JPS58198711A - Optical distance measuring device - Google Patents

Optical distance measuring device

Info

Publication number
JPS58198711A
JPS58198711A JP8260382A JP8260382A JPS58198711A JP S58198711 A JPS58198711 A JP S58198711A JP 8260382 A JP8260382 A JP 8260382A JP 8260382 A JP8260382 A JP 8260382A JP S58198711 A JPS58198711 A JP S58198711A
Authority
JP
Japan
Prior art keywords
optical
distance
image
optical system
image sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8260382A
Other languages
Japanese (ja)
Inventor
Yasunari Kajiwara
梶原 康也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8260382A priority Critical patent/JPS58198711A/en
Publication of JPS58198711A publication Critical patent/JPS58198711A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • G01C3/085Use of electric radiation detectors with electronic parallax measurement

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To bring the contrast between objects into clear relief to measure accurately the distance between cars going in the same direction, by installing respective image sensors of a pair of optical mechanisms so as to be inclined at the same prescribed angle to respective optical axes in the circumferential direction. CONSTITUTION:Linear image sensors 2a and 2b where the image of an object 3 is focused through lenses 1a and 1b are provided a prescribed length F apart from lenses 1a and 1b respectively to constitute optical mechanisms A and B. The length between optical axes of optical mechanisms A and B is set to a prescribed length L, and lenses 1a and 1b and image sensors 2a and 2b are arranged on vertical lines to both optical axes. Image sensors 2a and 2b are installed so as to be made incline at the same prescribed angle to respective optical axes in the circumferential direction and grasp linear image visual fields inclined from horizontal positions to include different constitutions, thus obtaining the contrast of the object clearly.

Description

【発明の詳細な説明】 本発明は、自動車等車両に搭載して車間距、離を測定す
るのに好適ならしめた光学式距離測定装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical distance measuring device that is suitable for being mounted on a vehicle such as an automobile and measuring inter-vehicle distance.

通常、距離測定装置には、光や電波を対象物に発射して
その反射波が帰ってくるまでの時間を計測して対象物ま
での距離を求めるレーダ方式のものと、レンズとイメー
ジセンサとで構成きれた光学系機構を所定距離離間して
一対備え、対象物を各イメージセンサで捉えることによ
り三角測量法に基づいて該対象物までの距離を求める光
学方式%式% 第1図は後者゛の光学方式による距離測定装置を示すも
ので、図において、AとBは、夫々レンズ(1a) I
(11))と、このレンズに所定距離F離間して設けら
れ該レンズを介して対象物(8)の映像が結像される直
線状のイメージセンサ(2a) I (2b)とから成
る光学系機構を示し、これら一対の光学系機構AとBの
光軸間は所定距離り離間して設けられ。
Typically, distance measuring devices include radar-based devices that emit light or radio waves at an object and measure the time it takes for the reflected waves to return to determine the distance to the object, and others that use a lens and image sensor. An optical system that has a pair of optical system mechanisms separated by a predetermined distance and that captures the object with each image sensor and calculates the distance to the object based on the triangulation method. Figure 1 shows the latter method. This figure shows a distance measuring device using an optical method. In the figure, A and B are lenses (1a) and I, respectively.
(11)) and a linear image sensor (2a) I (2b) which is provided at a predetermined distance F from this lens and forms an image of the object (8) through the lens. The optical axes of the pair of optical system mechanisms A and B are spaced apart by a predetermined distance.

かつ上記一対のレンズ(1a)と(1b)およびイメー
ジセンサ(2a)と(2b)は、該両光軸に対してそれ
ぞれ垂直直線上に配置されていて、上記イメージセンサ
(2a)および(2b)上に表われるイメージのずれa
およびbを求めることに工り、三角測量法に基づいて下
式により対象物(8)までの距離Rが測定されるように
なされている。
The pair of lenses (1a) and (1b) and the image sensors (2a) and (2b) are arranged on a straight line perpendicular to both optical axes, respectively, and the pair of lenses (1a) and (1b) and the image sensors (2a) and (2b) ) Image shift a that appears above
and b, and the distance R to the object (8) is measured by the following formula based on the triangulation method.

すなわち、上記構成の距離測定装置においては、直線状
のイメージセンサ(2a)、(2b)に対象物(8)の
一部横線方向成分が白黒のコントラストとして結像され
、これらの結像コントラストのデータを電子計算機に入
力することに裏って該電子計算機の後述する演算処理に
よって距離a及びb’6求め、対象物(8)までの距離
Rを求める。例えば、該電子計算機は左右のイメージセ
ンサ(2a)、(2b)に写し□ だされるイメージのコントラストラ夫々読み取り、その
うち何れか一方のイメージセンサ、例えばイメージセン
サ(2a)に写し出されるイメージからコントラストの
濃淡が明確にで交点を選択し、その選択点と当該光学系
機構Aの光軸との距1affi求める。そして次に、上
記電子計算機は、他方のイメージセンサ(2b)上のコ
ントラストから上記選択点に対応するコントラスト点を
求め、この対応点と当該光学系機構Bの光軸との距離b
i求める。
That is, in the distance measuring device having the above configuration, a part of the horizontal component of the object (8) is imaged on the linear image sensors (2a) and (2b) as a black and white contrast, and these image contrasts are In addition to inputting the data into the electronic computer, the distances a and b'6 are calculated by the calculation processing described later on the computer, and the distance R to the object (8) is calculated. For example, the computer reads the contrast of the images projected on the left and right image sensors (2a) and (2b), respectively, and calculates the contrast from the image projected on one of the image sensors, for example, the image sensor (2a). Select an intersection point with clear shading, and find the distance 1affi between the selected point and the optical axis of the optical system mechanism A. Next, the electronic computer calculates a contrast point corresponding to the selected point from the contrast on the other image sensor (2b), and the distance b between this corresponding point and the optical axis of the optical system mechanism B.
I ask.

さらに、このようにして求められた両光軸からの距離a
とbとにより三角測量法に基づいた前述した式によp対
象物(3)までの距離Rを導き出す。
Furthermore, the distance a from both optical axes obtained in this way
and b, the distance R to the object p is derived using the above-mentioned formula based on the triangulation method.

しかるに、車両等対象物は、通常映像として見た場合に
縦線と横線から構成され、第1図構成において、このよ
うな映像を線状のイメージセンサ(2a)、(2b)で
とらえるとコントラストがほとんど得られない場合があ
る。例えば、乗用車を見た場合、第2図に示す後部ガラ
ス(δ)、トランク(6)およびバンパー (7)は、
夫々略−色でコントラストがなく、これらを線状のリニ
アイメージセンサ上に横−直線に結像させてもコントラ
ストがつきに<<。
However, when an object such as a vehicle is viewed as a normal image, it is composed of vertical lines and horizontal lines, and when such an image is captured by linear image sensors (2a) and (2b) in the configuration shown in FIG. In some cases, very little is obtained. For example, when looking at a passenger car, the rear window (δ), trunk (6), and bumper (7) shown in Figure 2 are as follows:
Each color has no contrast, and even if they are imaged horizontally and linearly on a linear image sensor, there is no contrast.

上記線状のリニアイメージセンサで捉えると伺も見えな
いのと同等なことになり、シたがって対象物(8)まで
の距離Rを求めることができなかった。
If captured by the above-mentioned linear linear image sensor, it would be equivalent to not being able to see the object (8), and therefore the distance R to the object (8) could not be determined.

そこで本発明は、叙上の点に鑑みてなされたもので、一
対の光学系機構の各イメージセンサを夫々光軸に対して
周方向に所定の同一角度傾斜させて設置することにより
、対象物のコントラストを明確ならしめて上記従床の欠
点を解消し几光学式距離測定装置を提供するものである
Therefore, the present invention has been made in view of the above points, and by installing each image sensor of a pair of optical system mechanisms so as to be inclined at the same predetermined angle in the circumferential direction with respect to the optical axis, it is possible to The object of the present invention is to make the contrast clear and eliminate the drawbacks of the above-mentioned subfloor, thereby providing a optical distance measuring device.

以下1本発明の詳細な説明すると5本発明において、光
学系機構を成す各線状のイメージセンサ(2a)s(2
b)は夫々光軸に対して周方向に所定の同一角度傾斜さ
せて設置し、例えば第2図に破線C1またはDで示すよ
うに水平位置から傾斜した直線状の映像視野を捉えるよ
うにして異なつt構成を含んでコントラストが明確に得
られるようにしている。
The following is a detailed explanation of the present invention. 5 In the present invention, each linear image sensor (2a) s (2
b) are each installed so as to be inclined at the same predetermined angle in the circumferential direction with respect to the optical axis, so as to capture a linear image field inclined from the horizontal position, for example, as shown by broken lines C1 or D in FIG. Different t configurations are included to ensure clear contrast.

すなわち、乗用車(4)のテール部には、テールランプ
(8)やナンバープレート(9)のように他の部分に比
べその形秋、及び色が違い、夜間はライトが点灯するな
ど際立ったコントラストを呈し7jffB分が 5− あり、それらはテール部の中央と両端に夫々配置され、
またその範囲は大型貨物車やワゴン車を考慮に入れても
、高々車幅が1.5〜2m、高さが40〜60crIL
であると推定されるから、それらの何れかの構成全イメ
ージセンサの視野に入れればイメージセンサ上にコント
ラストが明確に得られることになる。
In other words, the tail of the passenger car (4) has a different shape and color than other parts, such as the tail lamp (8) and the license plate (9), and the lights turn on at night, creating a striking contrast. There are 5- parts of 7jffB, which are placed in the center and both ends of the tail, respectively.
Also, even if we take into account large cargo vehicles and wagons, the range is at most 1.5 to 2 m in width and 40 to 60 cr in height.
Since it is estimated that the contrast is clearly obtained on the image sensor, if any of these configurations is included in the field of view of the entire image sensor.

したがって、一対の光学系機構の各イメージセンサ(2
a)s(2b) 2夫々光軸に対して周方向へ水平から
10〜60度の範囲内で同一角度に傾斜して設置すれば
、コントラストが明確に得られ、例えば、第2図におい
て、イメージセンサ(2a) 、 (2b)の傾斜角度
を10度に設定した時の破線Cの視野内にはバンパー(
γ)、トランク後部(6a)およびテールランプ(8)
など異なる要素が捉えられているため昼間はもちろんの
こと夜間においても完全なコントラストが得られ、また
上記傾斜を30度に設定した時の破線りの視野において
はバンパー(γ)% トランク後部(6a)、トランク
部(6)および後部ガラス(5)など更に異なる要素が
増えていて;ントラスト 6− がより明確になり、前方の車両を確実に認識でき距離R
を正確に求めることができる。
Therefore, each image sensor (2
a) s (2 b) 2 If they are installed at the same angle in the circumferential direction with respect to the optical axis within a range of 10 to 60 degrees from the horizontal, a clear contrast can be obtained. For example, in Fig. 2, When the inclination angle of the image sensors (2a) and (2b) is set to 10 degrees, there is a bumper (
γ), rear trunk (6a) and tail lamp (8)
Since different elements such as the above are captured, perfect contrast can be obtained not only in the daytime but also at night.In addition, when the above slope is set to 30 degrees, the dashed line field of view shows the bumper (γ)%, trunk rear (6a) ), trunk area (6), and rear glass (5);
can be determined accurately.

なお、車載用の光学式距離測定装置において、線状のイ
メージセンサの幅は通常車間距離が30mで前方の乗用
車の略全幅が感知できる幅に設定されるのが好ましいが
1本発明装置の場合には一部だけコントラストが明確に
なるところを捉えるように傾斜して設けるので、その幅
は前方の乗用車の全幅を感知する幅に設定する必要がな
く、従来エリ小型化できる。
In a car-mounted optical distance measuring device, it is preferable that the width of the linear image sensor is set to such a width that it can detect approximately the entire width of the passenger car in front when the inter-vehicle distance is 30 m. Since the sensor is provided at an angle so as to capture only a portion where the contrast is clear, there is no need to set the sensor's width to a width that allows sensing the entire width of the passenger car in front, and the sensor can be made smaller than the conventional sensor.

以上述べたように、本発明によれば前方の対象物を確実
に認識でき正確な距離を得ることができる光学式距離測
定装置を提供することができる。
As described above, according to the present invention, it is possible to provide an optical distance measuring device that can reliably recognize an object in front and obtain an accurate distance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三角測量方法に基づいた光学式距離測定装置を
示す構成図、第2図は本発明装置におけるイメージセン
サの傾斜角度及び検出視野を説明1111・1 するための乗用車の後部を捉えた説明図である。 A、B:光学系機構 (1a)、(ib) :レンズ(
2a)s(2b) :イメージセンサ(8)二対象物 なお、図中同一符号は同一または相尚部分を示す。 代理人 葛 野 信 − 1
Fig. 1 is a configuration diagram showing an optical distance measuring device based on the triangulation method, and Fig. 2 shows the rear of a passenger car for explaining the tilt angle and detection field of view of the image sensor in the device of the present invention. It is an explanatory diagram. A, B: Optical system mechanism (1a), (ib): Lens (
2a) s (2b): Image sensor (8) Two objects Note that the same reference numerals in the figures indicate the same or similar parts. Agent Shin Kuzuno - 1

Claims (1)

【特許請求の範囲】[Claims] レンズと、このレンズに所定距離離間して設けられ、該
レンズを介して対象物の映像が結像される直線状のイメ
ージセンサとからなる光学系機構を一対備え、この一対
の光学系機構の光軸間を所定距離離間して設け、かつ上
記一対のレンズおよびイメージセンサを上記両光軸に対
して夫々垂直直線上に配置し、この光学系機構の何れか
一方のイメージセンサ上に直線的に結像される対象物の
結像コントラストから一点を選択しこの点と該光学系機
構の光軸間の距離を求めるとともに、他方の光学系機構
のイメージセンサ上に直線的に結像される結像コントラ
ストから上記選択点に対応する点を求めてこの点からこ
の光学系機構の光軸までの距離を求め、三角測量法に基
いてこれら一対の光学系機構と対象物までの距離上京め
る光学式距離測定装置において、上記各イメージセンサ
を夫々光軸に対して周方向に所定の同一角度傾斜させて
設けたことを特徴とする光学式距離測定装置。
A pair of optical system mechanisms is provided, each consisting of a lens and a linear image sensor that is provided at a predetermined distance from the lens and forms an image of an object through the lens. The optical axes are spaced apart by a predetermined distance, and the pair of lenses and the image sensor are arranged on a straight line perpendicular to both the optical axes, and a straight line is placed on either one of the image sensors of this optical system mechanism. Select one point from the imaging contrast of the object imaged on the image, find the distance between this point and the optical axis of the optical system mechanism, and linearly image the object on the image sensor of the other optical system mechanism. Find the point corresponding to the above selected point from the imaging contrast, find the distance from this point to the optical axis of this optical system mechanism, and calculate the distance between these pair of optical system mechanisms and the object based on the triangulation method. An optical distance measuring device characterized in that each of the image sensors is provided so as to be inclined at the same predetermined angle in the circumferential direction with respect to the optical axis.
JP8260382A 1982-05-14 1982-05-14 Optical distance measuring device Pending JPS58198711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8260382A JPS58198711A (en) 1982-05-14 1982-05-14 Optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8260382A JPS58198711A (en) 1982-05-14 1982-05-14 Optical distance measuring device

Publications (1)

Publication Number Publication Date
JPS58198711A true JPS58198711A (en) 1983-11-18

Family

ID=13779053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8260382A Pending JPS58198711A (en) 1982-05-14 1982-05-14 Optical distance measuring device

Country Status (1)

Country Link
JP (1) JPS58198711A (en)

Similar Documents

Publication Publication Date Title
US9323992B2 (en) Fusion of far infrared and visible images in enhanced obstacle detection in automotive applications
JP2887039B2 (en) Vehicle periphery monitoring device
EP1005234B1 (en) Three-dimensional scope system for vehicles with a single camera
US20090122136A1 (en) Object detection device
JPH07320199A (en) Obstacle detector for vehicle
JPH09142236A (en) Periphery monitoring method and device for vehicle, and trouble deciding method and device for periphery monitoring device
CN106461387B (en) Stereo camera apparatus and vehicle provided with stereo camera
JP3872179B2 (en) Vehicle collision prevention device
JP3296055B2 (en) Distance detection device using in-vehicle camera
JP2927916B2 (en) Distance detection device
CN114659489A (en) Front vehicle distance detection method and device based on convex lens imaging principle
JP2919718B2 (en) Vehicle distance measuring device and vehicle equipped with it
WO2021151516A1 (en) A method for determining a trailer length of a vehicle
JPH0541087Y2 (en)
JPH07333339A (en) Obstacle detector for automobile
JP3819551B2 (en) Vehicle distance measuring device
JP3019901B2 (en) Vehicle specification automatic measurement device
JPS58198711A (en) Optical distance measuring device
JP3456843B2 (en) Front inter-vehicle distance measurement device
JPS60231193A (en) Vehicular view field monitoring system
JPH0385069A (en) On-vehicle backward confirmation camera system
JPH1151644A (en) Distance measuring instrument for vehicle
JPH0372930B2 (en)
JP3373331B2 (en) Inter-vehicle distance detection device
JP3721803B2 (en) Ranging device