なった結果
を第2表に示す。
Further, a plating test was conducted in the same manner as in Example 2, and the results are shown in Table 2.

この結果からスライム発生率が非常に少ないことが明ら
かである。
From this result, it is clear that the slime generation rate is very low.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極としてニッケルマットまたは粗ニッケルを用い
、且つ塩素を用いて電解液中の脱コバルトを行ない、硫
黄が約0.005〜0.025重量%含有されるように
電解ニッケルを析出させるニッケル電解精練法において
、電解槽から流出する陽極液中のFe,Co含有固形物
の含有量を0. 01 g/l以下に、且つ3価の鉄、
コバルトイオンの合計値が0.19/l以下となるよう
に除去した電解液を酸化剤の働きをする塩素の含有量を
0.0002g/l以下となるように活性炭処理した後
、チオ硫酸ナトリウムの含有量が0.003〜O.0.
1g/l、カソードボックス内のpHが2.6〜3.2
となるように調整して、カソードボックス上の給液管か
ら管端末の流速が20〜100cm/secで、且つ液
量が100〜400m7/A.Hの範囲でカソードボッ
クスに給液し電解することを特徴とする硫黄含有電解ニ
ッケルの製造方法。
1 Nickel electrolytic scouring in which nickel matte or crude nickel is used as an anode, cobalt is removed from the electrolytic solution using chlorine, and electrolytic nickel is precipitated to contain about 0.005 to 0.025% by weight of sulfur. In the method, the content of Fe, Co-containing solids in the anolyte flowing out from the electrolytic cell is set to 0. 01 g/l or less and trivalent iron,
After removing the electrolytic solution so that the total cobalt ion value is 0.19 g/l or less, it is treated with activated carbon so that the content of chlorine, which acts as an oxidizing agent, is 0.0002 g/l or less, and then sodium thiosulfate is used. The content is 0.003~O. 0.
1g/l, pH in cathode box is 2.6-3.2
The flow rate from the liquid supply pipe on the cathode box to the end of the pipe is 20 to 100 cm/sec, and the liquid volume is 100 to 400 m7/A. A method for producing sulfur-containing electrolytic nickel, which comprises supplying a liquid to a cathode box in a range of H and electrolyzing it.
JP53099710A 1978-08-15 1978-08-15 Method for producing sulfur-containing electrolytic nickel Expired JPS587715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53099710A JPS587715B2 (en) 1978-08-15 1978-08-15 Method for producing sulfur-containing electrolytic nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53099710A JPS587715B2 (en) 1978-08-15 1978-08-15 Method for producing sulfur-containing electrolytic nickel

Publications (2)

Publication Number Publication Date
JPS5528319A JPS5528319A (en) 1980-02-28
JPS587715B2 true JPS587715B2 (en) 1983-02-10

Family

ID=14254619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53099710A Expired JPS587715B2 (en) 1978-08-15 1978-08-15 Method for producing sulfur-containing electrolytic nickel

Country Status (1)

Country Link
JP (1) JPS587715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146913U (en) * 1984-08-31 1986-03-28 株式会社 石野製作所 food and drink counter
JPH0432334Y2 (en) * 1984-07-31 1992-08-04
JPH066195B2 (en) * 1988-09-22 1994-01-26 株式会社日商 Amusement hall coin transfer device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103114302A (en) * 2013-03-13 2013-05-22 吉林吉恩镍业股份有限公司 Preparation method of lip-free electrolytic nickel thick plate
CN104213150A (en) * 2014-07-04 2014-12-17 襄阳化通化工有限责任公司 Sulfur-containing active nickel briquette produced through electrolytic process
CN106623969B (en) * 2016-11-23 2018-11-27 昆明理工大学 A kind of method of eutectic type ionic liquid displacement deposition preparation nanometer nickel-sulfur alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432334Y2 (en) * 1984-07-31 1992-08-04
JPS6146913U (en) * 1984-08-31 1986-03-28 株式会社 石野製作所 food and drink counter
JPH066195B2 (en) * 1988-09-22 1994-01-26 株式会社日商 Amusement hall coin transfer device

Also Published As

Publication number Publication date
JPS5528319A (en) 1980-02-28

Similar Documents

Publication Publication Date Title
JP3131648B2 (en) Copper plating method using non-cyanating bath
JPS587715B2 (en) Method for producing sulfur-containing electrolytic nickel
CA2027656C (en) Galvanic dezincing of galvanized steel
US6187169B1 (en) Generation of organosulfonic acid from its salts
US3616332A (en) Process for recovering silver from scrap materials and electrolyte composition for use therein
US4543167A (en) Control of anode gas evolution in trivalent chromium plating bath
EP0088192B1 (en) Control of anode gas evolution in trivalent chromium plating bath
US2317153A (en) Process for the electrodeposition of manganese
US2119560A (en) Electrolytic process for the extraction of metallic manganese
JP2008266766A (en) Method for producing sheet-form electrolytic copper from halide solution
CN100383285C (en) Electrode for water electrolysis and its making process
AU2008265451B2 (en) Method for improving nickel cathode morphology
JP3158786B2 (en) Method for producing sulfur-containing electric nickel
US2347451A (en) Electrolytic deposition of manganese
JP3007207B2 (en) Acidic Sn plating bath with less generation of Sn sludge
JP2622019B2 (en) Method for producing granular copper fine powder
JPS6363637B2 (en)
JP2959772B2 (en) Adjustment of electrogalvanizing bath
Bahrami-fard et al. A comparative study on the effect of electrodeposition current density on the grain size of Ni and Ni-W nanocrystalline coatings
JP2011042820A (en) Method for producing sulfur-containing electrolytic nickel
JPH01139789A (en) Production of high purity electrolytic copper having low silver content
JPH0853799A (en) Reducing method of concentration of metal in electroplating solution
JPH0674520B2 (en) Ni-W alloy continuous plating electrolytic bath replenisher
US3821096A (en) Process for electrodepositing manganese metal
USRE23332E (en) Electrolytic deposition of