JPS5818159B2 - Datsuzan Riyuen Sozai - Google Patents

Datsuzan Riyuen Sozai

Info

Publication number
JPS5818159B2
JPS5818159B2 JP6037375A JP6037375A JPS5818159B2 JP S5818159 B2 JPS5818159 B2 JP S5818159B2 JP 6037375 A JP6037375 A JP 6037375A JP 6037375 A JP6037375 A JP 6037375A JP S5818159 B2 JPS5818159 B2 JP S5818159B2
Authority
JP
Japan
Prior art keywords
water
residual chlorine
removal agent
chlorine removal
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6037375A
Other languages
Japanese (ja)
Other versions
JPS51135169A (en
Inventor
西野敦
曾根高和則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6037375A priority Critical patent/JPS5818159B2/en
Publication of JPS51135169A publication Critical patent/JPS51135169A/en
Publication of JPS5818159B2 publication Critical patent/JPS5818159B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は浄水用脱残留塩素剤に関するもので、さらに詳
細に説明μれば市水の脱残留塩素剤として亜硫酸カルシ
ウム(Ca S 03 )と水に難溶性の炭酸塩とを用
いて粒状の脱残留塩素剤を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a residual chlorine removal agent for water purification, and will be explained in more detail. The present invention provides a granular residual chlorine removal agent using the following methods.

近年市水中の残留塩素あるいは不快臭、不快味を除去し
、良質な飲料水を得るために活性炭等の吸着剤を特殊な
容器に収容して、これに塩素処理水を通して脱残留塩素
および各種夾雑物を除去する家庭用浄水器が販売されて
いる。
In recent years, in order to remove residual chlorine, unpleasant odors, and unpleasant tastes in city water and obtain high-quality drinking water, adsorbents such as activated carbon are placed in special containers, and chlorinated water is passed through this to remove residual chlorine and various contaminants. There are household water purifiers on the market that remove waste.

特に脱残留塩素剤として市販浄水器には大部分活性炭が
使用され、一部亜硫酸カルシウムも検討されている。
In particular, activated carbon is mostly used in commercially available water purifiers as a residual chlorine removal agent, and calcium sulfite is also being considered in some cases.

このように脱残留塩素剤として活性炭が使用される理由
として、脱残留塩素および脱不快味、脱不快臭および市
水中に含まれている各種夾雑物除去などにすぐれた効果
を有することは、良く知られている。
The reason why activated carbon is used as a residual chlorine removal agent is that it has excellent effects in removing residual chlorine, unpleasant tastes, unpleasant odors, and various impurities contained in city water. Are known.

しかし、現在活性炭を使用した市販浄水器は、塩素処理
水を脱残留塩素しても(長期間脱残留塩素水を滞留した
場合)、脱残留塩素水中に一般細菌(雑菌)が増殖し、
飲料水水質基準(100個/ 1 cc以下)をオーバ
ーし飲料に不適な水となる場合がある。
However, with current commercially available water purifiers that use activated carbon, even if residual chlorine is removed from chlorinated water (if residual chlorine water is retained for a long period of time), general bacteria (miscellaneous germs) will grow in the residual chlorine water.
Water may exceed drinking water quality standards (100 particles/1 cc or less) and become unsuitable for drinking.

これらの雑菌の増殖は、特に活性炭の表面あるいは細孔
に、市水中の一般細菌あるいは雑菌の栄養源となる各種
夾雑物が長期間使用において蓄積され、あたかも雑菌に
とって栄養源;となり、飲料水水質基準を満足すること
ができないこともあるのではない゛かと考える。
The growth of these bacteria is caused by the accumulation of general bacteria in city water or various impurities that serve as a nutrient source for bacteria on the surface or pores of activated carbon over long periods of use, acting as a nutrient source for bacteria, resulting in poor drinking water quality. I think there may be times when it is not possible to meet the standards.

したがって前記雑菌の殺菌法として、最近、極微量で殺
菌効果のある貴金属イオンに着目し、特に銀イオンを利
用した殺菌製造を設けることが提案されているが、望む
ならばこのような特別な殺菌装置を使用しない方が好ま
しい。
Therefore, as a method for sterilizing the aforementioned germs, it has recently been proposed to focus on precious metal ions, which have a sterilizing effect in extremely small amounts, and to provide sterilization production that uses silver ions in particular. It is preferable not to use the device.

ところで本発明者らは、従来、脱塩素剤として効果のあ
る亜硫酸カルシウムのみを粒状(造粒成型)にし、25
0〜500℃の熱処理をして用いていた。
By the way, the present inventors have conventionally made only calcium sulfite, which is effective as a dechlorinator, into granules (granulation molding).
It was used after being heat treated at 0 to 500°C.

このように熱処理を行なわなければ、亜硫酸カルシウム
のみで粒状にしたものは、水中で崩壊し、すぐに元の粉
末になり、粒状物にする長所がなくなってしまうこと、
あるいはまた熱処理(250〜500℃)を行なっても
、強度的に弱い、すなわち、長期間水中に浸漬すること
により、造粒粒子が崩壊し徐々に粉末化現象が起る。
If heat treatment is not carried out in this way, granules made from calcium sulfite alone will disintegrate in water and quickly return to their original powder form, eliminating the advantage of making them into granules.
Alternatively, even if heat treatment (250 to 500° C.) is performed, the strength is weak, that is, by immersing it in water for a long period of time, the granulated particles will collapse and a powdering phenomenon will gradually occur.

(しかし高温処理はど粉末化現象は小)。(However, the powdering phenomenon is small after high temperature treatment).

このような欠点をなくするために、本発明者らは、ここ
に亜硫酸カルシウムと水に難溶性の炭酸塩との混合物を
粒状に成型してなる脱残留塩素剤を創案した。
In order to eliminate such drawbacks, the present inventors have devised a residual chlorine removal agent made by molding a mixture of calcium sulfite and a carbonate that is sparingly soluble in water into granules.

この成型には必要な水を添加して造粒成型し、造粒成型
後、100℃以下の温度で、粒状物の水分を除去するだ
けで、長期間水中に浸漬しても粉末化現象は起らず、強
度的に犬なる脱残留塩素剤を製造することができるので
ある。
For this molding, the necessary water is added and granulation molded, and after granulation molding, the water content of the granules is simply removed at a temperature of 100°C or less, and there is no powdering phenomenon even if immersed in water for a long period of time. This makes it possible to produce a highly effective residual chlorine removal agent.

さらに熱処理することにより、さらに強度の犬なるもの
が出来る。
Further heat treatment produces even stronger dogs.

また、脱残留塩素効果も、亜硫酸カルシウムのみと比較
しても、はとんど変らず、“すぐれた性能を有するもの
である。
In addition, the residual chlorine removal effect is almost the same when compared to calcium sulfite alone, and it has "excellent performance."

水に難溶性の炭酸塩として、特に炭酸カルシウム、炭酸
マグネシウムが効″巣的で、一般に食品添加物として使
用されているものは、すべて可能であり、この2つの炭
酸塩は、室温程度の乾燥でも十分、すぐれた固化の効果
、性能を有する。
Calcium carbonate and magnesium carbonate are particularly effective as carbonates that are poorly soluble in water, and all of them are commonly used as food additives.These two carbonates can be dried at room temperature. However, it has sufficient solidification effect and performance.

その他の水に難溶性の炭酸塩として、炭酸マンガン、炭
酸等も使用可能である。
Other poorly water-soluble carbonates such as manganese carbonate and carbonic acid can also be used.

また、使用上、あるいはコスト、効果(強度)、性能(
脱残留塩素)等の総合的にすぐれたものとして、炭酸カ
ルシウムが最適である。
Also, in terms of use, cost, effectiveness (strength), performance (
Calcium carbonate is optimal as it has comprehensive properties such as removal of residual chlorine.

しかし亜硫酸カルシウムと水に難溶性の炭酸塩との組成
比も重要で、 の範囲が良く、これらの中でつ、特に、■=10〜に2
の範囲が、使用上(コスト、強度、性能)からもつとも
最適値である。
However, the composition ratio of calcium sulfite and carbonate, which is sparingly soluble in water, is also important.
The range of is the optimum value from the viewpoint of use (cost, strength, performance).

1:20以下すなわち、CaSO3が少なくなると、脱
塩素性能が低下し、粒状物の添加量を多くしなければな
らない。
When the ratio is less than 1:20, that is, when the amount of CaSO3 decreases, the dechlorination performance decreases, and the amount of granular material added must be increased.

一方1:1以上すなわちCaSO3が多くすると、亜硫
酸カルシウムのみの場合と同様に、100℃以上の熱処
理が必要となる。
On the other hand, if the ratio is 1:1 or more, that is, if the CaSO3 content is increased, heat treatment at 100° C. or higher is required, as in the case of only calcium sulfite.

しかしながら、1:1以下(1:10〜に1)の範囲で
はCaSO3のみの場合と脱残留塩素効果は、はとんど
変らない。
However, in the range of 1:1 or less (1:10 to 1), the residual chlorine removal effect is almost the same as in the case of using only CaSO3.

これを第1図に示している。なお、第1図Aは、空間速
度、S、V、値50 (min、、’ ) 、 BハS
、V−値30(mnT’)、CはS、V、値10(mr
n、1:)のものであり、 空間速度とは、 試料の造粒成仙径1φ、粒度分布10〜100メツシユ
のものヲ用いた。
This is shown in FIG. In addition, Fig. 1A shows the space velocity, S, V, value 50 (min,,'),
, V-value 30 (mnT'), C is S, V-value 10 (mr
n, 1:), and the space velocity is a sample with a granulation diameter of 1φ and a particle size distribution of 10 to 100 mesh.

次に脱残留塩素剤の製造方法について説明する。Next, a method for producing a residual chlorine removal agent will be explained.

亜硫酸カルビウム粉末と水に難溶性の炭酸塩粉末をまず
乾式温容し、加圧成型に足るだけの水を添加し、湿式混
合し、加圧成型し、乾燥して、脱残留塩素剤を得るもの
である。
Calbium sulfite powder and carbonate powder that is sparingly soluble in water are first dry heated, enough water is added for pressure molding, wet mixed, pressure molded, and dried to obtain a residual chlorine removal agent. It is something.

この製造方法の一実施例について説明する。An example of this manufacturing method will be described.

) 亜硫酸カルシラ云と炭酸カルシウムとを用いhものを各
種組成比を変化させたものを以下の表1に示す。
) Table 1 below shows various composition ratios of calcilla sulfite and calcium carbonate.

造粒径1φ。実施例 2 亜硫酸カルシウムと炭酸マグネシウムとを用いたものを
各種組成比を変化させたものを以下の表2に示す。
Granule diameter 1φ. Example 2 Table 2 below shows products using calcium sulfite and magnesium carbonate with various composition ratios.

実施例 3 亜硫酸カルシウムと炭酸マンガンとを用いたものを各種
組成比を変化させたものを以下の表3に示す。
Example 3 Table 3 below shows products using calcium sulfite and manganese carbonate with various composition ratios.

次に市販浄水器を用いて性能確認をしたものついて一実
施例を第2図とともに説明する。
Next, an example of a commercially available water purifier whose performance was confirmed will be described with reference to FIG. 2.

市販浄水器は本出願人製作になるPJ−IRFを用いた
As a commercially available water purifier, PJ-IRF manufactured by the present applicant was used.

図において1は本体1,2は市水流入口、3は脱残留塩
素水流出管、4は脱残留塩素酸が入ったポリエチレンカ
ートリッジ、5は脱残留塩素剤落下防止フィルター、6
は本発明になる脱残留塩素剤、7は脱残留塩素剤のごく
一部に発生する微粉除去フィルターである。
In the figure, 1 is the main body 1, 2 is the city water inlet, 3 is the de-residual chlorine water outflow pipe, 4 is the polyethylene cartridge containing the de-residual chlorine acid, 5 is the residual chlorine agent fall prevention filter, 6
7 is a residual chlorine removal agent according to the present invention, and 7 is a filter for removing fine particles generated in a small portion of the residual chlorine removal agent.

。このような構成で浄水器に本発明による脱残留塩素剤
を設置し、流量4,0g7m、脱残留塩素剤(実施例1
表1の/168CaSO3:CaCO3−1,:4造粒
径1φ粒度゛10〜100メツシュ)を200(i)入
れ、検討した結果を表4に示す。
. With this configuration, the residual chlorine removal agent according to the present invention was installed in the water purifier, and the residual chlorine removal agent (Example 1) was installed at a flow rate of 4.0 g 7 m.
The /168CaSO3:CaCO3-1,:4 granulation diameter 1φ particle size (10-100 mesh) of Table 1 was added to 200(i) and the results of the study are shown in Table 4.

空間速度 S、V、値(201niR’)以上の結果よ
り、亜硫酸カルシウムと水に難溶性の炭酸塩との粒状混
合物にすることにより、■ 粉末Ca S Osを使用
すると、濾相等の表面に均一にCa S 03層をコー
ティングさせなければならない。
Space velocity S, V, value (201niR') Based on the above results, by making a granular mixture of calcium sulfite and carbonate that is poorly soluble in water, ■ If powdered CaSOs is used, it will be uniformly distributed on the surface of the filter phase, etc. must be coated with a CaS03 layer.

■ この粉末CaSO3層のコーティングにより、濾過
閉塞が大きくなること。
■ This three-layer coating of powdered CaSO increases filtration blockage.

■ このCa 803層のコーティングは濾布表面との
結合が弱く、ショック等により剥離しやす免税残留塩素
効率も悪くなる。
■ This Ca 803 layer coating has a weak bond with the surface of the filter cloth, and is easily peeled off due to shock, etc., and the duty-free residual chlorine efficiency also deteriorates.

などの粉末Ca S Osの欠点をなくするとともに、
本発明の粒状混合物のもつともすぐれた効果は、■ 粒
状物であるにもかかわら−ず、みかけ表面積が大きく、
この粒状層か、適度に、市水を均一に拡散させ、脱残留
塩素効率を上昇させること。
In addition to eliminating the drawbacks of powdered CaSOs such as
The outstanding effects of the granular mixture of the present invention are: (1) Despite being a granular material, it has a large apparent surface area;
This granular layer disperses city water moderately and uniformly, increasing the efficiency of removing residual chlorine.

■ 粒状物であるにもかかわらず、CaSO3量が最小
限度量で十分、性能を出しうろこと。
■ Even though it is a granular material, the minimum amount of CaSO3 is enough to achieve good performance.

■ CaSO3のみに比べ、水中での崩壊はなく、強度
大なるものが得られる。
■ Compared to CaSO3 alone, it does not disintegrate in water and has greater strength.

■ 粉末Ca COsのみの場合、たとえば、市販の浄
水器に用いる場合、ある一定量が必要であり、プリコー
トの厚みも、ある一定の厚みが必要であることから、余
分なCaSO3がかならず必要となるが、粒状混合物で
は使用期間(総濾過水量)が決まればその曹も決定でき
る。
■ If only powdered CaCOs is used, for example, when used in a commercially available water purifier, a certain amount is required, and a certain pre-coat thickness is also required, so extra CaSO3 is always required. However, in the case of granular mixtures, if the period of use (total amount of filtrated water) is determined, the amount of sodium can also be determined.

また、造粒径状が細か<(0,5φ等)になると、亜硫
酸カルシウムと炭酸カルシウムに少量に炭酸マグネシウ
ムを添加することにより、細かい造粒成型が可能となり
、作業性が良くなる等々の利点をもち、その工業的効果
9太きいものである。
In addition, when the granulation diameter becomes fine (0,5φ, etc.), adding a small amount of magnesium carbonate to calcium sulfite and calcium carbonate allows for fine granulation molding, which has advantages such as improved workability. It has a great industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明憾よる脱残留塩素剤の組成比−脱残留塩
素率特性図、第2図は本発明の脱残留塩素剤の使用例を
示す浄水器の断面図である。 1・・・・・・本体、4・・・・・・ポリエチレンカー
トリッジ、5・・・・・・脱残留塩素剤落下防止フィル
ター、6・・・・・・脱残留塩素剤。
FIG. 1 is a composition ratio-residual chlorine removal rate characteristic diagram of the residual chlorine removal agent according to the present invention, and FIG. 2 is a sectional view of a water purifier showing an example of use of the residual chlorine removal agent of the present invention. 1... Body, 4... Polyethylene cartridge, 5... Residual chlorine removal agent fall prevention filter, 6... Residual chlorine removal agent.

Claims (1)

【特許請求の範囲】[Claims] 1 亜硫酸カルシウムと水に難溶性の炭酸塩の二組酸か
らなり、粒状に成型してなる脱残留塩素剤。
1. A residual chlorine removal agent formed into granules, consisting of two acids: calcium sulfite and carbonate, which are sparingly soluble in water.
JP6037375A 1975-05-19 1975-05-19 Datsuzan Riyuen Sozai Expired JPS5818159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6037375A JPS5818159B2 (en) 1975-05-19 1975-05-19 Datsuzan Riyuen Sozai

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6037375A JPS5818159B2 (en) 1975-05-19 1975-05-19 Datsuzan Riyuen Sozai

Publications (2)

Publication Number Publication Date
JPS51135169A JPS51135169A (en) 1976-11-24
JPS5818159B2 true JPS5818159B2 (en) 1983-04-11

Family

ID=13140254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6037375A Expired JPS5818159B2 (en) 1975-05-19 1975-05-19 Datsuzan Riyuen Sozai

Country Status (1)

Country Link
JP (1) JPS5818159B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170771U (en) * 1985-04-12 1986-10-23
JPS6247735U (en) * 1985-09-11 1987-03-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148091U (en) * 1984-03-14 1985-10-01 株式会社エスオー技研 water purification device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170771U (en) * 1985-04-12 1986-10-23
JPS6247735U (en) * 1985-09-11 1987-03-24

Also Published As

Publication number Publication date
JPS51135169A (en) 1976-11-24

Similar Documents

Publication Publication Date Title
US3932278A (en) Filter cleaning method
US2595290A (en) Water purification
US5914043A (en) Fluid filtering method
JP2003531005A (en) Filters for purifying household drinking water
JPS60147287A (en) Drinking water modifier
JPS5818159B2 (en) Datsuzan Riyuen Sozai
JPH1085590A (en) Water purifying filter structure
JP3253410B2 (en) Water purification material, its manufacturing method and water purification method
JP2003010614A (en) Filter for water cleaning device
JP3720079B2 (en) Water treatment agent and method for producing the same
JPH07256239A (en) Cartridge for water purifier
JP2003225688A (en) Water purifying material and water purifying method
JPH11197500A (en) Phosphate ion adsorption filter medium and its production
JP2020179374A (en) Residual chlorine removing filter body
JP3247598B2 (en) Granular phosphorus adsorbent and method for removing phosphorus
JP3293705B2 (en) Water purifier
JPH07222971A (en) Cartridge for water purifier
RO118229B1 (en) Process for complex air purification and saline material with porous structure
JPS62193693A (en) Filter medium for sterilization
JP3008119U (en) Water purification equipment
JP3150917B2 (en) Water purifier
JPS60261586A (en) Method for removing metal, metallic ion, and organic chlorine from water
JPH02211859A (en) Purification of vinegar using corn as raw material
JPH07136500A (en) Cod component removing material and method and production of cod component removing material
JPH0487684A (en) Production of purifying agent