JPH11202153A - Optical axis adjusting method for optical component - Google Patents

Optical axis adjusting method for optical component

Info

Publication number
JPH11202153A
JPH11202153A JP230998A JP230998A JPH11202153A JP H11202153 A JPH11202153 A JP H11202153A JP 230998 A JP230998 A JP 230998A JP 230998 A JP230998 A JP 230998A JP H11202153 A JPH11202153 A JP H11202153A
Authority
JP
Japan
Prior art keywords
optical
light
optical axis
optical component
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP230998A
Other languages
Japanese (ja)
Other versions
JP3045991B2 (en
Inventor
Akio Enomoto
明夫 榎本
Ryoichi Hata
亮一 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10002309A priority Critical patent/JP3045991B2/en
Publication of JPH11202153A publication Critical patent/JPH11202153A/en
Application granted granted Critical
Publication of JP3045991B2 publication Critical patent/JP3045991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the optical axis adjusting method for optical components which can adjust the optical axis fast with high precision without being affected by measurement disturbance. SOLUTION: By this optical, axis adjusting method for optical components, the optical axes of an optical component 1 and an optical component 3 are aligned with each other. In this case, the optical propagation parts of the two optical components of the two optical components from an end surface whose optical axes is to be aligned or exit light from the optical propagation parts is observed to align the optical axes of both according to the observed optical propagation parts or projection light. In concrete, a both-sided reflecting member 5 is provided between the end surfaces of the optical components 1 and 3 whose optical axes are to be adjusted, the projection light from the end surface whose optical axis is to be adjusted is reflected by the both-sided reflecting member 5 in mutually opposite directions, and the reflected light is picked up by image pickup devices 8 and 9; and the optical component 1 or 3 is moved relatively according to the position of the reflected light of the picked-up image so that the optical axes of both of them are aligned with each other to enable fast, high-precision optical axis adjustment irrelevantly to the outward shape precision of the optical components and whether an adhesive is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光部品と光部品と
の光軸を一致させて接続する必要がある場合に用いられ
る光部品の光軸調整方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting the optical axis of an optical component which is used when it is necessary to connect an optical component and an optical component so that their optical axes are aligned.

【0002】[0002]

【従来の技術】光部品と光部品とを接続する場合、両者
の光軸を一致させる必要がある。例えば、接続すべき光
部品が光ファイバアレイと光導波路チップである場合、
光ファイバアレイの端面における光ファイバからの出射
光の光軸と、光導波路チップの端面における光導波部か
らの出射光の光軸とを一致させて両者を接続する必要が
ある。従来、このような光部品の光軸調整方法として、
スパイラルサーチ法、外形観察法等の方法が知られてい
る。
2. Description of the Related Art When an optical component is connected to an optical component, it is necessary to make the optical axes of the two coincide. For example, if the optical components to be connected are an optical fiber array and an optical waveguide chip,
It is necessary to match the optical axis of the light emitted from the optical fiber at the end face of the optical fiber array with the optical axis of the light emitted from the optical waveguide at the end face of the optical waveguide chip and connect them. Conventionally, as an optical axis adjustment method of such an optical component,
Methods such as a spiral search method and an outer shape observation method are known.

【0003】図4は従来から光軸調整方法の一例として
知られているスパイラルサーチ法を説明するための図で
ある。図4に示す例において、51は光ファイバ52を
保持する光ファイバアレイ、53は光導波部54を有す
る光導波路チップ、55は光ファイバ52に光を入射さ
せるためのレーザダイオード、56は光導波部54から
出射する出射光を観察するためのフォトダイオードであ
る。図4に示す例において、レーザダイオード55から
入射し、光ファイバ52、光導波部54を介して出射す
る光を、フォトダイオード56で常に観察する。この状
態で、光ファイバアレイ51または光導波路チップ53
のいずれかをそれを保持するステージを光軸と垂直の面
内で一定のステップ幅例えば2μmのステップ幅で任意
の位置からスパイラル状に移動させ、フォトダイオード
56で観察した出射光の強度が所定のしきい値以上の大
きさとなる点で、両者の光軸が一致したものとして光部
品の光軸調整を行っていた。
FIG. 4 is a diagram for explaining a spiral search method conventionally known as an example of an optical axis adjustment method. In the example shown in FIG. 4, 51 is an optical fiber array holding an optical fiber 52, 53 is an optical waveguide chip having an optical waveguide 54, 55 is a laser diode for allowing light to enter the optical fiber 52, and 56 is an optical waveguide. This is a photodiode for observing light emitted from the unit 54. In the example shown in FIG. 4, light incident from the laser diode 55 and emitted through the optical fiber 52 and the optical waveguide 54 is always observed by the photodiode 56. In this state, the optical fiber array 51 or the optical waveguide chip 53
Is moved in a spiral shape from an arbitrary position in a plane perpendicular to the optical axis with a constant step width, for example, a step width of 2 μm, so that the intensity of the emitted light observed by the photodiode 56 is predetermined. The optical axis of the optical component has been adjusted on the assumption that the optical axes of both optical elements coincide with each other at a point where the magnitude becomes equal to or larger than the threshold value.

【0004】図5は従来から光軸調整方法の一例として
知られている外形観察法を説明するための図である。図
5に示す例において、図4に示す例と同一の部材には同
一の符号を付し、その説明を省略する。図5に示す例で
は、光ファイバアレイ51と光導波路チップ53とを側
面からCCDカメラなどの撮像装置57で観察し、観察
した画像に基づき、光ファイバアレイ51と光導波路チ
ップ53の外形を画像処理して求め、あるいは、透明な
光ファイバアレイ51内の光ファイバ52と光導波路チ
ップ53上の光導波部54との位置を画像処理して求
め、いずれかの方法で求めた両者の位置に応じて光ファ
イバアレイ51または光導波路チップ53を移動させ
て、両者の光軸が一致するよう光部品の光軸調整を行っ
ている。
FIG. 5 is a view for explaining an outline observation method conventionally known as an example of an optical axis adjustment method. In the example illustrated in FIG. 5, the same members as those in the example illustrated in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. In the example shown in FIG. 5, the optical fiber array 51 and the optical waveguide chip 53 are observed from the side with an imaging device 57 such as a CCD camera, and the outer shape of the optical fiber array 51 and the optical waveguide chip 53 is imaged based on the observed image. The position of the optical fiber 52 in the transparent optical fiber array 51 and the position of the optical waveguide portion 54 on the optical waveguide chip 53 are obtained by image processing. The optical fiber array 51 or the optical waveguide chip 53 is moved accordingly to adjust the optical axis of the optical component so that the optical axes of the two coincide.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図4に
示したスパイラルサーチ法では、スパイラルサーチを開
始する任意の点で光ファイバ52と光導波部54とのズ
レ量が大きいと、膨大な回数のスパイラルサーチが必要
となり処理に要する時間が指数関数的に大きくなる問題
があった。例えば、ステップ幅5μmで±50μmの範
囲を走査して処理するためには、400回の移動・測定
が必要であった。
However, in the spiral search method shown in FIG. 4, if the amount of displacement between the optical fiber 52 and the optical waveguide 54 is large at any point where the spiral search is started, an enormous number of times will occur. There is a problem that a spiral search is required and the time required for processing becomes exponentially longer. For example, in order to scan and process a range of ± 50 μm with a step width of 5 μm, 400 movements and measurements were required.

【0006】また、図5に示した外形観察法では、まず
光ファイバアレイ51と光導波路チップ53との外形を
基準に光軸調整を行おうとすると、各ワークの光軸と外
形との間の精度が要求される問題があった。そのため、
光ファイバ同士の接続では有効だが、光ファイバアレイ
51と光導波路チップ53との接続では、光の伝搬する
コア径が数μmと小さくなると、前述の精度も数μm必
要となりコストが大となる問題があった。また、光ファ
イバ52と光導波部54の位置を基準に光軸調整を行お
うとすると、光部品に使用している接着剤により光ファ
イバ52の位置を特定できない場合がある問題があっ
た。さらに、この場合は、振動や汚れさらにはワークの
欠け等の測定外乱に敏感なため、光ファイバ同士の接続
では有効だが、光ファイバアレイ51では光ファイバ5
2を接着剤でV溝中に保持固定する場合が多く、実質的
に光部品の光軸調整ができない問題もあった。
In the contour observation method shown in FIG. 5, when the optical axis is first adjusted based on the contour of the optical fiber array 51 and the optical waveguide chip 53, the distance between the optical axis of each workpiece and the contour is determined. There was a problem that required precision. for that reason,
It is effective in connecting optical fibers, but in the connection between the optical fiber array 51 and the optical waveguide chip 53, if the core diameter through which light propagates becomes as small as several μm, the above-mentioned accuracy also needs to be several μm and the cost increases. was there. Further, when the optical axis is adjusted based on the positions of the optical fiber 52 and the optical waveguide portion 54, there is a problem that the position of the optical fiber 52 cannot be specified due to the adhesive used for the optical component. Further, in this case, the optical fiber array 51 is effective for connection between optical fibers because it is sensitive to measurement disturbance such as vibration, dirt, and chipping of the work.
In many cases, the optical component 2 is held and fixed in the V-groove with an adhesive, and there is a problem that the optical axis of the optical component cannot be substantially adjusted.

【0007】本発明の目的は上述した課題を解消して、
高速でしかも測定外乱の影響を受けずに高精度の光軸調
整を行うことのできる光部品の光軸調整方法を提供しよ
うとするものである。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a method for adjusting the optical axis of an optical component that can perform the optical axis adjustment with high accuracy at high speed and without being affected by measurement disturbance.

【0008】[0008]

【課題を解決するための手段】本発明の光部品の光軸調
整方法は、光部品と光部品との光軸を一致させる光部品
の光軸調整方法において、光軸を一致させたい端面から
の2つの光部品の光伝播部または光伝播部からの出射光
を観察し、観察した光伝播部または光伝播部からの出射
光の位置に基づき両者の光軸を一致させることを特徴と
するものである。
SUMMARY OF THE INVENTION An optical component adjusting method for an optical component according to the present invention is a method for adjusting the optical axis of an optical component, wherein the optical axis of the optical component coincides with the optical axis of the optical component. Observing the light propagating portion of the two optical components or the light emitted from the light propagating portion, and matching the optical axes of the two based on the position of the observed light propagating portion or the light emitted from the light propagating portion. Things.

【0009】本発明では、接続すべき2つの光部品の光
伝播部または光伝播部からの出射光を観察し、観察した
光伝播部または光伝播部からの出射光の位置に基づき両
者の光軸を一致させることで、好ましくは、光部品と光
部品との光軸を調整したい端面の間に両面反射部材を設
け、光軸を調整すべき端面からの出射光を、前記両面反
射部材で互いに反対方向に反射させ、撮像装置で反射光
を撮像し、撮像した画像の互いの反射光の位置に基づき
両者の光軸が一致するよう光部品を相対移動させること
で、光部品の外形精度や接着剤使用の有無に関わらず、
高速で高精度の光軸調整を行うことができる。また、同
一の調芯装置に接続すべき2つの光部品及び撮像装置が
装着された状態で出射光を同時に観察できるよう構成す
ることで、測定機器の振動の影響を非常に小さくするこ
とができる。さらに、光の伝播部を直接観察するので、
光部品などの汚れ等の測定外乱に強い構造となる。
According to the present invention, the light propagating portion of the two optical components to be connected or the light emitted from the light propagating portion is observed, and based on the observed light propagating portion or the position of the light propagating from the light propagating portion, the two light components are connected. By aligning the axes, preferably, a double-sided reflecting member is provided between the end surfaces of the optical component and the optical component where the optical axis of the optical component is to be adjusted, and the light emitted from the end surface whose optical axis is to be adjusted is reflected by the double-sided reflecting member. The reflected light is reflected in opposite directions, the reflected light is imaged by the imaging device, and the optical components are relatively moved based on the positions of the reflected lights in the captured image so that the optical axes of the two coincide with each other. Or with or without adhesive
High-speed and high-precision optical axis adjustment can be performed. Further, by configuring so that the emitted light can be simultaneously observed in a state where the two optical components to be connected to the same alignment device and the imaging device are mounted, the influence of the vibration of the measuring device can be extremely reduced. . Furthermore, since the light propagation part is directly observed,
A structure resistant to measurement disturbances such as contamination of optical components and the like is obtained.

【0010】 〔発明の詳細な説明〕図1は本発明の光部品の光軸調整
方法の一例の概念を説明するための図である。図1に示
す例において、1は光ファイバ2を保持する光ファイバ
アレイ、3は光導波部4を有する光導波路チップ、5は
光ファイバアレイ1と光導波路チップ3とにおける光軸
を調整したい端面の間に設けた両面反射部材としてのミ
ラー、6は光ファイバ2に光を入射させるためのレーザ
ダイオード、7は光導波部4に光を入射させるためのレ
ーザダイオード、8は光ファイバ2から出射しミラー5
の一反射面で反射した反射光を撮像するための鏡筒8−
1およびCCDカメラ8−2からなる撮像装置、9は光
導波部4から出射しミラー5の他の反射面で反射した反
射光を撮像するための鏡筒9−1およびCCDカメラ9
−2からなる撮像装置である。
[Detailed Description of the Invention] FIG. 1 is a view for explaining the concept of an example of a method for adjusting the optical axis of an optical component according to the present invention. In the example shown in FIG. 1, 1 is an optical fiber array holding an optical fiber 2, 3 is an optical waveguide chip having an optical waveguide 4, and 5 is an end face of the optical fiber array 1 and the optical waveguide chip 3 whose optical axis is to be adjusted. A mirror as a double-sided reflection member provided between the optical fiber 2; a laser diode 6 for allowing light to enter the optical fiber 2; a laser diode 7 for allowing light to enter the optical waveguide portion 4; Mirror 5
8 for imaging the reflected light reflected by one reflecting surface of
An imaging device 9 comprising a CCD camera 8 and a CCD camera 8-2; and a lens barrel 9-1 and an CCD camera 9 for imaging reflected light emitted from the optical waveguide portion 4 and reflected by another reflection surface of the mirror 5.
-2.

【0011】図1に示す例において、光ファイバ2から
の出射光とこの出射光がミラー5の一反射面で反射した
反射光とが例えば90°の関係になるとともに、光導波
路4からの出射光とこの出射光がミラー5の他の反射面
で反射した反射光とが例えば90°の関係になるよう
に、ミラー5の反射面の向きを決定している。また、撮
像装置8と撮像装置9との関係は、互いの撮像した画像
中の各位置の対応が一義的に決定できるような関係、好
ましくは、撮像装置8の光軸と撮像装置9の光軸とが一
致するような関係になるよう配置している。なお、撮像
装置8と撮像装置9とが上述したような関係にあれば、
撮像装置8および撮像装置9との光軸が一致するよう配
置する必要はない。さらに、上述した光ファイバ1、光
導波路チップ3、ミラー5、撮像装置8および撮像装置
9は、それぞれ必要に応じて取付治具を介して同一の調
芯装置上に配置されている。
In the example shown in FIG. 1, the light emitted from the optical fiber 2 and the light reflected by one reflection surface of the mirror 5 have a relationship of, for example, 90 °, and the light emitted from the optical waveguide 4 has a relationship of 90 °. The direction of the reflecting surface of the mirror 5 is determined so that the emitted light and the reflected light of the emitted light reflected by the other reflecting surface of the mirror 5 have a relationship of, for example, 90 °. Further, the relationship between the imaging device 8 and the imaging device 9 is such that the correspondence of each position in the captured images can be uniquely determined, preferably, the optical axis of the imaging device 8 and the light of the imaging device 9. They are arranged so that the axes coincide with each other. If the imaging device 8 and the imaging device 9 have the above-described relationship,
It is not necessary to arrange the imaging device 8 and the imaging device 9 so that their optical axes coincide. Further, the optical fiber 1, the optical waveguide chip 3, the mirror 5, the image pickup device 8, and the image pickup device 9 are respectively arranged on the same alignment device via a mounting jig as necessary.

【0012】図1に示す構成において、本発明の光部品
の光軸調整方法は、光ファイバアレイ1および光導波路
チップ3からの出射光を同時に観察し、観察した出射光
の位置に基づき両者の光軸を一致させることで達成され
る。具体的には、ミラー5での反射光を撮像装置8と撮
像装置9とで同時に撮像し、撮像した両画像における反
射光の位置に基づき、光ファイバ2と光導波部4との光
軸が一致するようにすることで、本発明の光部品の光軸
調整方法を実現している。このとき、撮像装置8の撮像
画像と撮像装置9の撮像画像とが予め一定の関係になる
よう構成されているため、両撮像画像中の出射光の位置
に基づき、光ファイバアレイ1または光導波路チップ3
のいずれか一方を移動させることだけで、両者の光軸を
一致させることができる。また、各画像における出射光
の位置の決定は、パターンマッチングにより行うことが
ノイズに強い点で好ましい。すなわち、予め登録してお
いた出射光の特徴量に基づき、その特徴量と相関が高い
撮像画像中の画素を求めることで行うことができる。
In the configuration shown in FIG. 1, the optical axis adjusting method of the optical component according to the present invention simultaneously observes the light emitted from the optical fiber array 1 and the optical waveguide chip 3 and based on the positions of the observed emitted light, This is achieved by aligning the optical axes. More specifically, the light reflected by the mirror 5 is simultaneously imaged by the imaging device 8 and the imaging device 9, and the optical axis of the optical fiber 2 and the optical waveguide 4 is adjusted based on the positions of the reflected light in both the captured images. By making them coincide, the method of adjusting the optical axis of the optical component of the present invention is realized. At this time, since the image captured by the image capturing device 8 and the image captured by the image capturing device 9 are configured to have a predetermined relationship in advance, the optical fiber array 1 or the optical waveguide Chip 3
By moving either one of them, the optical axes of both can be matched. In addition, it is preferable that the position of the emitted light in each image is determined by pattern matching in that it is resistant to noise. That is, it can be performed by obtaining a pixel in a captured image having a high correlation with the characteristic amount based on the characteristic amount of the emitted light registered in advance.

【0013】上述した本発明の光部品の光軸調整方法で
は、光ファイバアレイ1ろ光導波路チップ3のいずれか
を移動することだけで光軸を一致させることができるた
め、高速で光軸調整を行うことができる。また、この移
動をステージの移動で達成できるため、高精度の光軸調
整を行うことができる。さらに、光ファイバアレイ1、
光導波路チップ3、ミラー5、撮像装置8および撮像装
置9は、同一の調芯装置上に設けられており、しかも比
較する画像を撮像装置8および撮像装置9により同時に
撮像しているため、撮像系に振動があってもその影響を
受けにくい。さらにまた、光の伝播部すなわち出射光を
直接撮像して光軸調整を行っているため、各装置の汚れ
等の測定外乱に強い構成を得ることができる。
In the above-described method for adjusting the optical axis of an optical component according to the present invention, the optical axis can be matched only by moving any one of the optical fiber array 1 and the optical waveguide chip 3, so that the optical axis can be adjusted at high speed. It can be performed. In addition, since this movement can be achieved by moving the stage, highly accurate optical axis adjustment can be performed. Further, the optical fiber array 1,
The optical waveguide chip 3, the mirror 5, the imaging device 8 and the imaging device 9 are provided on the same alignment device, and images to be compared are simultaneously captured by the imaging device 8 and the imaging device 9. The system is less susceptible to vibrations. Furthermore, since the optical axis is adjusted by directly imaging the light propagation part, that is, the emitted light, a configuration that is resistant to measurement disturbance such as contamination of each device can be obtained.

【0014】図2は本発明の光部品の光軸調整方法のう
ち単芯の光ファイバアレイと単芯の光導波路チップとの
光軸調整の例を説明するための図である。図2に示す例
において、図1に示す例と同一の部材には同一の符号を
付し、その説明を省略する。本例では、図2(a)に示
すように、撮像装置8の光軸と撮像装置9の光軸とが一
致するよう撮像装置8および撮像装置9の位置を決定し
ている。また、図2(b)に示すように、光ファイバア
レイ1の端面からの出射光11とその反射光12とが例
えば直角になるとともに、光導波路チップ3の端面から
の出射光13とその反射光14とが例えば直角になるよ
うに、光ファイバアレイ1、ミラー5および光導波路チ
ップ3の位置を決定している。
FIG. 2 is a view for explaining an example of the optical axis adjustment of a single-core optical fiber array and a single-core optical waveguide chip in the optical axis adjustment method for an optical component according to the present invention. In the example shown in FIG. 2, the same members as those in the example shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In this example, as shown in FIG. 2A, the positions of the imaging device 8 and the imaging device 9 are determined such that the optical axis of the imaging device 8 and the optical axis of the imaging device 9 match. Further, as shown in FIG. 2B, the outgoing light 11 from the end face of the optical fiber array 1 and its reflected light 12 are, for example, at right angles, and the outgoing light 13 from the end face of the optical waveguide chip 3 and its reflection. The positions of the optical fiber array 1, the mirror 5, and the optical waveguide chip 3 are determined so that the light 14 is at a right angle, for example.

【0015】なお、撮像装置8および9のCCDカメラ
8−1および9−1としては、1/3インチの白黒(レ
ンズ系と合わせて1μm/画素相当)で1/2000電
子シャッタを使用したCCDカメラを使用した。また、
鏡筒8−2および9−2としては8倍のレンズ系のもの
を使用した。さらに、ミラー5としては、直角プリズム
で反射面にアルミコートを施したものを利用した。さら
にまた、光導波部4に光を照射するために、レーザダイ
オードではなく照明用ファイバ21を使用した。照明用
ファイバ21としては、コア直径200μmの石英系マ
ルチモードファイバを利用し、この照明用ファイバ21
をSLD光源に接続して使用した。
The CCD cameras 8-1 and 9-1 of the image pickup devices 8 and 9 are 1/3 inch monochrome (corresponding to 1 μm / pixel together with the lens system) CCD using a 1/2000 electronic shutter. Used a camera. Also,
As the lens barrels 8-2 and 9-2, those having an 8 × lens system were used. Further, as the mirror 5, a mirror having a reflecting surface coated with aluminum by a right-angle prism was used. Furthermore, in order to irradiate light to the optical waveguide 4, an illumination fiber 21 was used instead of a laser diode. As the illumination fiber 21, a silica-based multimode fiber having a core diameter of 200 μm is used.
Was used by connecting to an SLD light source.

【0016】図3は本発明の光部品の光軸調整方法のう
ち2芯の光ファイバアレイと単芯の光導波路チップとの
光軸調整の例を説明するための図である。図3に示す例
において、図1および図2に示す例と同一の部材には同
一の符号を付し、その説明を省略する。本例でも、図3
(a)に示すように、撮像装置8の光軸と撮像装置9の
光軸とが一致するよう撮像装置8および撮像装置9の位
置を決定している。また、図3(b)に示すように、光
ファイバアレイ1の端面からの出射光11とその反射光
12とが例えば直角になるとともに、光導波路チップ3
の端面からの出射光13とその反射光14とが例えば直
角になるように、光ファイバアレイ1、ミラー5および
光導波路チップ3の位置を決定している。
FIG. 3 is a view for explaining an example of the optical axis adjustment of a two-core optical fiber array and a single-core optical waveguide chip in the optical axis adjustment method for an optical component of the present invention. In the example shown in FIG. 3, the same members as those in the examples shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. Also in this example, FIG.
As shown in (a), the positions of the imaging device 8 and the imaging device 9 are determined so that the optical axis of the imaging device 8 and the optical axis of the imaging device 9 match. Further, as shown in FIG. 3B, the light 11 emitted from the end face of the optical fiber array 1 and the reflected light 12 thereof are at a right angle, for example, and the optical waveguide chip 3
The positions of the optical fiber array 1, the mirror 5, and the optical waveguide chip 3 are determined so that the outgoing light 13 from the end face and the reflected light 14 thereof are at right angles, for example.

【0017】図3に示す例において、図2に示す例と異
なるのは、光ファイバアレイとして2芯の光ファイバア
レイ31を使用している点である。本例における2芯の
光ファイバアレイ31は、偏波面保存光ファイバの偏波
面保存面の計測に用いる例えば本出願人が先に特開平9
−72826号公報で開示している特殊な用途に使用さ
れるもので、2芯の光ファイバ32と33とは、光導波
路チップ3と接続する端面と反対側で互いに接続した構
造を有している。そのため、図2に示す単芯の光ファイ
バアレイ1と単芯の光導波路チップ3との光軸調整にお
ける光の入射方法とは異なり、光ファイバアレイ31に
おいて一方の光ファイバ32から光を入射して他方の光
ファイバ33から光を出射するよう構成している。すな
わち、図3(a)に示すように、撮像装置8の鏡筒8−
1の側面にスリット同軸落射照明部34を設け、このス
リット同時照明部34により鏡筒8−1から光を出射さ
せ、この出射光15をミラー5で反射させた反射光16
が光ファイバ32へ入射するよう構成している。一方、
光ファイバ33からの出射光11は、図2に示した例と
同様に光軸調整を行っている。
The example shown in FIG. 3 differs from the example shown in FIG. 2 in that a two-core optical fiber array 31 is used as the optical fiber array. The two-core optical fiber array 31 in this embodiment is used for measuring the polarization plane preserving surface of the polarization plane preserving optical fiber.
The two-core optical fibers 32 and 33 have a structure connected to each other on the side opposite to the end face connected to the optical waveguide chip 3. I have. Therefore, unlike the method of entering light in the optical axis adjustment between the single-core optical fiber array 1 and the single-core optical waveguide chip 3 shown in FIG. 2, light enters from one optical fiber 32 in the optical fiber array 31. In this configuration, light is emitted from the other optical fiber 33. That is, as shown in FIG. 3A, the lens barrel 8-
A slit coaxial epi-illumination unit 34 is provided on one side surface, and light is emitted from the lens barrel 8-1 by the slit simultaneous illumination unit 34, and the emitted light 15 is reflected by the mirror 5 as reflected light 16
Is incident on the optical fiber 32. on the other hand,
The outgoing light 11 from the optical fiber 33 is adjusted for the optical axis as in the example shown in FIG.

【0018】次に、光ファイバアレイおよび光導波路チ
ップへ光を入射させる照明について説明する。光ファイ
バアレイおよび光導波路チップへの照明の方法について
は、光が光ファイバおよび光導波部に入射しさえすれば
どのような方法でも問題なく使用でき、上述した実施例
のようにレーザダイオードや照明用ファイバを使用する
簡易な方法を利用することができる。しかし、光導波路
チップの光導波部以外へ光を入射すると、その光は撮像
装置にとって外乱光となるため、あまり広範囲に照明す
る事は望ましくない。そのため、図2および図3に示す
ように照明用ファイバ21を使用してSLD光源からの
光を導波部周辺に集光し、導波部に光を入射することが
好ましい。その他の方法として、大きな光量が必要な場
合には照明用ファイバ21の代わりにハロゲンライトガ
イドを使用して光を入射させることが好ましい。照明用
ファイバ21やハロゲンライトガイドを使用した場合は
容易に照明を行うことができるが、照明用ファイバ21
やハロゲンライトガイドは装置に組み込む際にじゃまに
なる場合がある。そのような場合には、レーザ光源から
のレーザ光をレンズとミラーとを組み合わせた光学系を
使用して直接光導波部へ落射して光を入射させることが
好ましい。なお、光導波部への光の入射は、光源からの
光を直接光導波部に照射するだけでなく、例えば図3
(b)に示すように、光導波路チップ3に予め別の光フ
ァイバアレイ41を接続させておき、この光ファイバア
レイ41を介して光を入射させるよう構成することもで
きる。
Next, illumination for making light incident on the optical fiber array and the optical waveguide chip will be described. Regarding the method of illuminating the optical fiber array and the optical waveguide chip, any method can be used without any problem as long as the light is incident on the optical fiber and the optical waveguide. A simple method using a fiber for use can be utilized. However, if light is incident on portions other than the optical waveguide portion of the optical waveguide chip, the light becomes disturbance light for the image pickup device, so that it is not desirable to illuminate in a very wide area. Therefore, as shown in FIGS. 2 and 3, it is preferable that the light from the SLD light source is condensed around the waveguide using the illumination fiber 21, and the light is incident on the waveguide. As another method, when a large amount of light is required, it is preferable to use a halogen light guide instead of the illumination fiber 21 to make the light incident. When the illumination fiber 21 or the halogen light guide is used, illumination can be easily performed.
Or, the halogen light guide may be in the way when incorporated into the device. In such a case, it is preferable that the laser light from the laser light source be directly incident on the optical waveguide by using an optical system in which a lens and a mirror are combined. In addition, the incidence of light on the optical waveguide is not only directly irradiating the light from the light source to the optical waveguide, but also, for example, FIG.
As shown in (b), another optical fiber array 41 may be connected to the optical waveguide chip 3 in advance, and light may be incident via the optical fiber array 41.

【0019】なお、上述した実施例では、光部品の光伝
播部からの出射光を観察したが、例えば光部品がレーザ
ダイオードやフォトダイオードの場合は、光伝播部を直
接観察でき、その場合でも本発明の光軸調整を行うこと
ができる。また、上述した実施例では、両面反射部材に
より互いに反対方向に反射させた反射光を2つの撮像装
置で同時に撮像したが、例えば両面反射部材としてハー
フミラープリズムを使用し、一旦互いに反対方向に反射
させた反射光のうちの一方を再度プリズムで全反射させ
ることで、反射光を互いに同一方向にすることができ、
この場合は1つの撮像装置で画像の観察を順次に行うこ
とで、本発明の光軸調整を行うことができる。
In the above-described embodiment, the light emitted from the light propagating portion of the optical component is observed. For example, when the optical component is a laser diode or a photodiode, the light propagating portion can be directly observed. The optical axis adjustment of the present invention can be performed. Further, in the above-described embodiment, the reflected lights reflected in the opposite directions by the two-sided reflecting member are simultaneously imaged by the two imaging devices. However, for example, a half mirror prism is used as the two-sided reflecting member, and the reflected light is once reflected in the opposite direction. By completely reflecting one of the reflected lights again by the prism, the reflected lights can be in the same direction as each other,
In this case, the optical axis adjustment of the present invention can be performed by sequentially observing images with one imaging device.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
によれば、接続すべき2つの光部品の光伝播部または光
伝播部からの出射光を観察し、観察した光伝播部または
光伝播部からの出射光の位置に基づき両者の光軸を一致
させているため、光部品の外形精度や接着剤使用の有無
に関わらず、高速で高精度の光軸調整を行うことができ
る。また、同一の調芯装置に接続すべき2つの光部品及
び撮像装置が装着された状態で出射光を同時に観察でき
るよう構成することで、測定機器の振動の影響を非常に
小さくすることができる。さらに、光の伝播部を直接観
察するので、光部品などの汚れ等の測定外乱に強い構造
となる。
As is apparent from the above description, according to the present invention, the light propagation portion of two optical components to be connected or the light emitted from the light propagation portion is observed, and the observed light propagation portion or light is observed. Since the two optical axes are matched based on the position of the light emitted from the propagation part, high-speed and high-precision optical axis adjustment can be performed regardless of the outer shape accuracy of the optical component or the use of an adhesive. Further, by configuring so that the emitted light can be simultaneously observed in a state where the two optical components to be connected to the same alignment device and the imaging device are mounted, the influence of the vibration of the measuring device can be extremely reduced. . Further, since the light propagation portion is directly observed, the structure has a strong resistance to measurement disturbance such as contamination of optical components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光部品の光軸調整方法の一例の概念を
説明するための図である。
FIG. 1 is a diagram for explaining the concept of an example of an optical axis adjustment method for an optical component according to the present invention.

【図2】本発明の一例として単芯の光ファイバアレイと
単芯の光導波路チップとの光軸調整の例を説明するため
の図である。
FIG. 2 is a diagram for explaining an example of optical axis adjustment between a single-core optical fiber array and a single-core optical waveguide chip as an example of the present invention.

【図3】本発明の他の例として2芯の光ファイバアレイ
と単芯の光導波路チップとの光軸調整の例を説明するた
めの図である。
FIG. 3 is a diagram for explaining an example of optical axis adjustment between a two-core optical fiber array and a single-core optical waveguide chip as another example of the present invention.

【図4】従来のスパイラルサーチ法を説明するための図
である。
FIG. 4 is a diagram for explaining a conventional spiral search method.

【図5】従来の外形観察法を説明するための図である。FIG. 5 is a diagram for explaining a conventional outline observation method.

【符号の説明】[Explanation of symbols]

1、31、41 光ファイバアレイ、2、32、33
光ファイバ、3 光導波路チップ、4 光導波部、5
ミラー、6、7 レーザダイオード、8、9 撮像装
置、8−1、9−1 鏡筒、8−2、9−2 CCDカ
メラ、11、13、15 出射光、12、14、16
反射光、21 照明用ファイバ、34 スリット同時照
明部
1, 31, 41 Optical fiber array, 2, 32, 33
Optical fiber, 3 optical waveguide chip, 4 optical waveguide section, 5
Mirror, 6, 7 Laser diode, 8, 9 Imaging device, 8-1, 9-1 Lens barrel, 8-2, 9-2 CCD camera, 11, 13, 15 Emitted light, 12, 14, 16
Reflected light, 21 illumination fiber, 34 slit simultaneous illumination unit

【手続補正書】[Procedure amendment]

【提出日】平成10年12月10日[Submission date] December 10, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【課題を解決するための手段】本発明の光部品の光軸調
整方法は、光ファイバアレイと光導波路チップとの光軸
を一致させる光部品の光軸調整方法において、光ファイ
バアレイと光導波路チップの光軸を調整したい端面の反
対側の端面における入射部に、少なくとも光導波路チッ
プについてはその入射部を照明用ファイバまたはライト
ガイドで照射することで、光を入射させ、光ファイバア
レイと光導波路チップとの光軸を調整したい端面の間に
両面反射部材を設け、光軸を一致させたい端面における
光ファイバアレイと光導波路チップからの出射光を、両
面反射部材で互いに反対方向に反射させ、反射した光フ
ァイバアレイおよび光導波路チップからの出射光を撮像
位置で撮像し、撮像した画像の光ファイバアレイおよび
光導波路チップからの出射光の位置に基づき両者の光軸
が一致するよう光ファイバアレイおよび光導波路チップ
を相対移動させることで、光ファイバアレイと光導波路
チップとの光軸一致させることを特徴とするものであ
る。
According to the present invention, there is provided a method for adjusting the optical axis of an optical component, comprising the steps of: adjusting an optical axis of an optical fiber array and an optical waveguide chip; By irradiating at least the incident portion of the optical waveguide chip with an illumination fiber or a light guide to the incident portion on the end surface opposite to the end surface where the optical axis of the chip is desired to be adjusted, light is incident, and the optical fiber array and the optical fiber A double-sided reflection member is provided between the end surfaces of the optical waveguide chip and the optical axis of which the optical axis is to be adjusted. The reflected light emitted from the optical fiber array and the optical waveguide chip is imaged at the imaging position, and the imaged image is taken from the optical fiber array and the optical waveguide chip. The optical axes of the optical fiber array and the optical waveguide chip are aligned by relatively moving the optical fiber array and the optical waveguide chip based on the position of the emitted light. .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光部品と光部品との光軸を一致させる光部
品の光軸調整方法において、光軸を一致させたい端面か
らの2つの光部品の光伝播部または光伝播部からの出射
光を観察し、観察した光伝播部または光伝播部からの出
射光の位置に基づき両者の光軸を一致させることを特徴
とする光部品の光軸調整方法。
In a method for adjusting the optical axis of an optical component, wherein the optical axis of the optical component coincides with the optical component, the light propagating portion of the two optical components from the end face whose optical axis is to be coincident or the light propagating from the light propagating portion. A method for adjusting the optical axis of an optical component, comprising observing emitted light, and matching the optical axes of the two based on the observed light propagation portion or the position of light emitted from the light propagation portion.
【請求項2】光部品と光部品との光軸を調整したい端面
の間に両面反射部材を設け、前記光伝播部または光伝播
部からの出射光を、前記両面反射部材で互いに反対方向
に反射させ、反射した光伝播部または光伝播部からの出
射光を撮像装置で撮像し、撮像した画像の互いの光伝播
部または光伝播部からの出射光の位置に基づき両者の光
軸が一致するよう光部品を相対移動させることで、光部
品と光部品との光軸を一致させる請求項1記載の光部品
の光軸調整方法。
2. A double-sided reflection member is provided between end faces of the optical component and the optical component whose optical axis is to be adjusted, and light emitted from the light propagation portion or the light propagation portion is directed in opposite directions by the double-sided reflection member. The reflected light emitted from the light propagation portion or the light propagation portion is imaged by the imaging device, and the optical axes of both light coincide with each other based on the position of the light emitted from the light propagation portion or the light propagation portion in the captured image. 2. The optical axis adjusting method for an optical component according to claim 1, wherein the optical component is moved relative to the optical component so that the optical axes of the optical component and the optical component coincide with each other.
【請求項3】前記光部品の入射部が光軸を調整したい端
面の反対側の端面にある場合、前記反対側の端面の入射
部から入射した光の出射光を利用して、光部品と光部品
との光軸を一致させる請求項1または2記載の光部品の
光軸調整方法。
3. An optical component, wherein an incident part of the optical component is located on an end face opposite to an end face whose optical axis is to be adjusted, by utilizing emission light of light incident from the incident part on the opposite end face. 3. The method for adjusting the optical axis of an optical component according to claim 1, wherein the optical axis of the optical component coincides with that of the optical component.
【請求項4】前記光部品が二芯でかつ両芯が光軸を調整
すべき端面とは反対側の端面で接続されており、光部品
の入射部が光軸を調整したい端面と同じ端面にある場
合、光軸を調整すべき端面から一方の芯に入射した光の
他方の芯からの出射光を利用して、光部品と光部品との
光軸を一致させる請求項1または2記載の光部品の光軸
調整方法。
4. The optical component has two cores, and both cores are connected at an end surface opposite to the end surface whose optical axis is to be adjusted, and the incident portion of the optical component has the same end surface as the end surface whose optical axis is to be adjusted. 3. The optical component according to claim 1, wherein the optical axis of the optical component coincides with the optical axis of the optical component by using the light emitted from the other core of the light incident on one core from the end face whose optical axis is to be adjusted. Optical axis adjustment method for optical components.
【請求項5】前記光部品、両面反射部材、撮像装置を同
一の基台上に設けて光軸調整を行う請求項1〜4のいず
れか1項に記載の光部品の光軸調整方法。
5. The method for adjusting the optical axis of an optical component according to claim 1, wherein the optical component, the double-sided reflection member, and the imaging device are provided on the same base to adjust the optical axis.
【請求項6】前記光軸を調整すべき光部品の少なくとも
一方が、光導波路チップである請求項1〜5のいずれか
1項に記載の光部品の光軸調整方法。
6. The method for adjusting the optical axis of an optical component according to claim 1, wherein at least one of the optical components whose optical axis is to be adjusted is an optical waveguide chip.
【請求項7】前記2つの部品の光伝播部または光伝播部
からの出射光を同時に観察して、光部品と光部品との光
軸を一致させる請求項1〜6のいずれか1項に記載の光
部品の光軸調整方法。
7. The optical component according to claim 1, wherein the light propagating portions of the two components or the light emitted from the light propagating portion are simultaneously observed to make the optical axes of the optical components coincide with each other. The optical axis adjustment method of the optical component described in the above.
JP10002309A 1998-01-08 1998-01-08 Optical axis adjustment method for optical components Expired - Fee Related JP3045991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10002309A JP3045991B2 (en) 1998-01-08 1998-01-08 Optical axis adjustment method for optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10002309A JP3045991B2 (en) 1998-01-08 1998-01-08 Optical axis adjustment method for optical components

Publications (2)

Publication Number Publication Date
JPH11202153A true JPH11202153A (en) 1999-07-30
JP3045991B2 JP3045991B2 (en) 2000-05-29

Family

ID=11525763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10002309A Expired - Fee Related JP3045991B2 (en) 1998-01-08 1998-01-08 Optical axis adjustment method for optical components

Country Status (1)

Country Link
JP (1) JP3045991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029758A (en) * 2011-07-29 2013-02-07 Sumitomo Electric Ind Ltd Core position specification method and alignment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029758A (en) * 2011-07-29 2013-02-07 Sumitomo Electric Ind Ltd Core position specification method and alignment device

Also Published As

Publication number Publication date
JP3045991B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP3365598B2 (en) Method and apparatus for manufacturing optical module assembly
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
JP3837689B2 (en) Optical module testing machine, adjusting device and adjusting method
US6504611B2 (en) Two stage optical alignment device and method of aligning optical components
US9134119B2 (en) Optical fiber orientation detection method and apparatus
JP6331196B2 (en) Optical element, irradiation optical system, condensing optical system, and optical waveguide inspection device
JP3045991B2 (en) Optical axis adjustment method for optical components
US6459490B1 (en) Dual field of view optical system for microscope, and microscope and interferometer containing the same
US6486942B1 (en) Method and system for measurement of a characteristic of lens
JPH0943456A (en) Device and method for adjusting optical axis of optical module
JP2787314B2 (en) Assembly equipment for optical circuit components
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
US6729530B2 (en) Fiber alignment apparatus and process using cornercube offset tool
JP2950004B2 (en) Confocal laser microscope
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide
JPH0823484B2 (en) Device for orienting, inspecting and / or measuring two-dimensional objects
JP2529526Y2 (en) Alignment device for optical components
US4850668A (en) Gyroptic visual couplers
JP2524275B2 (en) Optical component-optical fiber alignment method and optical component
JP3552891B2 (en) Optical device assembly method
JP2021128050A (en) Optically testing device
JPH03130639A (en) Optical-axis aligning method for mtf measuring apparatus
JP3468662B2 (en) Optical fiber module and manufacturing method thereof
JPS59197809A (en) Interference measuring device
JPS63311139A (en) Characteristic measuring apparatus for optical fiber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

LAPS Cancellation because of no payment of annual fees