JPH1047224A - Manufacture of turbine runner for sediment abrasion resistant welding structure - Google Patents

Manufacture of turbine runner for sediment abrasion resistant welding structure

Info

Publication number
JPH1047224A
JPH1047224A JP8203428A JP20342896A JPH1047224A JP H1047224 A JPH1047224 A JP H1047224A JP 8203428 A JP8203428 A JP 8203428A JP 20342896 A JP20342896 A JP 20342896A JP H1047224 A JPH1047224 A JP H1047224A
Authority
JP
Japan
Prior art keywords
welded
hardness
turbine runner
vane
sprayed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8203428A
Other languages
Japanese (ja)
Inventor
Kenichi Usami
賢一 宇佐美
Hiroshi Takayasu
博 高安
Yoshiyuki Kojima
慶享 児島
Kazuo Niikura
和夫 新倉
次雄 ▲吉▼川
Tsugio Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8203428A priority Critical patent/JPH1047224A/en
Publication of JPH1047224A publication Critical patent/JPH1047224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost due to extension of mending or exchanging period of a part due to sediment abrasion damage of a turbine runner of a welding structure. SOLUTION: Carbonate matter of Cr, W, Si and Al and oxide ceramics are contains 70-90% on a running water surface of a vane 1, crown 2 and a band 3 and metal and alloy of one kind or more Ni, Cr and Co is included 10-30% and Vickers hardened and formed 30-500μm thermal spraying layer of Hv900 or more is formed in 30-500μm and then heat treatment for improving hardness, adhesion and sediment abrasion damage resistance of the thermal spray layer and residual stress removing treatment of a welded part after forming integral welding structure are performed with temperature of 550-620 deg.C within 5 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐土砂摩耗性溶接構
造の水車ランナの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a water turbine runner having a welded structure resistant to earth and sand wear.

【0002】[0002]

【従来の技術】水力発電用水車は河川水の流水面となる
部材表面が化学的腐食,キャビテーション現象による壊
食,水中土砂による摩耗損傷が経験される。
2. Description of the Related Art In a turbine for hydroelectric power generation, the surface of a member serving as a flowing surface of river water experiences chemical corrosion, erosion due to cavitation phenomena, and abrasion damage due to underwater sediment.

【0003】その水車構成部材は主に、ランナには含Ni
13Crマルテンサイト系ステンレス鋳鋼が、各種ライナ
類,ステーベーンおよびガイドベーン等には炭素鋼,1
3Crマルテンサイト系ステンレス鋼が用いられてい
る。特に、回転体である水車ランナは一体鋳造あるいは
分割鋳造で製作されている(例えば特公昭60−53737 号
公報)。しかし、これらの鋳造材は水車ランナが大型化
するほど、その鋳造欠陥部の補修,鋳造表面の仕上げ,
非破壊検査等に対する多大な工数が必要となり、信頼
性,経済性にも大きな問題が提起される。
[0003] The water turbine components are mainly composed of runners containing Ni.
13Cr martensitic cast stainless steel is used for various liners, stay vanes and guide vanes, etc.
3Cr martensitic stainless steel is used. In particular, a turbine runner as a rotating body is manufactured by integral casting or split casting (for example, Japanese Patent Publication No. 60-53737). However, as these cast materials become larger, the repair of casting defects, the finishing of the casting surface,
A large number of man-hours are required for nondestructive inspection and the like, which poses significant problems in reliability and economy.

【0004】そこで、マルテンサイト組織中に容積比で
10〜35%の残留オーステナイト相を含み、かつビッ
カース硬さがHV250〜300を有する高強度高靭性
含Ni13Cr鋼製の三次元曲面を有する鋼板を溶接で接合し
てベーンを形成し、ベーンをバンドおよびクラウンに溶
接接合によって一体化する溶接構造の水車ランナの製造
法が提案されている(例えば特公平7−72530 号公
報)。
[0004] Therefore, a steel plate having a three-dimensional curved surface made of a high-strength and toughness-containing Ni13Cr steel having a martensite structure containing 10 to 35% by volume of a retained austenite phase and having a Vickers hardness of HV 250 to 300 is used. There has been proposed a method for manufacturing a water turbine runner having a welded structure in which a vane is formed by welding and the vane is integrated with a band and a crown by welding (for example, Japanese Patent Publication No. 7-72530).

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の製造法
による水車ランナの製造技術では特に、土砂量の多い河
川水による損傷が十分とは言えない。すなわち、金属材
料の硬さは河川水中土砂の硬さ(ビッカース硬さHV約
1150のSiO2 を主成分)より低いため、部品の流
水面が土砂の衝突や切削的作用によって摩耗損傷されや
すい。その侵食度合いは含有土砂量が多く、かつ流速が
大きいほど過酷となる。
However, the technique of manufacturing a water turbine runner according to the above-described manufacturing method is not sufficient for damage caused by river water having a large amount of sediment. That is, since the hardness of the metal material is lower than the hardness of earth and sand in river water (mainly SiO 2 having a Vickers hardness HV of about 1150), the flowing surface of the component is liable to be worn and damaged by the impact of earth and sand or a cutting action. The degree of erosion becomes severe as the amount of sediment contained increases and the flow velocity increases.

【0006】そのため、ランナの寿命向上を図るために
は、それら流水面に高硬度耐摩耗性材料の被覆層を形成
する対策を図る必要がある。その一つの手段としては、
母材への熱影響が少ない溶射法が考えられる。なお、こ
の溶射法の水車への適用について見ると、材料に関して
は金属やセラミックス系材料による方法が特開昭64−42
563号公報,特開平6−88201 号公報等に開示され、溶射
技術に関しては日立評論VoL.27(1982)に
「金属溶射の水力機械への応用」として公表されてい
る。
Therefore, in order to improve the life of the runners, it is necessary to take measures to form a coating layer of a high-hardness wear-resistant material on the water surface. As one of the means,
A thermal spraying method that has little thermal effect on the base material can be considered. Regarding the application of this thermal spraying method to a water turbine, as for the material, a method using metal or ceramic material is disclosed in Japanese Patent Application Laid-Open No. 64-42.
No. 563, JP-A-6-88201 and the like. 27 (1982) as "Application of Metal Spraying to Hydropower Machines".

【0007】本発明の目的はべーンをバンドおよびクラ
ウンに溶接で一体化した溶接構造の水車ランナを、含有
土砂量が多い河川水を利用する発電所に適用するため、
これら水車ランナ構成部品表面の少なくともその流水面
に加熱処理した高硬度被覆溶射層を形成させ、特に、土
砂摩耗による寿命を向上させる耐土砂摩耗性溶接構造水
車ランナおよびその製造方法を提供することにある。
An object of the present invention is to apply a turbine runner having a welded structure in which a vane is integrated with a band and a crown by welding to a power plant utilizing river water having a large amount of sediment.
It is an object of the present invention to provide a water turbine runner having a sand-resistant abrasion-resistant welded structure, in which a heat-treated high-hardness coating sprayed layer is formed on at least the flowing water surface of the components of the water turbine runner, and the life thereof is particularly improved. is there.

【0008】[0008]

【課題を解決するための手段】前記の目的を解決するた
めに、本発明の耐土砂摩耗性溶接構造の水車ランナおよ
びその製造方法として以下の手段を用いる。
Means for Solving the Problems In order to solve the above-mentioned object, the following means is used as a water turbine runner having an earth and sand abrasion resistant welded structure and a method of manufacturing the same according to the present invention.

【0009】ベーンを、バンドおよびクラウンに溶接接
合により一体化する溶接構造の水車ランナの製造方法
で、三次元曲面に成形した鋼板を溶接で一体とし、少な
くとも、その溶接部の残留応力除去のために加熱処理し
たベーンと、バンドおよびクラウンとも、これらの溶接
接合領域を省く少なくとも土砂を含む河川水の流水面と
なる表面の一部を高硬度溶射層で被覆し加熱処理後溶接
接合により一体化して水車ランナとし、溶接接合領域に
高硬度溶射層を被覆後、その部分の残留応力除去を兼ね
た局部加熱処理を施すことによる。
A method for manufacturing a turbine runner having a welded structure in which a vane is integrated with a band and a crown by welding, wherein a steel plate formed into a three-dimensional curved surface is integrated by welding to remove at least residual stress in the welded portion. The heat-treated vane, band and crown are partly covered with a high-hardness thermal spray layer, and at least part of the surface that will be the water flow surface of the river water containing earth and sand, omitting these welded joint areas, and integrated by welding after heat treatment. After a high-hardness thermal spray layer is coated on the welded joint area, a local heat treatment is performed to remove residual stress in the welded joint area.

【0010】一方、高硬度被覆溶射層は少なくとも、C
r,W,Si,Alの炭化物および酸化物系セラミック
スが重量%で70〜90%とNi,Cr,Coの単独お
よび合金が重量%で10〜30%を含み、かつビッカー
ス硬さが900以上を有する皮膜を、30〜500μm
の厚さで形成すると良い。
On the other hand, the high-hardness coating sprayed layer has at least C
Carbide and oxide ceramics of r, W, Si, Al contain 70 to 90% by weight and Ni, Cr and Co alone and alloys contain 10 to 30% by weight, and Vickers hardness is 900 or more. 30 to 500 μm
It is good to form with the thickness of.

【0011】さらに、溶射層の加熱処理および局部加熱
処理は母材の焼もどし処理や溶接部の残留応力除去処理
と同じ温度である550℃〜620℃で5時間以内とす
ることにより、水車ランナを効率的に製造できる。
Further, the heat treatment of the sprayed layer and the local heat treatment are performed at 550 ° C. to 620 ° C., which is the same temperature as the tempering treatment of the base material and the residual stress removing treatment of the welded portion, within 5 hours. Can be manufactured efficiently.

【0012】また、溶接時の熱による溶射層の割れや溶
融等による母材への悪影響を避けるため、ベーン,バン
ドおよびクラウンとの溶接接合部近傍に溶射層を形成し
ない領域が必要となる。そのため、ベーン,バンドおよ
びクラウンとも、その溶接接合部から溶射層形成端面ま
での距離を各々10〜20mm設けることにより、溶射層
の溶接熱による割れや溶融等の問題が生じず、信頼性の
高い皮膜形成が可能となる。
Further, in order to avoid adverse effects on the base material due to cracking or melting of the sprayed layer due to heat at the time of welding, a region where no sprayed layer is formed near the welded joint with the vane, band and crown is required. Therefore, the vane, band and crown are each provided with a distance of 10 to 20 mm from the welded joint portion to the sprayed layer forming end face, so that problems such as cracking and melting due to welding heat of the sprayed layer do not occur, and the reliability is high. A film can be formed.

【0013】また、ベーン,バンドおよびクラウン部材
や溶接接合部に溶射層を形成する場合、その表面を表面
粗さが10〜20μmとなる鋼やセラミックスのショッ
トを用いたブラスト処理後溶射すると、母材との接着強
度が高い、より効果的な皮膜形成が可能となる。
In the case where a sprayed layer is formed on the vane, band, crown member or welded joint, the surface is sprayed after blasting using a shot of steel or ceramics having a surface roughness of 10 to 20 μm. It is possible to form a more effective film with high adhesive strength to the material.

【0014】河川水中土砂は主にSiO2 が50〜80
%、次いでAl23が10〜20%を含み、そのビッカ
ース硬さHVはSiO2 が約1050,Al23が約22
00で、高硬度となっている。従って、水車材料はこれら
高硬度土砂の衝突や切削的作用により摩耗損傷を起こ
す。そのため、水車材料の表面に少なくとも土砂の硬さ
に近い皮膜層を形成させることにより土砂摩耗性は向上
する。
The river water sediment mainly contains SiO 2 of 50 to 80.
%, Then Al include 2 O 3 10 to 20%, the Vickers hardness HV is SiO 2 is about 1050, Al 2 O 3 about 22
00 is high hardness. Therefore, the water turbine material causes wear damage due to the impact of these high hardness earth and sand and the cutting action. Therefore, by forming a coating layer at least close to the hardness of earth and sand on the surface of the water turbine material, earth and sand abrasion is improved.

【0015】そこで、ビッカース硬度がHV900以上
の皮膜として、市販の溶射粉末(粒径範囲;20〜50
μm)3種(WC−12Co,WC−25NiCr,Cr
32−20NiCr)を選定し、高圧/超高速フレーム
溶射法により5Ni−13Cr鋼板に膜厚200μmを形
成し、その溶射のままと溶射後550℃で2時間加熱処
理した2条件の組織観察及び硬さ測定を行った。
Therefore, as a coating having a Vickers hardness of HV900 or more, a commercially available sprayed powder (particle size range: 20 to 50) is used.
μm) 3 types (WC-12Co, WC-25NiCr, Cr
3 C 2 -20NiCr) was selected, a 200 μm thick film was formed on a 5Ni-13Cr steel plate by high-pressure / ultra-high-speed flame spraying, and the structure was observed as it was after spraying and then heated at 550 ° C. for 2 hours. And hardness measurements.

【0016】[0016]

【表1】 [Table 1]

【0017】なお、この溶射法は燃料チャンバ内燃焼高
速ガス流中に溶射粉末を供給し、超高速状態で被溶射物
(母材)に半溶融状態の粒子を積層するものである。す
なわち、酸素と燃料(灯油,アセチレン,プロパン,プ
ロピレン)の1種を燃料チャンバ内に流入し点火燃焼さ
せ、高温・高圧の高速ガス流とし、そのガス流中に粉体
送給装置から溶射材料を供給し、ガス温度による半溶融
状態の粉体を高温・高圧の高速状態で被溶射物(母材)
に衝突吹付け、母材との密着性が良い積層した溶射層を
形成させる。その溶射条件は溶射ノズルと被溶射物との
距離300mm,ガン圧8kg/cm2 ,酸素圧12kg/c
m2,燃料圧11kg/cm2,ガン移動速度50mm/sとし
た。
In this thermal spraying method, a thermal spray powder is supplied into a combustion high-speed gas flow in a fuel chamber, and particles in a semi-molten state are laminated on an object to be sprayed (base material) at an ultra-high speed. That is, one kind of oxygen and fuel (kerosene, acetylene, propane, propylene) flows into the fuel chamber and is ignited and burned to form a high-temperature, high-pressure, high-speed gas stream. And the semi-molten powder by gas temperature is sprayed at high temperature and high pressure at high speed.
To form a laminated sprayed layer having good adhesion to the base material. The spraying conditions were as follows: the distance between the spray nozzle and the object to be sprayed was 300 mm, the gun pressure was 8 kg / cm 2 , and the oxygen pressure was 12 kg / c.
m 2 , fuel pressure 11 kg / cm 2 , and gun moving speed 50 mm / s.

【0018】その結果、溶射材料3種の溶射層にはほと
んど気孔が存在せず、緻密な積層組織を有し、溶射後の
加熱処理でも、溶射層及び被溶射物と溶射層の境界にも
割れ発生等欠陥は見られない。また、加熱処理後の溶射
層硬さはWC−12Co層がHV1100→HV1200、WC−2
5NiCr層がHV950→HV1050,Cr32−20NiCr
層がHV930→HV1040となり、溶射のままに比べ約H
V100以上高くなった。材料の耐土砂摩耗性は一般に
硬さが高いほど向上するといわれており、これらの溶射
法によって、高硬度でかつ高品質の皮膜を形成でき、さ
らに溶射層形成前の母材表面粗さを10〜20μmとす
ることにより、溶射層と母材の接着強度が上昇した。
As a result, the thermal spray layer of the three types of thermal spray material has almost no pores, has a dense laminated structure, and can be heated even after thermal spraying and at the boundary between the thermal spray layer and the thermal spray layer. No defects such as cracks are observed. Further, the hardness of the sprayed layer after the heat treatment was HV1100 → HV1200 for the WC-12Co layer, and WC-2
5NiCr layer is HV950 → HV1050, Cr 3 C 2 -20NiCr
The layer changes from HV930 to HV1040, which is about H
V100 or higher. It is generally said that the higher the hardness, the higher the hardness of the material. The higher the hardness, the higher the hardness and the higher the quality of the coating. By setting the thickness to 2020 μm, the adhesive strength between the sprayed layer and the base material was increased.

【0019】一方、皮膜形成後の加熱処理条件として、
温度を550〜620℃,保持時間を5h以内と限定し
た。これは下記の理由による。
On the other hand, the heat treatment conditions after the film formation are as follows:
The temperature was limited to 550-620 ° C., and the holding time was limited to 5 hours or less. This is for the following reason.

【0020】通常、溶接構造の水車ランナには5Ni−
13Cr鋼板が使用され、その焼もどし処理及び溶接部
の残留応力除去焼なまし処理が580〜620℃の温度
で行われる。なお、この材料は焼きもどしマルテンサイ
ト相中に残留オーステナイト相を含む2相組織を有する
が、約620℃以上の加熱処理は焼きいれ領域となり、
強度は上昇するものの、延性・靭性が低下する。しか
し、これ以上の加熱温度はランナ材料としての信頼性が
低下するとともに、熱膨張差による溶射層への割れ発生
を助長する要因となる。また、550℃以下の加熱処理
は母材熱影響部の軟化および溶射層の硬さと密着力向上
に5時間以上かかり、現地でのランナ製造を考慮した場
合、効率的作業とはならない。
Normally, 5Ni-
A 13Cr steel plate is used, and its tempering treatment and annealing treatment for removing residual stress in the welded portion are performed at a temperature of 580 to 620 ° C. Although this material has a two-phase structure including a retained austenite phase in a tempered martensite phase, heat treatment at about 620 ° C. or more results in a tempered region,
Although the strength increases, the ductility and toughness decrease. However, a heating temperature higher than this lowers the reliability as a runner material and also causes cracks in the sprayed layer due to a difference in thermal expansion. In addition, the heat treatment at 550 ° C. or lower takes 5 hours or more to soften the base material heat-affected zone and improve the hardness and adhesion of the sprayed layer, and it is not an efficient operation in consideration of on-site runner production.

【0021】一方、溶射層の厚さは30〜500μmと
限定している。実際には厚肉ほど摩耗による寿命は長時
間となる。しかし、溶射による厚肉化は積層コスト問題
が提起される。
On the other hand, the thickness of the sprayed layer is limited to 30 to 500 μm. In fact, the thicker the wall, the longer the life due to wear. However, thickening by thermal spraying raises the problem of lamination cost.

【0022】従って、本発明によれば、ランナ材の焼き
もどし処理や溶接部の残留応力除去焼なまし処理の温度
と同じ条件で溶射層皮膜を加熱するため、信頼性の高い
ランナが効率的に製造できる。また、皮膜が河川水中土
砂の主成分である石英(SiO2)の硬さに近い硬度を有する
高品質の溶射層が部品表面に形成されるため、土砂の衝
突や切削作用等による摩耗損傷が軽減される、すなわ
ち、各部品の寿命向上が図れ、部品交換周期の延長,水
車効率や保守の維持・管理が容易となる。さらに、これ
らの溶射層の端面が溶接部より離れているため、溶接接
合部への溶射層の溶込みがなく、かつ、溶接等による熱
影響が加わっても、皮膜には異状をおこさず実機部品へ
適用しても何ら問題は生じないことが明らかとなった。
Therefore, according to the present invention, since the thermal spray coating is heated under the same conditions as the tempering treatment of the runner material and the annealing treatment for removing the residual stress in the welded portion, a highly reliable runner is efficiently used. Can be manufactured. In addition, since a high-quality sprayed layer with a hardness close to the hardness of quartz (SiO 2 ), which is the main component of the sediment in river water, is formed on the surface of parts, wear damage due to the impact of earth and sand and cutting action, etc. That is, the life of each component can be improved, and the replacement cycle of the component can be extended, and the efficiency and maintenance of the turbine can be easily maintained and managed. Furthermore, since the end faces of these sprayed layers are farther from the welded parts, there is no penetration of the sprayed layers into the welded joints, and even if the thermal effects of welding etc. are applied, the coatings do not deform and the actual machine It became clear that no problems occurred when applied to parts.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0024】まず、本発明が適用されるフランシス水車
の一例を示す。
First, an example of a Francis turbine to which the present invention is applied will be described.

【0025】図1はフランシス水車の断面図、図2は水
車ランナの中央2分割切断図である。本水車は複数のベ
ーン1がクラウン2とバンド3との間に設けられた水車
ランナ,ランナコーン4,ガイドベーン5,ステーベー
ン6,ランナライナ7,シートライナ8で構成されてい
る。土砂を含む河川水は図示していないケーシングから
ステーベーン6,ガイドベーン5を通ってベーン3に流
れ、ベーンに回転エネルギを与えた後、図示しない排水
路へ流出する。従って、流水面となる部材表面は河川水
中土砂により損傷され、その損傷度合いは土砂量が多い
ほど過酷となる。
FIG. 1 is a sectional view of a Francis turbine, and FIG. 2 is a sectional view of the turbine runner divided into two parts. The turbine comprises a water turbine runner in which a plurality of vanes 1 are provided between a crown 2 and a band 3, a runner cone 4, a guide vane 5, a stay vane 6, a runner liner 7, and a seat liner 8. River water containing earth and sand flows from the casing (not shown) to the vane 3 through the stay vanes 6 and the guide vanes 5, gives rotational energy to the vanes, and flows out to a drainage passage (not shown). Therefore, the surface of the member serving as the flowing water surface is damaged by the sediment in the river water, and the degree of the damage becomes more severe as the amount of sediment increases.

【0026】次に、耐土砂摩耗性溶接構造水車ランナお
よびその製造方法を図3から図7により説明する。
Next, a description will be given of a water turbine runner having an earth-and-sand-abrasion-resistant welded structure and a method of manufacturing the same with reference to FIGS.

【0027】図3にベーン1の表面への溶射施工実施例
を示す。すなわち、3次元曲面を有する板材1A,1
B,1Cを電子ビーム溶接で接合後、その接合溶接部ビ
ード表面を平滑加工後、その全面をショットブラスト処
理し、その端面部に約15mm幅の溶射層9を形成しない
溶接接合領域10をクラウン2とバンド3との溶接接合
部11に残し、ベーン1の作用面と反作用面にCr32
−20NiCrサーメット系溶射材料による厚さ100
μmの溶射層9を溶射条件により設けた。その後、これ
らのベーン1に、ベーン接合部の残留応力除去および溶
射層の密着性向上や高硬度化を兼ねた590℃・2hの
加熱処理を施した。
FIG. 3 shows an embodiment of thermal spraying on the surface of the vane 1. That is, plate materials 1A and 1 having a three-dimensional curved surface
B and 1C were joined by electron beam welding, the surface of the welded joint bead was smoothed, the entire surface was shot blasted, and the welded joint area 10 where the sprayed layer 9 having a width of about 15 mm was not formed on the end face was crowned. 2 and the band 3, leaving Cr 3 C 2 on the working surface and the reaction surface of the vane 1.
-100 thickness of -20 NiCr cermet sprayed material
A thermal spray layer 9 having a thickness of μm was provided under thermal spray conditions. Thereafter, these vanes 1 were subjected to a heat treatment at 590 ° C. for 2 hours, which also serves to remove the residual stress at the vane joints, improve the adhesion of the sprayed layer, and increase the hardness.

【0028】なお、本実施例はベーンの流水面全面を考
慮した被覆例であるが、ベーン入口側および出口側に限
定して被覆してもよい図4(a)と(b)にクラウン2
とバンド3への溶射施工実施例を示す。クラウン2とバ
ンド3の表面をショットブラスト処理後、ベーン1との
溶接接合部11端面部より約15mmの溶接接合領域10
を除く表面にCr32−20NiCrサーメット系溶射材料に
よる厚さ100μmの溶射層9を示した溶射条件により
設けた。その後、溶射層の密着性向上と高硬度化のた
め、590℃・2hの加熱処理を施した。
Although the present embodiment is an example of coating in consideration of the entire water flow surface of the vane, the coating may be limited to the vane inlet and outlet sides as shown in FIGS. 4 (a) and 4 (b).
And Example of thermal spraying on band 3 are shown. After the surface of the crown 2 and the band 3 is shot blasted, the welded joint area 11 with the vane 1
On the surface excluding the above, a sprayed layer 9 of 100 μm thick made of a Cr 3 C 2 -20NiCr cermet sprayed material was provided under the spraying conditions shown. Thereafter, a heat treatment at 590 ° C. for 2 hours was performed to improve the adhesion of the sprayed layer and increase the hardness.

【0029】なお、本実施例はクラウンとバンドの流水
面全体を考慮しているが、それぞれの損傷部を考慮した
局部的な領域に限定して被覆層を形成しても良い。
In this embodiment, the entire flowing surface of the crown and the band is taken into consideration. However, the coating layer may be formed only in a local area in consideration of each damaged portion.

【0030】図5にベーン1とクラウン2およびベーン
1とバンド3を溶接により接合11して組立てた溶接構
造水車ランナの概要図を示す。
FIG. 5 is a schematic view of a welded turbine runner assembled by assembling the vane 1 and the crown 2 and the vane 1 and the band 3 by welding 11.

【0031】図6に溶接接合により一体化した水車ラン
ナの溶接接合部11およびその領域10への溶射実施例
の断面図を示す。まず、ベーン1とクラウン2およびベ
ーン1とバンド3の溶接接合部11ビード表面の凹凸を
平滑加工後ショットブラスト処理し、その接合部11と
その接合領域10にWC−25NiCr溶射材料による
厚さ100μmの溶射層9′を溶射条件により設けた。
その後、この溶接接合部における熱影響部の軟化と残留
応力の除去および溶射層の密着性向上や高硬度化処理を
兼ねた590℃・2hの局部加熱処理を施した。なお、
この溶接接合部への溶射材料としてWC−25NiCr
を用いたのは、溶射作業が組立て後の角部および施工空
間が狭くなるため、Cr32−20NiCrと比較し、
施工角度等溶射条件が異なってもその皮膜特性に差異を
生じにくい材料のためである。
FIG. 6 is a cross-sectional view of an embodiment in which the water turbine runner integrated by welding is sprayed onto the welded joint portion 11 and the region 10 thereof. First, the unevenness of the bead surface of the weld joint 11 between the vane 1 and the crown 2 and between the vane 1 and the band 3 is smoothed and then subjected to shot blasting, and the joint 11 and the joint region 10 are made of a WC-25NiCr sprayed material having a thickness of 100 μm. Of thermal sprayed layer 9 'was provided under thermal spraying conditions.
After that, a local heat treatment at 590 ° C. for 2 hours was carried out to soften the heat-affected zone in the welded joint, remove the residual stress, improve the adhesion of the sprayed layer and increase the hardness. In addition,
WC-25NiCr is used as a thermal spray material for this weld joint.
The reason for using is that the thermal spraying work has a smaller corner and construction space after assembly, so it is compared with Cr 3 C 2 -20NiCr,
This is because the material is unlikely to cause a difference in the coating properties even when the spraying conditions such as the working angle are different.

【0032】次に、市販溶射材料3種の溶射のままおよ
び溶射後加熱処理した皮膜と現用水車材料である金属材
料との耐土砂摩耗性の比較結果を説明する。
Next, a description will be given of the results of a comparison of the resistance to earth and sand abrasion between a coating material subjected to heat treatment after spraying and three types of commercially available sprayed materials and a metal material which is a current water turbine material.

【0033】なお、比較する現用水車材料はランナ材に
使用される5Ni−13Cr鋳鋼と補修溶接材料として
使用されるSUS309Mo(20Cr−12Ni−2Mo系)
溶接材料および一般構造用材料のSUS304(18Cr−8
Ni鋼板)であるが、ここではその処理条件の詳細は省
略する。一方、耐土砂摩耗性評価試験は水中噴流式土砂
摩耗試験装置を用い、噴流速度40m/s,衝突角度4
5deg.,土砂Al23(平均粒径8μm),土砂濃度3
0g/l,試験時間60min の条件で行い、その損傷量
(侵食量)は試験後の減量を密度で除した体積減量(cm
3 )で表した。図7に溶射材料3種と現用水車材料との
耐土砂摩耗性比較結果を示す。溶射層の耐土砂摩耗性は
材料による相違はあるものの、現用水車材料に比べ、非
常に優れ、加熱処理層はさらに耐土砂摩耗性が向上す
る。従って、この結果からも、部品表面への高硬度溶射
層の形成は土砂摩耗による損傷を軽減し、溶射層の加熱
(後熱)処理はさらに耐土砂摩耗性を向上させる有効な
手段である。
The current turbine material to be compared is 5Ni-13Cr cast steel used as a runner material and SUS309Mo (20Cr-12Ni-2Mo type) used as a repair welding material.
SUS304 (18Cr-8) for welding materials and general structural materials
Ni steel plate), but details of the processing conditions are omitted here. On the other hand, the sediment abrasion resistance evaluation test was performed using a submerged jet-type sediment abrasion tester at a jet velocity of 40 m / s and a collision angle of 4 m / s.
5 deg., Earth and sand Al 2 O 3 (average particle size 8 μm), earth and sand concentration 3
The test was performed under the conditions of 0 g / l and a test time of 60 min. The amount of damage (erosion amount) was determined by dividing the weight loss after the test by the density (cm).
3 ). FIG. 7 shows the results of a comparison between the three types of thermal spraying materials and the sand turbine abrasion resistance of the current turbine material. Although the thermal spray layer has a different sediment wear resistance depending on the material, it is much better than the current turbine material, and the heat treated layer further improves the sediment wear resistance. Therefore, also from this result, formation of the high hardness sprayed layer on the component surface reduces damage due to earth and sand wear, and heating (post-heating) treatment of the sprayed layer is an effective means for further improving earth and sand wear resistance.

【0034】図8に土砂摩耗損傷を考慮した本発明と従
来法との溶接構造水車ランナの製造方法の相違を示す。
本発明は従来法に比べ、溶射層の形成や加熱処理による
工程が増すものの、ランナ等大型構造物の全体加熱処
理、また、ベーン,シュラウド,バンド材の肉厚差によ
る温度の不均一性や冷却速度差による変形およびそれに
伴う溶射層の割れ発生の誘発等への影響因子が除かれ
る。従って、高信頼性を有する高密着性・高硬度溶射層
を流水面へ形成した耐土砂摩耗性溶接構造水車ランナが
製造できる。
FIG. 8 shows the difference between the present invention and the conventional method of manufacturing a water turbine runner having a welded structure in consideration of earth and sand wear damage.
Although the present invention requires more steps for forming a thermal sprayed layer and performing a heat treatment than the conventional method, the overall heat treatment of a large structure such as a runner, and non-uniformity of temperature due to a difference in the thickness of vanes, shrouds, and band materials. Factors affecting the deformation due to the difference in cooling rate and the accompanying induction of cracking of the sprayed layer are eliminated. Therefore, it is possible to manufacture a soil turbine abrasion resistant welded turbine runner having a highly reliable and high adhesion / hard hardness sprayed layer formed on a flowing water surface.

【0035】なお、本発明は、実施例および土砂摩耗試
験に供した溶射材料は一般に用いられている炭化物系材
料3種としたが、耐土砂摩耗性が現用の水車用金属材料
より優れている他の炭化物および酸化物を含むサーメッ
ト系材料による溶射層を形成させて製造しても何ら問題
はない。
In the present invention, three types of commonly used carbide-based materials were used as the thermal spraying materials used in the examples and the earth and sand abrasion test. However, the earth and sand abrasion resistance was superior to that of the current metal materials for water turbines. There is no problem if a sprayed layer is formed from a cermet-based material containing other carbides and oxides.

【0036】以上のように、河川水の流水面に高硬度溶
射層を被覆した溶接構造水車ランナは溶射層を被覆しな
い溶接構造水車ランナより耐土砂摩耗性が向上するた
め、ランナの寿命向上による補修や交換周期の延長化に
よるコスト低減が図れた。なお、本実施例はランナのみ
に限定したが、他機の流水面となる部材にも適用し、良
好な結果を得ている。
As described above, the welded turbine runner in which the flowing water surface of the river water is coated with the high hardness sprayed layer has a higher sediment wear resistance than the welded turbine runner in which the sprayed layer is not coated. Cost reduction was achieved by extending the repair and replacement cycle. Although the present embodiment is limited to only the runner, the present embodiment is also applied to a member serving as a water surface of another machine, and good results are obtained.

【0037】[0037]

【発明の効果】本発明における耐土砂摩耗性溶接構造水
車ランナおよびその製造方法によると、河川水中に含ま
れる土砂による摩耗損傷が軽減でき、部品の補修や交換
周期の延長等が図れ、機器の寿命,経済性及び信頼性の
向上に大きく貢献できる。
According to the sediment-wear-resistant welded turbine runner and the method of manufacturing the same according to the present invention, wear damage due to sediment contained in river water can be reduced, repair of parts and extension of replacement cycle can be achieved, and equipment It can greatly contribute to the improvement of life, economy and reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶射層が適用されるフランシス水車ラ
ンナの断面図。
FIG. 1 is a sectional view of a Francis turbine runner to which a sprayed layer according to the present invention is applied.

【図2】ベーン表面への溶射施工実施例を示す斜視図。FIG. 2 is a perspective view showing an embodiment of thermal spraying on a vane surface.

【図3】クラウンとバンドへの溶射施工実施例を示す説
明図。
FIG. 3 is an explanatory view showing an embodiment of spraying a crown and a band.

【図4】図2と図3を溶接接合した水車ランナの説明
図。
FIG. 4 is an explanatory view of a water turbine runner obtained by welding and joining FIGS. 2 and 3;

【図5】溶接構造水車ランナ溶接接合部領域への溶射施
工実施例を示す断面図。
FIG. 5 is a cross-sectional view showing an embodiment of thermal spraying on a welded portion of a welded turbine runner runner.

【図6】高硬度溶射材料と現用の水車用金属材料との耐
土砂摩耗性の説明図。
FIG. 6 is an explanatory diagram of earth and sand abrasion resistance of a high hardness sprayed material and a currently used metal material for a water turbine.

【図7】材料別の侵食量の比較説明図。FIG. 7 is a diagram illustrating a comparison of the amount of erosion for each material.

【図8】本発明と従来法との溶接構造水車ランナの製造
方法の相違を示す説明図。
FIG. 8 is an explanatory view showing the difference between the present invention and a conventional method for manufacturing a water turbine runner having a welded structure.

【符号の説明】[Explanation of symbols]

1…ベーン、2…クラウン、3…バンド、4…ランナコ
ーン、5…ガイドベーン、6…ステーベーン、7…ラン
ナライナ、8…シートライナ。
1 ... Vane, 2 ... Crown, 3 ... Band, 4 ... Runner cone, 5 ... Guide vane, 6 ... Stay vane, 7 ... Runner liner, 8 ... Seat liner.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新倉 和夫 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 ▲吉▼川 次雄 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Niikura 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor ▲ Yoshitsugu Kawatsugu Sachi-Hitachi, Ibaraki 3-1-1, Machi, Hitachi, Ltd. Hitachi Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ベーンを、バンドおよびクラウンに溶接接
合により一体化する溶接構造の水車ランナにおいて、三
次元曲面に成形した圧延鋼板を溶接で一体とした前記ベ
ーンと、前記バンドおよび前記クラウンとも、これらの
溶接接合領域を省く土砂を含む河川水の流水面となる表
面の一部を高硬度溶射層で被覆し各々加熱処理後溶接接
合により一体化し、前記溶接接合領域に前記高硬度溶射
層を被覆し、少なくとも溶接部の残留応力除去焼きなま
し処理を兼ねた局部加熱処理したことを特徴とする耐土
砂摩耗性溶接構造の水車ランナの製造方法。
1. A water turbine runner having a welded structure in which a vane is integrated with a band and a crown by welding, wherein the vane integrated with a rolled steel plate formed into a three-dimensional curved surface by welding, the band and the crown, A part of the surface serving as a flowing surface of river water including earth and sand that excludes these welded joint areas is coated with a high-hardness sprayed layer, each is integrated by welding after heat treatment, and the high-hardness sprayed layer is applied to the welded area. A method for producing a water turbine runner having a soil-sand abrasion-resistant welded structure, wherein the runner is coated and subjected to a local heating treatment which also serves as an annealing treatment for removing at least a residual stress in a welded portion.
【請求項2】前記高硬度溶射層は、Cr,W,Si,A
lの炭化物および酸化物系セラミックスが少なくとも重
量%で70〜90%とNi,Cr,Coの1種以上の金
属ならびに合金が重量%で10〜30%を含み、ビッカ
ース硬さが900以上であり、30〜500μmの厚さ
で形成されている請求項1に記載の耐土砂摩耗性溶接構
造の水車ランナの製造方法。
2. The high-hardness sprayed layer is made of Cr, W, Si, A
(1) at least 70 to 90% by weight of carbide and oxide-based ceramics and at least 10 to 30% by weight of one or more metals and alloys of Ni, Cr and Co, and a Vickers hardness of 900 or more. The method for manufacturing a water turbine runner having a soil-sand abrasion-resistant welded structure according to claim 1, which is formed with a thickness of 30 to 500 µm.
【請求項3】前記高硬度溶射層の加熱処理および溶接部
の残留応力除去焼きなまし処理を兼ねた局部加熱処理は
550℃〜620℃の温度範囲で5時間以内である請求
項1に記載の耐土砂摩耗性溶接構造の水車ランナの製造
方法。
3. The heat resistance according to claim 1, wherein the heat treatment of the high-hardness thermal sprayed layer and the local heat treatment combined with the annealing treatment for removing the residual stress of the welded portion are performed within a temperature range of 550 ° C. to 620 ° C. for 5 hours or less. A method for manufacturing a turbine runner having a sand-and-abrasion welded structure.
【請求項4】前記溶接接合領域は接合部材の合わせ面お
よび溶接接合部端面より、少なくとも10〜20mm離れ
た領域内である請求項1に記載の耐土砂摩耗性溶接構造
の水車ランナの製造方法。
4. The method according to claim 1, wherein the welded joint area is located at least 10 to 20 mm apart from the mating surface of the joint member and the end face of the welded joint. .
【請求項5】前記ベーン、前記バンドおよび前記クラウ
ン部材や溶接接合部表面への高硬度被覆溶射層は、その
表面粗さが10〜20μmとなる鋼やセラミックスのシ
ョットを用いたブラスト処理後に形成させる請求項1に
記載の耐土砂摩耗性溶接構造の水車ランナの製造方法。
5. A high hardness coating sprayed layer on the surface of the vane, the band, the crown member and the welded joint is formed after blasting using a shot of steel or ceramics having a surface roughness of 10 to 20 μm. The method for producing a water turbine runner having a soil-sand abrasion-resistant welded structure according to claim 1.
【請求項6】圧延鋼板より成形した三次元曲面のベーン
を、バンドおよびクラウンに溶接接合によって一体化す
る溶接構造の水車ランナにおいて、溶接部を平滑加工し
たベーン,バンドおよびクラウンの溶接接合領域を省く
土砂を含む河川水の流水面となる表面の一部に、高硬度
被覆溶射層を形成後溶接接合し、その接合部凹凸表面を
平滑加工し、その部分にさらに高硬度被覆溶射層を形成
し、550℃〜620℃の温度範囲で5時間以内の熱処
理する請求項2,4または5に記載の耐土砂摩耗性溶接
構造の水車ランナの製造方法。
6. A water turbine runner having a welded structure in which a three-dimensional curved vane formed from a rolled steel plate is integrated with a band and a crown by welding, the welded region of the vane, band and crown having a welded portion smoothed. After forming a high-hardness coating sprayed layer on a part of the surface that will be the flowing water surface of river water containing earth and sand, weld and join it, smooth the uneven surface of the joint, and form a higher-hardness coating sprayed layer on that part The method for producing a water wheel runner having a soil-resistant wear-resistant welded structure according to claim 2, wherein the heat treatment is performed at a temperature in a range of 550 ° C. to 620 ° C. for 5 hours or less.
JP8203428A 1996-08-01 1996-08-01 Manufacture of turbine runner for sediment abrasion resistant welding structure Pending JPH1047224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8203428A JPH1047224A (en) 1996-08-01 1996-08-01 Manufacture of turbine runner for sediment abrasion resistant welding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8203428A JPH1047224A (en) 1996-08-01 1996-08-01 Manufacture of turbine runner for sediment abrasion resistant welding structure

Publications (1)

Publication Number Publication Date
JPH1047224A true JPH1047224A (en) 1998-02-17

Family

ID=16473929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8203428A Pending JPH1047224A (en) 1996-08-01 1996-08-01 Manufacture of turbine runner for sediment abrasion resistant welding structure

Country Status (1)

Country Link
JP (1) JPH1047224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067628A (en) * 2010-09-21 2012-04-05 Toshiba Corp Component for hydraulic machine, manufacturing method for component for hydraulic machine and hydraulic machine
JP5507734B1 (en) * 2013-04-22 2014-05-28 東洋精鋼株式会社 Equipment holding device
CN113074072A (en) * 2020-01-06 2021-07-06 株式会社东芝 Francis turbine impeller and Francis turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067628A (en) * 2010-09-21 2012-04-05 Toshiba Corp Component for hydraulic machine, manufacturing method for component for hydraulic machine and hydraulic machine
JP5507734B1 (en) * 2013-04-22 2014-05-28 東洋精鋼株式会社 Equipment holding device
CN113074072A (en) * 2020-01-06 2021-07-06 株式会社东芝 Francis turbine impeller and Francis turbine
CN113074072B (en) * 2020-01-06 2023-03-07 株式会社东芝 Francis turbine impeller and Francis turbine

Similar Documents

Publication Publication Date Title
CA2275515C (en) Method of treating metal components
US5846057A (en) Laser shock peening for gas turbine engine weld repair
US20060260125A1 (en) Method for repairing a gas turbine engine airfoil part using a kinetic metallization process
US7703312B2 (en) Component with compressive residual stresses, process for producing and apparatus for generating compressive residual stresses
US20030088980A1 (en) Method for correcting defects in a workpiece
US20050241147A1 (en) Method for repairing a cold section component of a gas turbine engine
JP4318140B2 (en) Method for repairing stationary shrouds of gas turbine engines using plasma transfer arc welding
CN103540928B (en) A kind of manufacture method of airduct top coat
US7043819B1 (en) Methods for forming metal parts having superior surface characteristics
WO2000017490A2 (en) Methods for repairing and reclassifying airfoil parts
US20090162207A1 (en) Method For The Manufacture Of An Erosion Protection Layer And A Component With Said Erosion Protection Layer
JP6389052B2 (en) Erosion resistant coating system and treatment method thereof
CN103056604A (en) Components with laser cladding and methods of manufacture
JP2006097133A (en) Method for applying abrasive and environment-resistant coating onto turbine component
CN102115884B (en) Preparation method of wear-resistant and corrosion-resistant composite coating
CN107723699A (en) A kind of method for repairing heat-resisting alloy
CN102787288A (en) Hot spraying process of metal ceramic coating on surface of valve rod
US20060039788A1 (en) Hardface alloy
US20040031140A1 (en) Methods for salvaging a cast article
JP2001107833A (en) Hydraulic machine and its manufacturing device
JPH06170584A (en) High-c-and high-si-content weld metal powder and equipment member having its coating layer
US20050152805A1 (en) Method for forming a wear-resistant hard-face contact area on a workpiece, such as a gas turbine engine part
CN102506002B (en) Cavitation-resistant water turbine blade and thermal spraying method
JPH1047224A (en) Manufacture of turbine runner for sediment abrasion resistant welding structure
CN107120145A (en) processing method, turbine component and turbine system