JPH1032563A - Millimeter wave signal optical multiplex system and device - Google Patents

Millimeter wave signal optical multiplex system and device

Info

Publication number
JPH1032563A
JPH1032563A JP8204274A JP20427496A JPH1032563A JP H1032563 A JPH1032563 A JP H1032563A JP 8204274 A JP8204274 A JP 8204274A JP 20427496 A JP20427496 A JP 20427496A JP H1032563 A JPH1032563 A JP H1032563A
Authority
JP
Japan
Prior art keywords
optical
light waves
frequency
signal
millimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8204274A
Other languages
Japanese (ja)
Other versions
JP2890031B2 (en
Inventor
Toshiaki Kuri
敏明 久利
Kenichi Kitayama
研一 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP8204274A priority Critical patent/JP2890031B2/en
Publication of JPH1032563A publication Critical patent/JPH1032563A/en
Application granted granted Critical
Publication of JP2890031B2 publication Critical patent/JP2890031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable millimeter wave signal optical multiplex system and a device with high signal density. SOLUTION: At a transmitter side, an output of a standard microwave signal source 14 is inputted to an optical injection mode synchronous semiconductor laser 13 to allow an array waveguide grating 15 to extract a plurality of optical waves at an equal frequency interval as two each sets of optical waves with different frequencies, they are modulated by data at an optical modulator 3, all optical waves are optical multiplexed by a photocoupler 4 and the resulting light is transmitted through an optical fiber 6. At the receiver side, desired sets of the optical waves received via an array waveguide grating 15 are given to a photodetector 9, in which optical self heterodyne detection is applied to the waves to obtain a millimeter wave signal correspond to a frequency difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は無線通信等における
光学的なミリ波信号多重伝送技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical millimeter-wave signal multiplex transmission technique in wireless communication and the like.

【0002】[0002]

【従来の技術】図8に従来のミリ波信号光多重伝送方式
の構成図を示す。同図において1はデュアルモード半導
体レーザ(DMLD)、2は偏光制御装置(PC)、3
は光学変調器(MOD)、4は光カップラ(MUX)、
5は光増幅器、6は光ファイバ伝送路、7は光スターカ
ップラ(DEMUX)、8は光学フィルタ(OF)、9
は光検波器(PD)、10は電気信号増幅器、11は電
気信号帯域フィルタ(BPF)、12はミリ波アンテナ
である。
2. Description of the Related Art FIG. 8 is a block diagram of a conventional millimeter-wave signal light multiplex transmission system. In the figure, 1 is a dual mode semiconductor laser (DMLD), 2 is a polarization controller (PC), 3
Is an optical modulator (MOD), 4 is an optical coupler (MUX),
5 is an optical amplifier, 6 is an optical fiber transmission line, 7 is an optical star coupler (DEMUX), 8 is an optical filter (OF), 9
Denotes an optical detector (PD), 10 denotes an electric signal amplifier, 11 denotes an electric signal bandpass filter (BPF), and 12 denotes a millimeter wave antenna.

【0003】この方法では、光源として異なる発振周波
数をもつ2つの光波を発生させるDMLD1を複数個使
用しなければならないが、各DMLDからの光波の周波
数はお互いにスペクトルが重ならないように設定されて
おり、1つのDMLDから発生する2つの光波はPC2
で偏光状態が調整されてからMOD3において情報信号
で変調される。そして、変調された全ての光波は、光カ
ップラ4によって波長多重され、光増幅器5で光信号電
力を増幅してから1本の光ファイバ伝送路6を通じて一
括して光多重伝送される。
In this method, a plurality of DMLDs 1 for generating two light waves having different oscillation frequencies must be used as a light source, but the frequencies of the light waves from each DMLD are set so that the spectra do not overlap each other. And two light waves generated from one DMLD are PC2
MOD3 modulates the polarization state with an information signal. Then, all the modulated light waves are wavelength-multiplexed by the optical coupler 4, the optical signal power is amplified by the optical amplifier 5, and then collectively optically multiplexed and transmitted through one optical fiber transmission line 6.

【0004】一方、伝送された波長多重光信号は、再び
光増幅器5で増幅されてから光スターカップラ7で電力
等分され、各受信端に分配される。受信側では、OF8
によって、分配された波長多重光信号の中から所望の2
つの光波のみを周波数的に分離して取り出し、PD9に
おいて光自己ヘテロダイン検波して周波数差に相当する
ミリ波信号を発生させる。そして、発生したミリ波信号
は電気信号増幅器10で増幅された後、BPF11で不
要帯域の信号と雑音を除去してから、ミリ波アンテナ1
2より放射される。
On the other hand, the transmitted wavelength-division multiplexed optical signal is again amplified by the optical amplifier 5 and then equally divided in power by the optical star coupler 7 and distributed to each receiving end. On the receiving side, OF8
From the distributed wavelength multiplexed optical signals,
Only the two light waves are separated in frequency and taken out, and the PD 9 performs optical self-heterodyne detection to generate a millimeter wave signal corresponding to the frequency difference. After the generated millimeter wave signal is amplified by the electric signal amplifier 10, the BPF 11 removes unnecessary band signals and noise, and then the millimeter wave antenna 1
Radiated from 2.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
技術ではミリ波信号の数だけ光源を用意する必要があ
り、発生させるミリ波信号の多重度数が増加するにつれ
て実用化が困難になる。また、多数のデュアルモード半
導体レーザからの光波を高密度に光周波数多重するた
め、各デュアルモード半導体レーザの発振周波数制御も
大変困難である。
However, in the prior art, it is necessary to prepare as many light sources as the number of millimeter-wave signals, and practical use becomes more difficult as the multiplicity of the generated millimeter-wave signals increases. Further, since light waves from a large number of dual mode semiconductor lasers are optically frequency multiplexed at a high density, it is very difficult to control the oscillation frequency of each dual mode semiconductor laser.

【0006】[0006]

【課題を解決するための手段】本発明は上記に鑑みて提
案されたものであり、送信側では、単一の光源を用いて
等周波数間隔に並んだ複数の光波を発生させて2つずつ
の組に分離し、光波の組ごとに情報信号で変調する。そ
して、変調された2つずつの光波の組は再び混合されて
から一括して遠隔地へ光周波数多重伝送される。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above, and a transmitting side uses a single light source to generate a plurality of light waves arranged at equal frequency intervals, two by two. , And is modulated with an information signal for each set of light waves. Then, the modulated two sets of light waves are mixed again and then collectively transmitted by optical frequency multiplexing to a remote place.

【0007】一方、受信側では、伝送された光周波数多
重信号を元の2つの光波の組に分離し、所望の2つの光
波のみを光自己ヘテロダイン検波した後、2つの光波の
周波数差に相当するミリ波信号を発生させるものであ
る。
On the other hand, on the receiving side, the transmitted optical frequency multiplexed signal is separated into an original set of two light waves, and only the desired two light waves are subjected to optical self-heterodyne detection. To generate a millimeter wave signal.

【0008】[0008]

【発明の実施の形態】本発明は、具体的には、単一の光
注入モード同期半導体レーザから複数の光波を発生さ
せ、周波数差が所望のミリ波信号に相当する2つずつの
光波の組毎で変復調を行い、一括して全ての光波を一本
の光ファイバで光多重伝送するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specifically, the present invention generates a plurality of light waves from a single light-injection mode-locked semiconductor laser, and generates two light waves each having a frequency difference corresponding to a desired millimeter wave signal. The modulation and demodulation are performed for each set, and all the light waves are collectively optically multiplex-transmitted through one optical fiber.

【0009】以下に、本発明の実施例の具体的な構成を
図面に従い説明する。図1は本発明の第1の実施例にお
けるミリ波信号光多重伝送装置の構成図である。同図に
おいて13は光注入モード同期半導体レーザ(MLL
D)、14は標準マイクロ波信号源、15はアレー導波
路格子(AWG)である。
A specific configuration of an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a millimeter-wave signal optical multiplex transmission apparatus according to a first embodiment of the present invention. In the figure, reference numeral 13 denotes a light injection mode-locked semiconductor laser (MLL).
D) and 14 are standard microwave signal sources, and 15 is an arrayed waveguide grating (AWG).

【0010】また、本発明の各実施例に用いられる光注
入モード同期半導体レーザ13の構成図を図2に示す。
同図において16は外部共振型マスターレーザ、17は
光学レンズ、18は回折格子、19は半導体レーザ駆動
電流入力端、20は飽和吸収制御電圧入力端、21は光
アイソレータ、22はスレーブレーザ、23はマスータ
ーレーザが発振する繰り返し光パルス列、24はスレー
ブレーザが発振する繰り返し光パルス列である。
FIG. 2 is a diagram showing the configuration of a light-injection mode-locked semiconductor laser 13 used in each embodiment of the present invention.
In the figure, 16 is an external resonance type master laser, 17 is an optical lens, 18 is a diffraction grating, 19 is a semiconductor laser drive current input terminal, 20 is a saturation absorption control voltage input terminal, 21 is an optical isolator, 22 is a slave laser, and 23 is Is a repetitive optical pulse train oscillated by the master laser, and 24 is a repetitive optical pulse train oscillated by the slave laser.

【0011】送信側において、光注入MLLD13で
は、先ず、標準マイクロ波信号源14から出力される低
調波基準信号によって直接強度変調されたマスターレー
ザ16が繰り返し光パルスを発生し、この光パルス列2
3の注入によってスレーブレーザ22が基準信号の逓倍
周波数でモード同期が安定した、要求される電気無線信
号の搬送波周波数、すなわちミリ波帯周波数間隔に並ん
だ複数の光波を発生させる。
On the transmitting side, in the light injection MLLD 13, first, a master laser 16 directly intensity-modulated by the subharmonic reference signal output from the standard microwave signal source 14 repeatedly generates an optical pulse.
By the injection of 3, the slave laser 22 generates a plurality of light waves arranged at the carrier frequency of the required electric radio signal, that is, the millimeter wave band frequency interval, in which the mode locking is stabilized at the multiple frequency of the reference signal.

【0012】図3はMLLD13からの出力光の周波数
スペクトルである。複数の光波は、AWG15により隣
接する2つずつの光波の組に分離され、PC2で偏光状
態が整えられ、光波の組ごとにまとめてMOD3におい
て情報信号で変調される。尚、図4はAWG15により
分離された光波の一組の周波数スペクトルである。
FIG. 3 is a frequency spectrum of the output light from the MLLD 13. The plurality of light waves are separated into two adjacent light wave sets by the AWG 15, the polarization state is adjusted by the PC 2, and each light wave set is collectively modulated by the information signal in the MOD 3. FIG. 4 is a set of frequency spectra of light waves separated by the AWG 15.

【0013】光変調後、全ての光波は光カップラ4で光
多重合成されてから一括して一本の光ファイバ6で伝送
される。ここで、情報信号は任意であり、ベースバンド
信号と帯域信号、アナログ信号とディジタル信号、単一
信号と多重化信号、伝送速度などの限定はされない。
After the light modulation, all light waves are optically multiplexed and combined by the optical coupler 4 and then transmitted collectively through one optical fiber 6. Here, the information signal is arbitrary, and there is no limitation on a baseband signal and a band signal, an analog signal and a digital signal, a single signal and a multiplexed signal, a transmission speed, and the like.

【0014】一方、受信側において、受信した光多重化
信号からAWG15で元の光波の組に分け、PC2で偏
光状態が整えられから所望の光波の組のみをPD9にお
いて光自己ヘテロダイン検波して周波数差に相当するミ
リ波信号を生成して取り出す。尚、図5は40kmを伝
搬して受信した光多重化信号からAWG15で分離した
もとの光波の組の周波数スペクトルである。
On the receiving side, the received optical multiplexed signal is divided into the original set of light waves by the AWG 15 and the polarization state is adjusted by the PC 2. A millimeter wave signal corresponding to the difference is generated and extracted. FIG. 5 is a frequency spectrum of a set of original lightwaves separated by the AWG 15 from an optical multiplexed signal propagated and received over 40 km.

【0015】発生したミリ波信号は、電気信号増幅器1
0で電力増幅してから、BPF11で不要帯域の信号と
雑音を除去してからミリ波アンテナ12より放射する。
受信側で生成したミリ波信号の変調形式と伝送速度は、
変調信号である送信側の情報信号の信号形態を工夫する
ことで自由に選ぶことができるので、個々の端末の要求
に柔軟に対応することができる。
The generated millimeter wave signal is transmitted to the electric signal amplifier 1
After amplifying the power by 0, the signal and noise in the unnecessary band are removed by the BPF 11 and then radiated from the millimeter wave antenna 12.
The modulation format and transmission speed of the millimeter wave signal generated on the receiving side are
Since the signal form of the information signal on the transmitting side, which is a modulation signal, can be freely selected by devising the signal form, it is possible to flexibly respond to the demands of individual terminals.

【0016】また、送信側におけるAWG15とMOD
3の間、及び受信側におけるAWG15とPD9の間で
偏波保持ファイバを採用すれば、本発明の実施例におけ
る全てのPC2は不要となり、より簡易なシステム構成
が可能となる。
AWG15 and MOD on the transmitting side
If the polarization maintaining fiber is adopted between the AWG 15 and the PD 9 on the receiving side during the period 3, all the PCs 2 in the embodiment of the present invention become unnecessary, and a simpler system configuration can be realized.

【0017】尚、この実施例ではネットワークトポロジ
ーとしてスター型を適用しているが、本発明ではこれに
限定されるものではなく、光増幅器などを挿入すること
で光検波時に十分な受信電力が得られるのであるなら
ば、バス型などの他のネットワークトポロジーについて
も適用が可能である。
In this embodiment, a star topology is applied as a network topology. However, the present invention is not limited to this. By inserting an optical amplifier or the like, sufficient reception power can be obtained at the time of optical detection. If applicable, other network topologies such as a bus type can be applied.

【0018】ここで、図1におけるMODの構成につい
ては、図6(a)に示すように、2つの光波のうち、一
方は無変調のままでもう一方を電気光学変調器(EO
M)25により情報信号で変調する場合(変調法1)
と、図6(b)に示すように、両光波をまとめてEOM
25により情報信号で変調する場合(変調法2)があ
る。
Here, regarding the configuration of the MOD in FIG. 1, as shown in FIG. 6 (a), one of the two light waves is left unmodulated while the other is an electro-optic modulator (EO).
M) Modulation with information signal by 25 (modulation method 1)
And, as shown in FIG.
25 (modulation method 2).

【0019】本発明の各実施例におけるEOM25にマ
ッハツェンダー変調器を適用する場合、受信側における
光検波方法を考慮すると、下記の表に示すように、光波
の振幅、位相、周波数を情報信号で変調する場合には変
調法1を用い、光波の強度を情報信号で変調する場合に
は変調法2を用いればよい。
When a Mach-Zehnder modulator is applied to the EOM 25 in each embodiment of the present invention, the amplitude, phase and frequency of a light wave are represented by an information signal, as shown in the following table, in consideration of an optical detection method on the receiving side. Modulation method 1 may be used for modulation, and modulation method 2 may be used for modulating the intensity of the light wave with the information signal.

【0020】[0020]

【表1】 [Table 1]

【0021】本発明の第2の実施例におけるミリ波信号
光多重伝送装置の構成図を図7に示す。この実施例で
は、送信側において、AWG15によって分離された複
数の光波について、中心の無変調光波を両側2つの被変
調光波で共有するように配置し3つずつの光波を単位に
して、共有する無変調光波と被変調光波の一方を1組と
して情報信号で変復調し、全ての光波を光カップラ4で
光多重合成してから一括して一本の光ファイバ6で伝送
する。
FIG. 7 is a block diagram of a millimeter-wave signal optical multiplex transmission apparatus according to a second embodiment of the present invention. In this embodiment, the transmitting side arranges a plurality of lightwaves separated by the AWG 15 such that the central unmodulated lightwave is shared by two modulated lightwaves on both sides, and the lightwaves are shared in units of three lightwaves. One of the unmodulated lightwave and the modulated lightwave is modulated and demodulated with the information signal as one set, all the lightwaves are optically multiplexed and combined by the optical coupler 4, and then transmitted collectively through one optical fiber 6.

【0022】一方、受信側では、3つ組の光波ごとに共
有する無変調光波を等分して2つの被変調光波とそれぞ
れ混合し、所望の被変調光波との混合光をPD9におい
て光自己ヘテロダイン検波して周波数差に相当するミリ
波信号を生成して取り出す。そして、発生したミリ波信
号は、電気信号増幅器10で電力増幅してから、BPF
11で不要帯域の信号と雑音を除去してからミリ波アン
テナ12より放射する。
On the other hand, on the receiving side, the unmodulated lightwave shared by each of the three sets of lightwaves is equally divided and mixed with the two modulated lightwaves. Heterodyne detection is performed to generate and extract a millimeter wave signal corresponding to the frequency difference. Then, the generated millimeter wave signal is power-amplified by the electric signal amplifier 10, and then the BPF
At 11, the signal and noise in the unnecessary band are removed, and then emitted from the millimeter wave antenna 12.

【0023】第2の実施例のシステムは、原理的に単一
光源より出力される同数の光波を用いて、第1の実施例
のシステムの4/3倍の数のミリ波信号を多重伝送でき
る能力を持つ。
In the system of the second embodiment, the same number of light waves output from a single light source are used in principle to multiplex and transmit 4/3 times as many millimeter-wave signals as the system of the first embodiment. Have the ability to do.

【0024】以上、本発明を実施形態に基づいて説明し
たが、本発明は上記した実施形態に限定されるものでは
なく、特許請求の範囲に記載した構成を変更しない限
り、どのようにでも実施できる。
As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and may be implemented in any manner unless the configuration described in the claims is changed. it can.

【0025】[0025]

【発明の効果】本発明においては、単一の光注入モード
同期半導体レーザを用いて等間隔に並んだ異なる周波数
をもつ複数の光波を同時に発生させているので、多重伝
送のために複数の光源を用意する必要がない。
In the present invention, since a plurality of light waves having different frequencies arranged at equal intervals are simultaneously generated using a single light-injection mode-locked semiconductor laser, a plurality of light sources are provided for multiplex transmission. There is no need to prepare.

【0026】また、モード同期半導体レーザより発生す
る複数の光波は、光注入によって全体でモード同期が安
定しているため、従来の波長多重に比べて極めて高密度
な光周波数多重伝送が可能である。
Further, since a plurality of light waves generated by the mode-locked semiconductor laser have stable mode locking as a whole by light injection, extremely high-density optical frequency multiplex transmission is possible as compared with conventional wavelength multiplexing. .

【0027】分離された光波の組を一つの情報信号で変
調する場合、一つの情報信号で変調されたミリ波の副搬
送波多重信号で光波を変調する場合と異なり、光変調時
の相互変調歪みの影響を全く受けないことから、ミリ波
信号多重化による変調指数の制限を受けない等、多大な
効果を奏する。
When the set of separated light waves is modulated by one information signal, unlike the case where the light wave is modulated by a millimeter-wave subcarrier multiplexed signal modulated by one information signal, intermodulation distortion at the time of light modulation is different. Is not affected at all, so that a great effect is exhibited, such as not being restricted by the modulation index due to the millimeter-wave signal multiplexing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるミリ波信号光多重伝送装置の第
1の実施例を示す構成図である。
FIG. 1 is a configuration diagram illustrating a first embodiment of a millimeter-wave signal optical multiplex transmission apparatus according to the present invention.

【図2】本発明の光注入モード同期半導体レーザ(ML
LD)の構成図である。
FIG. 2 shows a light injection mode-locked semiconductor laser (ML) of the present invention.
FIG. 2 is a configuration diagram of an LD).

【図3】本発明の光注入モード同期半導体レーザからの
出力光の周波数スペクトルを示す特性図である。
FIG. 3 is a characteristic diagram illustrating a frequency spectrum of output light from a light-injection mode-locked semiconductor laser according to the present invention.

【図4】本発明における周波数分離フィルタにより分離
された光波の一組の周波数スペクトルを示す特性図であ
る。
FIG. 4 is a characteristic diagram showing a set of frequency spectra of light waves separated by a frequency separation filter according to the present invention.

【図5】本発明における40km伝搬後の受信信号から
分離したもとの光波の組の周波数スペクトルを示す特性
図である。
FIG. 5 is a characteristic diagram showing a frequency spectrum of a set of original light waves separated from a received signal after propagation of 40 km in the present invention.

【図6】(a)、(b)は何れも本発明における変調器
の構成図である。
FIGS. 6A and 6B are configuration diagrams of a modulator according to the present invention.

【図7】本発明におけるミリ波信号光多重伝送装置の第
2の実施例を示す構成図である。
FIG. 7 is a configuration diagram showing a second embodiment of the millimeter-wave signal optical multiplex transmission apparatus according to the present invention.

【図8】従来のミリ波信号光多重伝送装置の構成図であ
る。
FIG. 8 is a configuration diagram of a conventional millimeter wave signal optical multiplex transmission device.

【符号の説明】[Explanation of symbols]

1 デュアルモード半導体レーザ 2 偏光制御装置 3 光学変調器 4 光カップラ 5 光増幅器 6 光ファイバ伝送路 7 光スターカップラ 8 光学フィルタ 9 光検波器 10 電気信号増幅器 11 電気信号帯域フィルタ 12 ミリ波アンテナ 13 光注入モード同期半導体レーザ 14 標準マイクロ波信号源 15 光周波数分離フィルタ 16 外部共振型マスターレーザ 17 光学レンズ 18 回折格子 19 半導体レーザ駆動電流入力端 20 飽和吸収制御電圧入力端 21 光アイソレータ 22 スレーブレーザ 23 マスーターレーザが発振する繰り返し光パルス列 24 スレーブレーザが発振する繰り返し光パルス列 25 電気光学変調器 DESCRIPTION OF SYMBOLS 1 Dual mode semiconductor laser 2 Polarization controller 3 Optical modulator 4 Optical coupler 5 Optical amplifier 6 Optical fiber transmission line 7 Optical star coupler 8 Optical filter 9 Optical detector 10 Electric signal amplifier 11 Electric signal band filter 12 Millimeter wave antenna 13 Light Injection mode-locked semiconductor laser 14 Standard microwave signal source 15 Optical frequency separation filter 16 External resonance type master laser 17 Optical lens 18 Diffraction grating 19 Semiconductor laser drive current input terminal 20 Saturation absorption control voltage input terminal 21 Optical isolator 22 Slave laser 23 Repetitive optical pulse train oscillated by souter laser 24 Repetitive optical pulse train oscillated by slave laser 25 Electro-optic modulator

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/04 10/06 H04J 1/00 Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H04B 10/04 10/06 H04J 1/00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単一光源より生成された等周波数間隔の
複数の光波を、周波数の異なる2つずつの光波の組に分
離して取り出し、光波の各組を情報信号で個別に変調し
てから、全ての光波を光周波数多重して一括伝送し、受
信した光周波数多重化信号から光周波数毎に多重分離し
た2つの光波の組をそれぞれ光自己ヘテロダイン検波し
て、光周波数差に相当するミリ波信号を発生させること
を特徴とするミリ波信号光多重伝送方式。
1. A plurality of light waves having equal frequency intervals generated by a single light source are separated into two sets of light waves having different frequencies, and each set of light waves is individually modulated by an information signal. From the above, all the light waves are optically frequency-multiplexed and transmitted collectively, and a set of two light waves demultiplexed and separated for each optical frequency from the received optical frequency multiplexed signal is subjected to optical self-heterodyne detection, which corresponds to an optical frequency difference. A millimeter-wave signal optical multiplex transmission system for generating a millimeter-wave signal.
【請求項2】 等周波数間隔の複数の光波において、周
波数的に隣り合う2つの光波を1組にして分離し、その
光波の組毎に情報信号で個別に変調してから、光自己ヘ
テロダイン検波後に光周波数差に相当するミリ波信号を
発生させることを特徴とする請求項1に記載のミリ波信
号光多重伝送方式。
2. In a plurality of light waves having equal frequency intervals, two light waves which are adjacent in frequency are separated into one set, and each set of the light waves is individually modulated with an information signal, and then optical self-heterodyne detection is performed. 2. The multiplex transmission system according to claim 1, wherein a millimeter-wave signal corresponding to an optical frequency difference is generated later.
【請求項3】 単一光源より生成された等周波数間隔の
複数の光波において、中心の無変調光波を両側2つの被
変調光波が共有する3つの光波を単位として分離し、2
つの被変調光波を別々の情報信号で変調してから一括伝
送し、伝送された無変調光波と一方の被変調光波とを光
周波数毎に多重分離し、光自己ヘテロダイン検波して光
周波数差に相当するミリ波信号を発生させることを特徴
とするミリ波信号光多重伝送方式。
3. A plurality of light waves generated from a single light source at equal frequency intervals, and a central unmodulated light wave is separated into three light waves shared by two modulated light waves on both sides as a unit.
The two modulated lightwaves are modulated with separate information signals and then transmitted collectively, the transmitted unmodulated lightwave and one of the modulated lightwaves are demultiplexed for each optical frequency, and optical self-heterodyne detection is performed to obtain the optical frequency difference. A millimeter-wave signal optical multiplex transmission system for generating a corresponding millimeter-wave signal.
【請求項4】 等周波数間隔の複数の光波を生成する単
一光源と、該単一光源からの光波を周波数の異なる2つ
ずつの光波の組に分離する光周波数分離フィルタと、上
記周波数の異なる2つずつの光波の各組の一方の光波を
情報信号で個別に変調する複数の光学変調器と、該複数
の光学変調器で変調された全ての光波を光周波数多重す
る光合波器と、該光合波器にて光周波数多重化された光
波を一括伝送する単一の伝送路と、該単一の伝送路を伝
搬した光波を受信し、該受信した光波から上記複数の2
つの光波の組を多重分離する光周波数分離フィルタと、
該光周波数分離フィルタで得られた上記複数の2つの光
波の組をそれぞれ光自己ヘテロダイン検波する複数の光
検波器とから構成し、上記複数の2つの光波の組の周波
数差に相当するミリ波信号を発生させることを特徴とす
るミリ波信号光多重伝送装置。
4. A single light source for generating a plurality of light waves at equal frequency intervals, an optical frequency separation filter for separating the light waves from the single light source into two sets of light waves having different frequencies, A plurality of optical modulators for individually modulating one lightwave of each set of two different lightwaves with an information signal, and an optical multiplexer for optically frequency multiplexing all the lightwaves modulated by the plurality of optical modulators; A single transmission line for collectively transmitting lightwaves optically multiplexed by the optical multiplexer, and a lightwave transmitted through the single lightwave transmission line, and receiving the plurality of lightwaves from the received lightwave.
An optical frequency separation filter for demultiplexing a set of two light waves,
A plurality of sets of two light waves obtained by the optical frequency separation filter and a plurality of light detectors for performing optical self-heterodyne detection, and a millimeter wave corresponding to a frequency difference between the plurality of sets of two light waves. A millimeter-wave signal optical multiplex transmission device for generating a signal.
JP8204274A 1996-07-15 1996-07-15 Millimeter-wave signal optical multiplex transmission system and device Expired - Lifetime JP2890031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8204274A JP2890031B2 (en) 1996-07-15 1996-07-15 Millimeter-wave signal optical multiplex transmission system and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8204274A JP2890031B2 (en) 1996-07-15 1996-07-15 Millimeter-wave signal optical multiplex transmission system and device

Publications (2)

Publication Number Publication Date
JPH1032563A true JPH1032563A (en) 1998-02-03
JP2890031B2 JP2890031B2 (en) 1999-05-10

Family

ID=16487771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8204274A Expired - Lifetime JP2890031B2 (en) 1996-07-15 1996-07-15 Millimeter-wave signal optical multiplex transmission system and device

Country Status (1)

Country Link
JP (1) JP2890031B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173958A (en) * 2005-12-19 2007-07-05 Nippon Telegr & Teleph Corp <Ntt> Milliwave wireless communication system and method
JP2007201585A (en) * 2006-01-24 2007-08-09 National Institute Of Information & Communication Technology Communication system and method therefor
JP2008067048A (en) * 2006-09-07 2008-03-21 National Institute Of Information & Communication Technology Wavelength conversion type wavelength division multiplexing transmission device
JP2010062619A (en) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for generating frequency modulation signal
JP2010245752A (en) * 2009-04-03 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical/radio transmitter
JP2013228739A (en) * 2006-11-13 2013-11-07 Battelle Memorial Inst Frequency selection mmw source
WO2024065809A1 (en) * 2022-09-30 2024-04-04 华为技术有限公司 Communication apparatus and radio-over-fiber transmission system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173958A (en) * 2005-12-19 2007-07-05 Nippon Telegr & Teleph Corp <Ntt> Milliwave wireless communication system and method
JP4637014B2 (en) * 2005-12-19 2011-02-23 日本電信電話株式会社 Millimeter-wave wireless communication system and millimeter-wave wireless communication method
JP2007201585A (en) * 2006-01-24 2007-08-09 National Institute Of Information & Communication Technology Communication system and method therefor
JP4696270B2 (en) * 2006-01-24 2011-06-08 独立行政法人情報通信研究機構 Communication system and communication method
JP2008067048A (en) * 2006-09-07 2008-03-21 National Institute Of Information & Communication Technology Wavelength conversion type wavelength division multiplexing transmission device
JP2013228739A (en) * 2006-11-13 2013-11-07 Battelle Memorial Inst Frequency selection mmw source
JP2010062619A (en) * 2008-09-01 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for generating frequency modulation signal
JP2010245752A (en) * 2009-04-03 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical/radio transmitter
WO2024065809A1 (en) * 2022-09-30 2024-04-04 华为技术有限公司 Communication apparatus and radio-over-fiber transmission system

Also Published As

Publication number Publication date
JP2890031B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US4807227A (en) Optical wavelength-division switching system with coherent optical detection system
KR100480540B1 (en) Wavelength division multiplexing passive optical network system
EP0837575B1 (en) Optical communication system employing spectrally sliced optical source
JP2888272B2 (en) Optical network and transit nodes
US5212579A (en) Method and apparatus for communicating amplitude modulated signals over an optical communication path
JPH0810849B2 (en) Optical communication device and method using coherent detection
US4991975A (en) Division multiplexing and demultiplexing means lightwave communication system comprising optical time
US6147784A (en) Simultaneous wavelength-division multiplexing and broadcast transmission system
US7603037B2 (en) Ultra-dense wavelength and subcarrier multiplexed optical and RF/mm-wave transmission system
US20100263001A1 (en) Optical-to-millimeter wave conversion
JP2890031B2 (en) Millimeter-wave signal optical multiplex transmission system and device
JP2738542B2 (en) Coherent optical communication system
RU2204211C1 (en) Subscriber optical communication line
EP2958253A1 (en) Optical device comprising mode-locked laser components
JPH01130638A (en) Frequency multiplex optical two-way transmitter
JP2003298553A (en) Optical communication system and optical receiver
JP2000258811A (en) Wavelength converter and wavelength converting device
JP3007955B2 (en) Optical / millimeter wave generation transmission method and apparatus
JP3293747B2 (en) Optical WDM transmission system
JP2000201110A (en) Optical transmitter
JP3468190B2 (en) WDM optical subscriber transmission system
JP2002353938A (en) Optical transmitter, optical subscriber terminal, radio base station, optical receiving device and optical transmitting device
Chan et al. Realization of a time-slot access WDMA dual bus/ring packet network node using centralized light sources
JPH10200482A (en) Optical control signal transmitter
KR20020068919A (en) Loopback system using mach-zehnder modulator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term