JPH0947097A - Controller for induction motor - Google Patents

Controller for induction motor

Info

Publication number
JPH0947097A
JPH0947097A JP7189451A JP18945195A JPH0947097A JP H0947097 A JPH0947097 A JP H0947097A JP 7189451 A JP7189451 A JP 7189451A JP 18945195 A JP18945195 A JP 18945195A JP H0947097 A JPH0947097 A JP H0947097A
Authority
JP
Japan
Prior art keywords
axis component
command
magnetic flux
secondary magnetic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7189451A
Other languages
Japanese (ja)
Other versions
JP3283729B2 (en
Inventor
Yoshihiko Kanehara
義彦 金原
Masato Koyama
正人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18945195A priority Critical patent/JP3283729B2/en
Publication of JPH0947097A publication Critical patent/JPH0947097A/en
Application granted granted Critical
Publication of JP3283729B2 publication Critical patent/JP3283729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfy the lowest loss conditions by controlling the d-axis and q-axis components of primary current of an induction motor to match the d-axis and q-axis component commands of primary current thereby controlling the secondary flux and torque current with no effect of the iron loss resistance. SOLUTION: A subtractor 6 produces the difference between d-axis component command ids * and d-axis component ids of primary current produced from a command conversion means. A controller 8 amplifies the difference to generate the d-axis component command Vds * of primary voltage. Similarly, a subtractor 7 produces the difference between q-axis component command iqs * and q-axis component iqs of primary current produced from the command conversion means. A controller 9 amplifies the difference to generate the q-axis component command Vqs * of primary voltage. An integrator 14 integrates the primary frequency (w) obtained from the command conversion means to generate a phase θ. Based on the phase θ, a coordinate converter 10 converts the d-axis component command Vds * and q-axis component command Vqs * of primary voltage into three- phase voltage commands vus *, vvs *, vws *.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、誘導電動機の運
転効率の向上を図るための誘導電動機の制御装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor control device for improving the operating efficiency of an induction motor.

【0002】[0002]

【従来の技術】図15は例えば特公平6−69307号
公報に示された従来の誘導電動機の制御装置であり、図
において、1は誘導電動機、2は誘導電動機1の電気的
回転周波数ωr を検出する回転周波数検出器、3は誘導
電動機1の一次電流ivs,iusを検出する電流検出器、
4は誘導電動機1を可変周波数で駆動する電圧形インバ
ータである。5は電流検出器3から得られた一次電流i
vs,iusを二次磁束に同期して回転する座標軸(d−q
軸)上に座標変換する座標変換器、6,7は減算器、
8,9は制御器、10は制御器8,9から得られたd−
q軸上の一次電圧指令vqs * ,vds * を三相電圧指令v
us * ,vvs * ,vws * に変換する座標変換器である。
2. Description of the Related Art FIG. 15 shows a conventional induction motor control device disclosed in, for example, Japanese Patent Publication No. 6-69307, in which 1 is an induction motor and 2 is an electric rotation frequency ω r of the induction motor 1. A rotational frequency detector 3 for detecting the primary current i vs , i us of the induction motor 1,
Reference numeral 4 is a voltage type inverter that drives the induction motor 1 at a variable frequency. 5 is the primary current i obtained from the current detector 3.
Coordinate axes (dq) that rotate vs , i us in synchronization with the secondary magnetic flux.
(Axis) coordinate converter for coordinate conversion, 6 and 7 are subtractors,
8 and 9 are controllers, and 10 is d− obtained from the controllers 8 and 9.
The primary voltage commands v qs * and v ds * on the q-axis are compared with the three-phase voltage command v
us *, v vs *, v is a coordinate converter for converting to ws *.

【0003】11は一次電流のq軸成分指令iqs * を二
次磁束指令φdr * で除算する除算器、12は除算器11
の出力を定数倍することによってすべり周波数ωs を出
力する係数器、13は回転周波数検出器2から得られた
電気的回転周波数ωr と係数器12から得られたすべり
周波数ωs を加算し一次周波数ωを出力する加算器、1
4は一次周波数ωを積分しd−q座標軸の位相θを与え
る積分器である。15は係数器、16は一次周波数ωに
基づいて一次電流指令と二次磁束指令との振幅比Cを与
える関数発生器、17は係数器15の出力を関数発生器
16の出力Cで除算する除算器、18は除算器17の出
力の絶対値の平方根を発生する関数発生器、19は係数
器15の出力を関数発生器18の出力φdr * で除算する
除算器、20は微分要素を含んだ演算を行う電流指令演
算器である。
Reference numeral 11 is a divider for dividing the q-axis component command i qs * of the primary current by the secondary magnetic flux command φ dr * , and 12 is a divider 11
A coefficient unit that outputs a slip frequency ω s by multiplying the output of ω by a constant, and 13 adds the electrical rotation frequency ω r obtained from the rotation frequency detector 2 and the slip frequency ω s obtained from the coefficient unit 12. An adder that outputs a primary frequency ω, 1
Reference numeral 4 is an integrator that integrates the primary frequency ω and gives the phase θ of the dq coordinate axes. Reference numeral 15 is a coefficient generator, 16 is a function generator that gives an amplitude ratio C between the primary current command and the secondary magnetic flux command based on the primary frequency ω, and 17 is the output of the coefficient generator 15 divided by the output C of the function generator 16. A divider, 18 is a function generator that generates the square root of the absolute value of the output of the divider 17, 19 is a divider that divides the output of the coefficient unit 15 by the output φ dr * of the function generator 18, and 20 is a derivative element. It is a current command calculator that performs included calculations.

【0004】次に動作について説明する。先ず誘導電動
機の制御装置の基本的な動作原理について説明する。誘
導電動機のすべり周波数ωs と二次磁束φdrおよび一次
電流のq軸成分iqsとの間には式(1)の関係がある。
Next, the operation will be described. First, the basic operating principle of the induction motor control device will be described. The slip frequency ω s of the induction motor, the secondary magnetic flux φ dr, and the q-axis component i qs of the primary current have the relationship of Expression (1).

【0005】[0005]

【数1】 但し、 ωs :誘導電動機のすべり周波数 M :誘導電動機の相互インダクタンス値 Rr :誘導電動機の二次抵抗値 Lr :誘導電動機の二次インダクタンス値 φdr:誘導電動機の二次磁束のd軸成分(誘導電動機の
二次磁束) iqs:誘導電動機の一次電流のq軸成分 そこで、除算器11と、除算器11の出力をMRr /L
r 倍する係数器12を用いて式(2)の演算を行う。
[Equation 1] Where ω s is the slip frequency of the induction motor M is the mutual inductance value of the induction motor R r is the secondary resistance value of the induction motor L r is the secondary inductance value of the induction motor φ dr is the d-axis of the secondary magnetic flux of the induction motor Component (secondary magnetic flux of the induction motor) i qs : q-axis component of the primary current of the induction motor Therefore, the output of the divider 11 and the divider 11 is MR r / L
The equation (2) is calculated using the coefficient unit 12 that multiplies r .

【0006】[0006]

【数2】 但し、 φdr * :誘導電動機の二次磁束のd軸成分指令
(誘導電動機の二次磁束指令) iqs * :誘導電動機の一次電流のq軸成分指令 一次周波数ωと電気的回転周波数ωr およびすべり周波
数ωs との間には、式(3)の関係が成り立つので、加
算器13によってωs とωr を加算することにより一次
周波数ωが得られる。
[Equation 2] Where φ dr * : d-axis component command of secondary magnetic flux of induction motor (secondary magnetic flux command of induction motor) i qs * : q-axis component command of primary current of induction motor primary frequency ω and electrical rotation frequency ω r Since the relationship of equation (3) holds between the slip frequency and the slip frequency ω s , the primary frequency ω is obtained by adding ω s and ω r by the adder 13.

【0007】[0007]

【数3】 そして一次周波数ωを積分器14で積分するとd−q軸
の位相、即ち二次磁束の位相θが得られる。座標変換器
5では、積分器14から得られる二次磁束の位相θ及び
電流検出器3から得られる一次電流ivs,iusを用い、
式(4)に従って一次電流のd軸成分ids及びq軸成分
qsを演算する。
(Equation 3) Then, when the primary frequency ω is integrated by the integrator 14, the phase of the dq axes, that is, the phase θ of the secondary magnetic flux is obtained. The coordinate converter 5 uses the phase θ of the secondary magnetic flux obtained from the integrator 14 and the primary currents i vs , i us obtained from the current detector 3,
The d-axis component i ds and the q-axis component i qs of the primary current are calculated according to the equation (4).

【0008】[0008]

【数4】 但し、 ids:誘導電動機の一次電流のd軸成分 ius:誘導電動機のu相巻線の一次電流 ivs:誘導電動機のv相巻線の一次電流 一次電流のd軸成分idsと二次磁束φdrの間には式
(5)の関係があるので、電流指令演算器20では、二
次磁束指令φdr * に基づいて微分演算子Pを含んだ式
(6)を演算し一次電流のd軸成分指令ids * を発生す
る。
(Equation 4) However, i ds : d-axis component of the primary current of the induction motor i us : primary current of the u-phase winding of the induction motor i vs : primary current of the v-phase winding of the induction motor i ds and the d-axis component of the primary current Since there is a relationship of the formula (5) between the secondary magnetic fluxes φ dr , the current command calculator 20 calculates the formula (6) including the differential operator P based on the secondary magnetic flux command φ dr * to obtain the primary order. A current d-axis component command i ds * is generated.

【0009】[0009]

【数5】 但し、 Tr :誘導電動機の二次時定数(=Lr /R
r ) 減算器6が一次電流のd軸成分idsとその指令ids *
偏差を演算し、その偏差を制御器8で増幅することによ
って一次電圧のd軸成分指令vds * が得られる。同様に
減算器7が一次電流のq軸成分iqsとその指令iqs *
偏差を演算し、その偏差を制御器9で増幅することによ
って一次電圧のq軸成分指令vqs * が得られる。そし
て、三相電圧指令vus * ,vvs * ,vws * は、式(7)
を座標変換器10で演算することによって得られる。
(Equation 5) Where T r is the secondary time constant of the induction motor (= L r / R
r ) The subtractor 6 calculates the deviation between the d-axis component i ds of the primary current and its command i ds * , and the controller 8 amplifies the deviation to obtain the d-axis component command v ds * of the primary voltage. . Similarly, the subtracter 7 calculates the deviation between the q-axis component i qs of the primary current and its command i qs * , and the controller 9 amplifies the deviation to obtain the q-axis component command v qs * of the primary voltage. . Then, the three-phase voltage commands v us * , v vs * , v ws * are given by the equation (7).
Is calculated by the coordinate converter 10.

【0010】[0010]

【数6】 電圧形インバータ4は、三相電圧指令vus * ,vvs *
ws * に一致するように三相電圧vus,vvs,vwsを発
生する。以上によって、二次磁束指令φdr * と一次電流
のq軸成分指令iqs * を制御することが可能である。
(Equation 6) The voltage source inverter 4 has three-phase voltage commands v us * , v vs * ,
Three-phase voltages v us , v vs , and v ws are generated so as to match v ws * . As described above, the secondary magnetic flux command φ dr * and the q-axis component command i qs * of the primary current can be controlled.

【0011】それでは、二次磁束指令φdr * と一次電流
のq軸成分指令iqs * を如何に与えれば、誘導電動機1
の損失を最小にできるか説明する。誘導電動機の損失を
要因別に分類すると、抵抗損で代表される如き電流の2
乗積に比例する要素と、電力変換器のスナバ回路損失の
如き電圧の2乗積に比例する要素等に分類される。電流
の2乗積に比例する要素はKI (ids 2 +iqs 2 )で表
現することができる(但し、KI は比例定数)。また、
電圧の2乗積に比例する要素はKV (ωMids2 で簡
略的に表現することができる(但し、KV は比例定
数)。一方、発生トルクτm は二次磁束φdrと一次電流
のq軸成分iqsの積に比例するので比例定数KT を用い
た式(8)の関係が成り立つ。
Then, how to give the secondary magnetic flux command φ dr * and the q-axis component command i qs * of the primary current to the induction motor 1
Explain if the loss of can be minimized. If the loss of the induction motor is classified according to the factors, it is 2
It is classified into an element proportional to the product, an element proportional to the square product of the voltage such as the snubber circuit loss of the power converter, and the like. An element proportional to the squared product of the electric current can be expressed by K I ( ids 2 + i qs 2 ) (where K I is a proportional constant). Also,
The element proportional to the square product of the voltage can be simply expressed by K V (ωM i ds ) 2 (where K V is a proportional constant). On the other hand, since the generated torque τ m is proportional to the product of the secondary magnetic flux φ dr and the q-axis component i qs of the primary current, the relationship of Expression (8) using the proportional constant K T is established.

【0012】[0012]

【数7】 さて、式(8)からわかるように、ある値の発生トルク
を得るためのφdrとiqsの組み合わせは無数に存在す
る。そこで、特公平6−69307号公報に示された装
置ではiqsとφdr(=Mids)の比、即ち振幅比| iqs
* /φdr * | を用いて、合成損失KI (ids 2 +i
qs 2 )+KV (ωMids2 を最小にする条件を次式で
与える。
(Equation 7) As can be seen from the equation (8), there are innumerable combinations of φ dr and i qs for obtaining a generated torque of a certain value. Therefore, in the device disclosed in Japanese Patent Publication No. 6-69307, the ratio of i qs and φ dr (= Mi ds ), that is, the amplitude ratio | i qs
* / Φ dr * |, the combined loss K I ( ids 2 + i
The condition for minimizing qs 2 ) + K V (ωMi ds ) 2 is given by the following equation.

【0013】[0013]

【数8】 つまり、誘導電動機の損失が略最小になる条件は振幅比
| iqs * /φdr * | ,比例定数KI ,KV を用いた式
(9)によって与えられる。また、式(10)と式(1
1)を解けば式(12),(13)が得られる。
(Equation 8) In other words, the condition that the loss of the induction motor is approximately minimum is the amplitude ratio
| i qs * / φ dr * | and the proportional constants K I and K V are given by equation (9). Also, equation (10) and equation (1
Equations (12) and (13) are obtained by solving 1).

【0014】[0014]

【数9】 但し、 C :振幅比指令 式(12),(13)に従って二次磁束と一次電流のq
軸成分を制御すれば損失最小で誘導電動機を制御でき
る。
[Equation 9] However, C: q of the secondary magnetic flux and the primary current according to the amplitude ratio command equations (12) and (13)
If the shaft component is controlled, the induction motor can be controlled with minimum loss.

【0015】当該装置はトルク指令τm *からφdr * 及び
qs * を発生する過程で、振幅比|iqs * /φdr * | を
関数発生器16で与える。即ち、関数発生器16は式
(9)の演算を行って振幅比指令Cを発生する。そし
て、1/KT 倍する係数器15,除算器17及び関数発
生器18によって式(12)の演算を行い、係数器1
5,除算器19によって式(13)の演算を行う。以上
の様に三相電圧指令vus * ,vvs * ,vws * を演算し、
更に実際の一次電圧vus,vvs,vwsが対応する指令値
に追従するように制御する制御方式により、誘導電動機
と電力変換器の合成損失を略最小にすることが可能であ
る。
[0015] The device in the process of generating the phi dr * and i qs * from the torque command tau m *, the amplitude ratio | given by the function generator 16 | i qs * / φ dr *. That is, the function generator 16 performs the calculation of the equation (9) to generate the amplitude ratio command C. Then, the calculation of the equation (12) is performed by the coefficient unit 15, the divider 17 and the function generator 18 that multiply 1 / K T to obtain the coefficient unit 1
5, the divider 19 calculates the equation (13). As described above, the three-phase voltage commands v us * , v vs * , v ws * are calculated,
Further, by the control method in which the actual primary voltages v us , v vs , and v ws are controlled so as to follow the corresponding command values, the combined loss of the induction motor and the power converter can be substantially minimized.

【0016】ところで、このような制御装置では鉄損抵
抗を無視して一次電流指令を演算しているために鉄損抵
抗を無視した影響を受けて二次磁束およびトルク電流の
制御性能が劣化する事態が発生する。二次磁束及びトル
ク電流の制御が正しくなされない場合、振幅比指令Cと
振幅比| iqs/φdr| は一致しなくなると同時に、トル
ク指令τm *と発生トルクτm も一致しないことになる。
By the way, in such a control device, since the iron loss resistance is ignored and the primary current command is calculated, the control performance of the secondary magnetic flux and the torque current is deteriorated due to the influence of ignoring the iron loss resistance. Things happen. If the secondary magnetic flux and the torque current are not correctly controlled, the amplitude ratio command C and the amplitude ratio | i qs / φ dr | do not match, and at the same time, the torque command τ m * does not match the generated torque τ m. Become.

【0017】鉄損抵抗の無視による制御性能の劣化に対
応した、即ち、鉄損抵抗の影響を受けずに二次磁束及び
トルク電流を制御する誘導電動機の制御装置として、図
16のような例えば特開平1−311884号公報に示
されたものがあった。図において、1〜10及び13,
14は図15に示した従来装置と同一のものでありその
説明を省略する。また、21〜24は演算器、25は除
算器、26は係数器、27,28は加算器である。
As a control device for an induction motor, which copes with deterioration of control performance due to neglect of iron loss resistance, that is, a secondary magnetic flux and torque current are controlled without being affected by iron loss resistance, as shown in FIG. There is one disclosed in Japanese Patent Laid-Open No. 1-311884. In the figure, 1 to 10 and 13,
Reference numeral 14 is the same as the conventional device shown in FIG. 15 and its description is omitted. Further, 21 to 24 are arithmetic units, 25 is a divider, 26 is a coefficient unit, and 27 and 28 are adders.

【0018】次に当該装置の基本的な原理について説明
する。d−q軸上における誘導電動機の電圧・電流方程
式は、上記特開平1−311884号に示されているよ
うに、式(14)によって与えられる。
Next, the basic principle of the device will be described. The voltage-current equation of the induction motor on the dq axes is given by the equation (14) as shown in the above-mentioned Japanese Patent Laid-Open No. 3111884.

【0019】[0019]

【数10】 但し、 vds:誘導電動機の一次電圧のd軸成分 vqs:誘導電動機の一次電圧のq軸成分 Rm :誘導電動機の鉄損抵抗値 a :誘導電動機の鉄損抵抗と周波数の比(=Rm
ω) Ls :誘導電動機の一次インダクタンス値 Rs :誘導電動機の一次抵抗値 idr:誘導電動機の二次電流のd軸成分 iqr:誘導電動機の二次電流のq軸成分 なお、式(14)においてRm の値を零にすると、鉄損
を無視した場合の誘導電動機の電圧・電流方程式と一致
する。次に、鉄損を考慮した場合、誘導電動機の二次磁
束のd軸成分φdr及びq軸成分φqrは、式(15)によ
って与えられる。
(Equation 10) Here, v ds : d-axis component of the primary voltage of the induction motor v qs : q-axis component of the primary voltage of the induction motor R m : iron loss resistance value of the induction motor a: ratio of iron loss resistance of the induction motor to frequency (= R m /
ω) L s : Induction motor primary inductance value R s : Induction motor primary resistance value i dr : Induction motor secondary current d-axis component i qr : Induction motor secondary current q-axis component When the value of R m is set to zero in 14), the voltage-current equation of the induction motor when iron loss is ignored is in agreement. Next, when iron loss is taken into consideration, the d-axis component φ dr and the q-axis component φ qr of the secondary magnetic flux of the induction motor are given by equation (15).

【0020】[0020]

【数11】 さらに、二次磁束ベクトルをd軸に一致させるとき、発
生トルクτm は式(16)によって与えられる。
[Equation 11] Further, when the secondary magnetic flux vector is matched with the d axis, the generated torque τ m is given by the equation (16).

【0021】[0021]

【数12】 但し、 pm :極対数 なお、式(16)は鉄損の有無によらず成立する。式
(15)から、鉄損抵抗Rm の存在により、二次磁束の
d軸成分φdrはq軸電流成分iqs,iqrの影響を受け、
逆に二次磁束のq軸成分φqrはd軸電流成分ids,idr
の影響を受けることがわかる。その結果、発生トルクτ
m も鉄損抵抗の影響を受けることが式(16)からわか
る。
(Equation 12) However, p m: the number of pole pairs Incidentally, formula (16) is established irrespective of the presence or absence of iron loss. From the equation (15), the d-axis component φ dr of the secondary magnetic flux is affected by the q-axis current components i qs and i qr due to the existence of the iron loss resistance R m ,
On the contrary, the q-axis component φ qr of the secondary magnetic flux is the d-axis current components i ds , i dr
It can be seen that As a result, the generated torque τ
It can be seen from equation (16) that m is also affected by the iron loss resistance.

【0022】さて、誘導電動機のベクトル制御法は二次
磁束ベクトルの方向をd軸あるいはq軸に一致させる。
即ち、二次磁束のd軸分φdrあるいはq軸成分φqrが常
に零となる様に制御するものである。そこで、次に鉄損
を考慮した場合にもベクトル制御が可能かどうかを検討
する。なお、ベクトル制御では、通常、二次磁束ベクト
ルの方向をd軸に一致させるので、ここでもd軸を二次
磁束ベクトルの方向とする。まず、式(15)を式(1
4)の3,4行目に代入すると式(17),(18)が
得られる。
Now, in the vector control method of the induction motor, the direction of the secondary magnetic flux vector is made to coincide with the d axis or the q axis.
That is, the d-axis component φ dr or the q-axis component φ qr of the secondary magnetic flux is controlled to always be zero. Therefore, next, we will examine whether vector control is possible even when iron loss is taken into consideration. In vector control, the direction of the secondary magnetic flux vector is usually aligned with the d-axis, and therefore the d-axis is also the direction of the secondary magnetic flux vector. First, the formula (15) is changed to the formula (1
Substituting in lines 3 and 4 of 4), equations (17) and (18) are obtained.

【0023】[0023]

【数13】 従って、二次磁束ベクトルの方向をd軸に一致させるた
めに、q軸成分φqrを零にする条件を式(17),(1
8)から求めると式(19),(20)が得られる。
(Equation 13) Therefore, in order to match the direction of the secondary magnetic flux vector with the d-axis, the conditions for setting the q-axis component φ qr to zero are expressed by equations (17) and (1
Equations (19) and (20) are obtained by obtaining from equation (8).

【0024】[0024]

【数14】 ここで、次のような励磁電流成分i0 及びトルク電流成
分iT を定義する。
[Equation 14] Here, the following exciting current component i 0 and torque current component i T are defined.

【0025】[0025]

【数15】 そうすると式(16)から、発生トルクτm は式(2
3)のようになる。
(Equation 15) Then, from the equation (16), the generated torque τ m is
It looks like 3).

【0026】[0026]

【数16】 式(23)から、i0 を一定に制御すれば二次磁束のd
軸成分φdrは一定となり、発生トルクは鉄損によらずi
T に比例することがわかる。なお、この時のすべり周波
数ωs は式(20),(21),(22)から、式(2
4)に従って制御すれば良い。
(Equation 16) From equation (23), if i 0 is controlled to be constant, the d of the secondary magnetic flux d
The shaft component φ dr becomes constant, and the generated torque is i regardless of iron loss.
It can be seen that it is proportional to T. The slip frequency ω s at this time can be calculated from the equation (20), (21), (22) by the equation (2
It may be controlled according to 4).

【0027】[0027]

【数17】 その結果、二次磁束ベクトルの方向はd軸と一致し、φ
qr=0が成立する。
[Equation 17] As a result, the direction of the secondary magnetic flux vector coincides with the d axis, and φ
qr = 0 holds.

【0028】ところで、定義した電流i0 ,iT は直接
制御することができない。そこで、定常状態における一
次電流のd軸成分ids及びq軸成分iqsと、i0 及びi
T の関係について調べる。まず、式(15)をids及び
qsについて解き、さらに式(19)とP=0よりidr
=0,φqr=0とし、かつ式(21),(22)を用い
てφdr,iqrを消去すると式(25),(26)が得ら
れる。
By the way, the defined currents i 0 and i T cannot be directly controlled. Therefore, the d-axis component i ds and the q-axis component i qs of the primary current in the steady state, and i 0 and i
Find out about the T relationship. First, the equation (15) is solved for i ds and i qs , and i dr is further derived from the equation (19) and P = 0.
= 0 and φ qr = 0, and equations (21) and (22) are used to eliminate φ dr and i qr , equations (25) and (26) are obtained.

【0029】[0029]

【数18】 従って、i0 及びiT の指令値をそれぞれi0 *及びiT *
とすると、式(25),(26)を用いて一次電流のd
軸成分指令ids * 及びq軸電流成分指令iqs *を求めれ
ば良い。なお、上記特開平1−311884号では鉄損
抵抗は一次周波数ωの1.6乗に比例するとされωの関
数としてRm を与える。
(Equation 18) Therefore, the command values of i 0 and i T are set to i 0 * and i T * , respectively .
Then, using the equations (25) and (26), d of the primary current is
The axis component command i ds * and the q-axis current component command i qs * may be obtained. In the above-mentioned Japanese Laid-Open Patent Publication No. 1-311884, the iron loss resistance is said to be proportional to the 1.6th power of the primary frequency ω, and R m is given as a function of ω.

【0030】次に動作について説明する。図16におい
て、除算器25によってiT /i0 を演算し、係数器2
6によってRr /M倍すれば、式(24)の左辺の値、
即ち、すべり周波数ωs を得る。演算器23によって式
(25)の右辺の第1項を、演算器24によって同第2
項を演算し、加算器28で演算器23,24の出力を加
算すれば式(25)の左辺の値、即ち、ids * が得られ
る。同様に演算器22によって式(26)の右辺第1項
を、演算器21によって同第2項を演算し、加算器27
で演算器21,22の出力を加算すれば式(26)の左
辺の値、即ち、iqs * が得られる。その後のベクトル制
御演算は図15に示す装置と同様に動作する。
Next, the operation will be described. In FIG. 16, a divider 25 calculates i T / i 0 to obtain a coefficient unit 2
If R r / M is multiplied by 6, the value on the left side of equation (24),
That is, the slip frequency ω s is obtained. The arithmetic unit 23 calculates the first term on the right side of the equation (25) and the arithmetic unit 24 calculates the second term.
When the term is calculated and the outputs of the calculators 23 and 24 are added by the adder 28, the value on the left side of Expression (25), that is, i ds * is obtained. Similarly, the computing unit 22 computes the first term on the right side of the equation (26), the computing unit 21 computes the second term, and the adder 27
By adding the outputs of the arithmetic units 21 and 22, the value on the left side of the equation (26), that is, i qs * is obtained. Subsequent vector control operations operate in the same way as the device shown in FIG.

【0031】[0031]

【発明が解決しようとする課題】従来の誘導電動機の制
御装置は以上のように構成されているので、図15に示
したような誘導電動機の制御装置では、二次磁束指令φ
dr * と一次電流のq軸成分指令iqs * の演算は式(8)
に基づいている。よって、式(8)は鉄損抵抗を無視し
ている式である為、鉄損抵抗を無視した影響を受けて、
二次磁束指令φdr * に二次磁束φdrが一致しない事態が
発生し、振幅比指令Cと振幅比|iqs * /φdr * |が一
致しないと同時に、トルク制御の精度が劣化するなどの
課題があった。また、損失最小条件はあくまでも略解で
あり厳密でないと同時に、一次周波数ωのみ関数で与え
るために、それ以外の要因で損失最小条件が変化する場
合に対応できないなどの課題があった。
Since the conventional induction motor control device is constructed as described above, in the induction motor control device as shown in FIG. 15, the secondary magnetic flux command φ is generated.
The calculation of dr * and the q-axis component command i qs * of the primary current is given by equation (8).
Is based on. Therefore, since the formula (8) is a formula ignoring the iron loss resistance, it is affected by ignoring the iron loss resistance.
A situation occurs in which the secondary magnetic flux command φ dr * does not match the secondary magnetic flux φ dr , and the amplitude ratio command C and the amplitude ratio | i qs * / φ dr * | do not match, and at the same time, the accuracy of torque control deteriorates. There was such a problem. Further, the minimum loss condition is only an approximate solution and is not exact. At the same time, since only the primary frequency ω is given by a function, there is a problem that it cannot cope with the case where the minimum loss condition changes due to other factors.

【0032】一方、図16に示したような誘導電動機の
制御装置では、式(14)においてP=0とした定常状
態での誘導電動機の電圧・電流方程式からベクトル制御
則を求めているため、二次磁束指令φdr * が時間的に変
化するような場合には所望の二次磁束φdrが得られず、
その結果所望のトルクτm が得られないなどの課題があ
った。また、鉄損抵抗は一次周波数ωの関数として与え
られているため、一次周波数ω以外の要因で鉄損抵抗が
変動することを想定されておらず、鉄損抵抗が一次周波
数ω以外の要因で変動した場合にはその影響を受けて、
二次磁束及びトルク電流の制御性能が劣化するなどの課
題があった。
On the other hand, in the induction motor controller as shown in FIG. 16, since the vector control law is obtained from the voltage / current equation of the induction motor in the steady state where P = 0 in the equation (14), If the secondary magnetic flux command φ dr * changes with time, the desired secondary magnetic flux φ dr cannot be obtained,
As a result, there is a problem that the desired torque τ m cannot be obtained. Since the iron loss resistance is given as a function of the primary frequency ω, it is not assumed that the iron loss resistance fluctuates due to factors other than the primary frequency ω, and the iron loss resistance depends on factors other than the primary frequency ω. If it fluctuates, it will be affected,
There was a problem such as deterioration of the control performance of the secondary magnetic flux and the torque current.

【0033】この発明は、上記のような課題を解決する
ためになされたもので、一次周波数以外の要因で鉄損抵
抗が変動した場合でも、鉄損抵抗の影響を受けずに二次
磁束とトルク電流を制御し、損失最小条件を達成しなが
ら誘導電動機の駆動を実現する誘導電動機の制御装置を
得ることを目的とする。
The present invention has been made in order to solve the above problems. Even when the iron loss resistance fluctuates due to a factor other than the primary frequency, the secondary magnetic flux is not affected by the iron loss resistance. An object of the present invention is to obtain a control device for an induction motor that controls the torque current and realizes the drive of the induction motor while achieving the minimum loss condition.

【0034】[0034]

【課題を解決するための手段】請求項1の発明に係る誘
導電動機の制御装置は、トルク指令,誘導電動機の一次
周波数及び誘導電動機の二次磁束の関数に基づいて二次
磁束のd軸成分指令及び二次電流のq軸成分指令を演算
し、二次磁束のd軸成分指令及び二次電流のq軸成分指
令を指令変換手段によって一次電流のd軸成分指令及び
q軸成分指令に変換すると共に、誘導電動機の一次電流
のd軸成分及びq軸成分が一次電流のd軸成分指令及び
q軸成分指令に一致するように制御したものである。
According to a first aspect of the present invention, there is provided a control device for an induction motor, wherein the d-axis component of the secondary magnetic flux is based on a torque command, a primary frequency of the induction motor, and a function of the secondary magnetic flux of the induction motor. The command and the q-axis component command of the secondary current are calculated, and the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current are converted into the d-axis component command and the q-axis component command of the primary current by the command conversion means. In addition, the d-axis component and the q-axis component of the primary current of the induction motor are controlled so as to match the d-axis component command and the q-axis component command of the primary current.

【0035】請求項2の発明に係る誘導電動機の制御装
置は、トルク指令,誘導電動機の一次周波数及び誘導電
動機の二次磁束の関数に基づいて二次磁束のd軸成分指
令及び二次電流のq軸成分指令を演算し、二次磁束のd
軸成分指令及び二次電流のq軸成分指令を電流成分指令
演算手段によって一次電流のd軸成分指令及びq軸成分
指令に変換すると共に、誘導電動機の一次電流のd軸成
分及びq軸成分が一次電流のd軸成分指令及びq軸成分
指令に一致するように誘導電動機の一次電流を制御した
ものである。
According to a second aspect of the present invention, there is provided a control device for an induction motor, wherein the d-axis component command of the secondary magnetic flux and the secondary current of the secondary magnetic flux based on the function of the torque command, the primary frequency of the induction motor and the secondary magnetic flux of the induction motor. The q-axis component command is calculated, and the secondary magnetic flux d
The axis component command and the q-axis component command of the secondary current are converted into the d-axis component command and the q-axis component command of the primary current by the current component command computing means, and the d-axis component and the q-axis component of the primary current of the induction motor are converted. The primary current of the induction motor is controlled so as to match the d-axis component command and the q-axis component command of the primary current.

【0036】請求項3の発明に係る誘導電動機の制御装
置は、トルク指令,誘導電動機の一次周波数及び誘導電
動機の二次磁束の関数に基づいて二次磁束のd軸成分指
令及び二次電流のq軸成分指令を演算し、電流成分演算
回路により演算された一次電流のd軸成分及びq軸成分
に基づいて誘導電動機の二次磁束のd軸成分を演算する
と共に、電流成分演算回路により演算された一次電流の
d軸成分及びq軸成分と二次磁束のd軸成分と検出手段
により検出された回転周波数に基づいてその誘導電動機
の二次磁束のq軸成分が零になる一次周波数を演算した
ものである。
According to a third aspect of the present invention, there is provided a control device for an induction motor, wherein the d-axis component command of the secondary magnetic flux and the secondary current of the secondary magnetic flux are generated based on a function of the torque command, the primary frequency of the induction motor and the secondary magnetic flux of the induction motor. The q-axis component command is calculated, and the d-axis component of the secondary magnetic flux of the induction motor is calculated based on the d-axis component and the q-axis component of the primary current calculated by the current component calculation circuit, and also calculated by the current component calculation circuit. The primary frequency at which the q-axis component of the secondary magnetic flux of the induction motor becomes zero based on the d-axis component and the q-axis component of the primary current, the d-axis component of the secondary magnetic flux, and the rotation frequency detected by the detecting means. It is calculated.

【0037】請求項4の発明に係る誘導電動機の制御装
置は、トルク指令,誘導電動機の一次周波数及び誘導電
動機の二次磁束の関数に基づいて二次磁束のd軸成分指
令及び二次電流のq軸成分指令を演算し、電流成分演算
回路により演算された一次電流のd軸成分及びq軸成分
に基づいて誘導電動機の二次磁束のd軸成分を演算する
と共に、その二次磁束のd軸成分と指令発生手段から出
力された二次電流のq軸成分指令と検出手段により検出
された回転周波数に基づいてその誘導電動機の二次磁束
のq軸成分が零になる一次周波数を演算したものであ
る。
According to a fourth aspect of the present invention, there is provided a control device for an induction motor, the d-axis component command of the secondary magnetic flux and the secondary current of the secondary magnetic flux based on a function of the torque command, the primary frequency of the induction motor and the secondary magnetic flux of the induction motor. The q-axis component command is calculated, the d-axis component of the secondary magnetic flux of the induction motor is calculated based on the d-axis component and the q-axis component of the primary current calculated by the current component calculation circuit, and the d of the secondary magnetic flux is calculated. The primary frequency at which the q-axis component of the secondary magnetic flux of the induction motor becomes zero is calculated based on the axial component and the q-axis component command of the secondary current output from the command generating means and the rotation frequency detected by the detecting means. It is a thing.

【0038】請求項5の発明に係る誘導電動機の制御装
置は、一次周波数演算手段により演算された二次磁束の
d軸成分と一次周波数に基づいて二次磁束のd軸成分と
二次電流のq軸成分の相互干渉を防止する補正量を演算
し、指令発生手段から出力された二次磁束のd軸成分指
令及び二次電流のq軸成分指令と上記補正量に基づい
て、一次電流のd軸成分指令及びq軸成分指令を演算し
たものである。
According to a fifth aspect of the present invention, there is provided a control device for an induction motor, wherein the d-axis component of the secondary magnetic flux and the secondary current are calculated based on the d-axis component of the secondary magnetic flux and the primary frequency calculated by the primary frequency computing means. A correction amount for preventing mutual interference of the q-axis component is calculated, and based on the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current output from the command generation means and the correction amount, the primary current of the primary current is calculated. The d-axis component command and the q-axis component command are calculated.

【0039】請求項6の発明に係る誘導電動機の制御装
置は、誘導電動機の二次磁束のd軸成分に対する二次電
流のq軸成分の比の関係を表す一次周波数と二次磁束の
d軸成分またはその指令の関数と、その二次磁束のd軸
成分と二次電流のq軸成分の積が発生トルクに比例する
関係とに基づいて、その二次磁束のd軸成分指令及び二
次電流のq軸成分指令を演算したものである。
According to a sixth aspect of the invention, there is provided a control device for an induction motor, wherein the primary frequency and the d-axis of the secondary magnetic flux represent the relationship between the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. Based on the function of the component or its command and the product of the d-axis component of the secondary magnetic flux and the q-axis component of the secondary current proportional to the generated torque, the d-axis component command of the secondary magnetic flux and the secondary command The q-axis component command of the current is calculated.

【0040】請求項7の発明に係る誘導電動機の制御装
置は、誘導電動機の二次磁束のd軸成分に対する二次電
流のq軸成分の比の関係を表す一次周波数と二次磁束の
d軸成分またはd軸成分指令の関数とトルク指令に基づ
いて二次磁束のd軸成分指令を演算すると共に、上記一
次周波数演算手段によって演算された二次磁束のd軸成
分で上記トルク指令を除算した値に基づいて二次電流の
q軸成分指令を演算したものである。
According to a seventh aspect of the present invention, there is provided a control device for an induction motor, wherein the primary frequency and the d-axis of the secondary magnetic flux which represent the relationship between the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. The d-axis component command of the secondary magnetic flux is calculated based on the component or the function of the d-axis component command and the torque command, and the torque command is divided by the d-axis component of the secondary magnetic flux calculated by the primary frequency calculation means. The q-axis component command of the secondary current is calculated based on the value.

【0041】請求項8の発明に係る誘導電動機の制御装
置は、演算された二次磁束のd軸成分指令が所定の最大
値より大きい場合或いは所定の最小値より小さい場合に
は、その二次磁束のd軸成分指令を当該最大値或いは最
小値に制限し、その二次磁束のd軸成分指令に従って二
次電流のq軸成分指令を演算したものである。
In the control device for an induction motor according to the present invention, when the d-axis component command of the calculated secondary magnetic flux is larger than a predetermined maximum value or smaller than a predetermined minimum value, the secondary The d-axis component command of the magnetic flux is limited to the maximum value or the minimum value, and the q-axis component command of the secondary current is calculated according to the d-axis component command of the secondary magnetic flux.

【0042】請求項9の発明に係る誘導電動機の制御装
置は、誘導電動機の二次磁束のd軸成分に対する二次電
流のq軸成分の比の関係を表す一次周波数と二次磁束の
d軸成分またはd軸成分指令の関数とトルク指令に基づ
いて演算された二次磁束のd軸成分指令が、所定の最大
値より大きい場合或いは所定の最小値より小さい場合に
は、その二次磁束のd軸成分指令を当該最大値或いは最
小値に制限し、上記一次周波数演算手段によって演算さ
れた二次磁束のd軸成分で上記トルク指令を除算した値
に基づいて二次電流のq軸成分指令を演算したものであ
る。
According to a ninth aspect of the present invention, there is provided a control device for an induction motor, wherein the primary frequency and the d-axis of the secondary magnetic flux, which represent the relationship between the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. If the d-axis component command of the secondary magnetic flux calculated based on the function of the component or d-axis component command and the torque command is larger than a predetermined maximum value or smaller than a predetermined minimum value, the secondary magnetic flux The d-axis component command is limited to the maximum value or the minimum value, and the q-axis component command of the secondary current is based on the value obtained by dividing the torque command by the d-axis component of the secondary magnetic flux calculated by the primary frequency calculation means. Is calculated.

【0043】[0043]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態を説明す
る。図1はこの発明の実施の形態1による誘導電動機の
制御装置を示す構成図であり、図において、1は誘導電
動機、2は誘導電動機1の電気的回転周波数ωr を検出
する回転周波数検出器(検出手段)、3は誘導電動機1
の一次電流ivs,iusを検出する電流検出器(検出手
段)、4は誘導電動機1を可変周波数で駆動する電圧形
インバータであり、従来と同一のものである。
Embodiment 1. Embodiments of the present invention will be described below. 1 is a configuration diagram showing a control device for an induction motor according to Embodiment 1 of the present invention. In the figure, 1 is an induction motor and 2 is a rotation frequency detector for detecting an electric rotation frequency ω r of the induction motor 1. (Detection means) 3 is an induction motor 1
Current detectors (detection means) 4 for detecting the primary currents i vs , i us are voltage type inverters for driving the induction motor 1 at a variable frequency, and are the same as conventional ones.

【0044】また、30は誘導電動機1のトルク指令τ
m *を入力し、そのトルク指令τm *,一次周波数ω及び二
次磁束の関数φdrに基づいて、二次磁束のd軸成分指令
φdr * 及び二次電流のq軸成分指令iqr * を出力する指
令発生回路(指令発生手段)、31は回転周波数検出器
2及び電流検出器3により検出された回転周波数ωr
び一次電流ivs,iusに基づいて、一次周波数ω及び二
次磁束の関数φdrを演算し指令発生回路30に出力する
と共に、その指令発生回路30から出力された二次磁束
のd軸成分指令φdr * 及び二次電流のq軸成分指令iqr
* を一次電流のd軸成分指令ids * 及びq軸成分指令i
qs * に変換する指令変換手段であり、電流成分指令演算
回路(電流成分指令演算手段)34と、一次周波数演算
回路35及び電流成分演算回路36からなる一次周波数
演算手段とから構成されている。32は誘導電動機1の
一次電流のd軸成分ids及びq軸成分iqsが電流成分指
令演算回路34により変換されたd軸成分指令ids *
びq軸成分指令iqs * に一致するように制御する制御手
段であり、電流制御回路37と上記電圧形インバータ4
から構成されている。
Further, 30 is a torque command τ of the induction motor 1.
m * is input, and based on the torque command τ m * , the primary frequency ω and the function φ dr of the secondary magnetic flux, the d-axis component command φ dr * of the secondary magnetic flux and the q-axis component command i qr of the secondary current. A command generating circuit (command generating means) that outputs * , 31 is a primary frequency ω and a secondary frequency based on the rotational frequency ω r and primary currents i vs , i us detected by the rotational frequency detector 2 and the current detector 3. The function φ dr of the secondary magnetic flux is calculated and output to the command generation circuit 30, and the d-axis component command φ dr * of the secondary magnetic flux and the q-axis component command i qr of the secondary current output from the command generation circuit 30 are calculated.
* Is the primary current d-axis component command i ds * and the q-axis component command i
It is a command conversion means for converting into qs * , and is composed of a current component command calculation circuit (current component command calculation means) 34 and a primary frequency calculation means composed of a primary frequency calculation circuit 35 and a current component calculation circuit 36. Reference numeral 32 indicates that the d-axis component i ds and the q-axis component i qs of the primary current of the induction motor 1 match the d-axis component command i ds * and the q-axis component command i qs * converted by the current component command calculation circuit 34. The current control circuit 37 and the voltage source inverter 4
It is composed of

【0045】次に動作について説明する。先ず、この発
明の基本的な原理について説明する。二次磁束ベクトル
の方向をd軸に一致させる時、式(16)から、ある値
の発生トルクτm を得るためのφdrとiqrの組み合わせ
は無数に存在することがわかる。そこで、次にφdrとi
qrの値をどのように選べば誘導電動機の損失が最小にな
るかについて説明する。二次磁束ベクトルがd軸に一致
しているときはφqr=0であることを考慮して、式(1
5)をids及びiqsについて解き、さらに定常状態では
P=0と式(19)よりidr=0とおくと、式(27)
が得られる。
Next, the operation will be described. First, the basic principle of the present invention will be described. When the direction of the secondary magnetic flux vector is made to coincide with the d-axis, it is understood from Expression (16) that there are an infinite number of combinations of φ dr and i qr for obtaining a certain generated torque τ m . So next, φ dr and i
We will explain how to select the value of qr to minimize the loss of the induction motor. Considering that φ qr = 0 when the secondary magnetic flux vector coincides with the d-axis, equation (1
5) is solved for i ds and i qs , and P = 0 in the steady state and i dr = 0 from the equation (19), the equation (27) is obtained.
Is obtained.

【0046】[0046]

【数19】 但し、 lr :誘導電動機の二次漏れインダクタンス値
(=Lr −M) さて、誘導電動機に入力される有効電力Pinは、公知の
ように式(28)で与えられる。
[Equation 19] However, l r : secondary leakage inductance value (= L r −M) of the induction motor Now, the active power P in input to the induction motor is given by the equation (28) as is known.

【0047】[0047]

【数20】 そこで、定常状態での有効電力Pinを求める。定常状態
であるからP=0とし、式(14)1,2行目と式(2
7)を式(28)に代入すると、式(29)が得られ
る。
(Equation 20) Therefore, the active power P in in the steady state is calculated. Since it is in a steady state, P = 0 is set, and the first and second lines of Equation (14) and Equation (2)
By substituting equation (7) into equation (28), equation (29) is obtained.

【0048】[0048]

【数21】 次に誘導電動機の機械的出力Pout は公知のように式
(30)で与えられる。
(Equation 21) The mechanical output P out of the induction motor is then given by equation (30) as is known.

【0049】[0049]

【数22】 ここで、ωm は誘導電動機の機械的回転周波数であり、
電気的回転周波数ωrとは式(31)の関係がある。
(Equation 22) Where ω m is the mechanical rotation frequency of the induction motor,
The electrical rotation frequency ω r has the relationship of Expression (31).

【0050】[0050]

【数23】 式(31)に式(20)を代入してωs を消去すると、
式(32)が得られる。
(Equation 23) Substituting equation (20) into equation (31) and eliminating ω s ,
Equation (32) is obtained.

【0051】[0051]

【数24】 従って、式(30)に式(16)及び式(32)を代入
してτm 及びωm を消去すると式(33)が得られる。
(Equation 24) Therefore, by substituting the equations (16) and (32) into the equation (30) and eliminating τ m and ω m , the equation (33) is obtained.

【0052】[0052]

【数25】 そうすると、式(29),式(33)から誘導電動機で
発生する損失Plossは式(34)で与えられる。
(Equation 25) Then, the loss P loss generated in the induction motor from Expressions (29) and (33) is given by Expression (34).

【0053】[0053]

【数26】 そこで、発生トルクが一定という条件の元で、式(3
4)で示される損失Plo ssが最小となるようなφdrとi
qrの組み合わせを求める。先ず、発生トルクが一定とい
う条件は式(16)の関係から、比例定数Kを用いた式
(35)によって表される。
(Equation 26) Therefore, under the condition that the generated torque is constant, the equation (3
4) φ dr and i such that the loss P lo ss shown in 4) is minimized.
Find the combination of qr . First, the condition that the generated torque is constant is expressed by the equation (35) using the proportional constant K from the relation of the equation (16).

【0054】[0054]

【数27】 そこで、式(35)を式(34)に代入してφdrを消去
すると式(36)が得られる。
[Equation 27] Therefore, by substituting the equation (35) into the equation (34) and eliminating φ dr , the equation (36) is obtained.

【0055】[0055]

【数28】 そうすると、式(36)の右辺をiqr 2 で微分した値が
零となる条件が成立するときに損失Plossは最小にな
る。従って、この条件と式(35)から求めるφdrとi
qrの関係は式(37)によって与えられる。
[Equation 28] Then, the loss P loss becomes minimum when the condition that the value obtained by differentiating the right side of Expression (36) by i qr 2 becomes zero is satisfied. Therefore, φ dr and i obtained from this condition and Equation (35)
The relationship of qr is given by equation (37).

【0056】[0056]

【数29】 即ち、φdrとiqrの振幅比が式(37)を満足するよう
に、トルク指令に応じてφdrとiqrとを制御すれば誘導
電動機の最小損失運転が実現できる。なお、式(14)
は上述したように回転座標軸上の誘導電動機の電圧・電
流方程式を表している。従って、一定トルクで誘導電動
機を加減速運転するような場合は、式(14)の微分項
は零となるので、式(37)によって最小損失運転が実
現できる。
(Equation 29) That is, the minimum loss operation of the induction motor can be realized by controlling φ dr and i qr according to the torque command so that the amplitude ratio of φ dr and i qr satisfies the expression (37). Note that equation (14)
Represents the voltage-current equation of the induction motor on the rotating coordinate axis as described above. Therefore, when the induction motor is accelerated / decelerated with a constant torque, the differential term of the equation (14) becomes zero, and thus the minimum loss operation can be realized by the equation (37).

【0057】次に、鉄損抵抗Rm について説明する。一
例として、図14に、1.5kWの誘導電動機の鉄損抵
抗Rm を実際に測定したグラフを示す。図14におい
て、縦軸は鉄損抵抗Rm [Ω]であり、横軸は励磁電流
を二次磁束に換算し、定格値で正規化したものである。
上記特開平1−311884号では鉄損抵抗は一次周波
数ωの約1.6乗に比例するとされ、Rm をωの関数で
与えている。しかし、実際には図14に示すように直列
鉄損抵抗Rm は一次周波数ωの関数であると同時に、励
磁電流の関数、即ち二次磁束の関数でもあることがわか
る。
Next, the iron loss resistance R m will be described. As an example, FIG. 14 shows a graph in which the iron loss resistance R m of the 1.5 kW induction motor is actually measured. In FIG. 14, the vertical axis represents the iron loss resistance R m [Ω], and the horizontal axis represents the excitation current converted into the secondary magnetic flux and normalized by the rated value.
In the above-mentioned Japanese Laid-Open Patent Publication No. 1-311884, the iron loss resistance is said to be proportional to about 1.6 to the primary frequency ω, and R m is given as a function of ω. However, in practice, as shown in FIG. 14, it can be seen that the series iron loss resistance R m is a function of the primary frequency ω and at the same time a function of the exciting current, that is, a function of the secondary magnetic flux.

【0058】図16に示した従来例のように励磁電流i
0 を一定に保つ制御装置の場合では、Rm の変動はωに
対してだけ考慮すれば良い。しかし、φdrとiqrの振幅
比が式(37)を満足するように、トルク指令に応じて
φdrとiqrを制御する場合、二次磁束φdrはトルクに応
じて変化させる必要があり、従って励磁電流もそれに応
じて変化する。つまり、この場合、一次周波数ωの変化
以外に励磁電流の変化の影響を受けて鉄損抵抗は変動す
るので、鉄損抵抗はωとφdrの関数で与えればよい。
Excitation current i as in the conventional example shown in FIG.
In the case of a control device that keeps 0 constant, fluctuations in R m need only be considered for ω. However, when controlling φ dr and i qr according to the torque command so that the amplitude ratio of φ dr and i qr satisfies the equation (37), it is necessary to change the secondary magnetic flux φ dr according to the torque. Yes, so the excitation current also changes accordingly. In other words, in this case, the iron loss resistance fluctuates under the influence of changes in the exciting current in addition to changes in the primary frequency ω, so the iron loss resistance may be given by a function of ω and φ dr .

【0059】最小損失で誘導電動機を駆動する場合、即
ち式(37)に従って二次磁束指令φdr * と二次電流指
令iqr * を与える場合、φdr * とiqr * との間に式(3
8),(39)が成り立つ。
When the induction motor is driven with the minimum loss, that is, when the secondary magnetic flux command φ dr * and the secondary current command i qr * are given according to the equation (37), the equation between φ dr * and i qr * is given. (3
8) and (39) are established.

【0060】[0060]

【数30】 二次磁束を変化させて誘導電動機を駆動させる場合、R
m 及びaは二次磁束φdrと一次周波数ωの関数になり、
その結果、式(39)の右辺はφdrとωの関数となる。
[Equation 30] When driving the induction motor by changing the secondary magnetic flux, R
m and a are functions of the secondary magnetic flux φ dr and the primary frequency ω,
As a result, the right side of Expression (39) is a function of φ dr and ω.

【0061】次にこの実施の形態1の具体的動作につい
て説明する。指令発生回路30は指令変換手段31から
得られた二次磁束φdr及び一次周波数ωに基づいて、最
小損失で誘導電動機1を駆動することができる二次磁束
指令φdr * と二次電流のq軸成分指令(二次電流指令)
qr * を発生する。一次周波数演算回路35は、回転周
波数検出器2から得られた電気的回転周波数ωr と電流
成分演算回路36から得られた一次電流のd軸成分ids
及びq軸成分iqsに基づいて一次周波数ωと二次磁束φ
drを演算する。このように、一次周波数演算手段33
は、電流検出器3から得られた一次電流ivs,iusと回
転周波数検出器2から得られた電気的回転周波数ωr
基づいて二次磁束φdrと一次周波数ωを発生する。
Next, a specific operation of the first embodiment will be described. The command generation circuit 30 is based on the secondary magnetic flux φ dr and the primary frequency ω obtained from the command converting means 31, and can generate the secondary magnetic flux command φ dr * and the secondary current that can drive the induction motor 1 with minimum loss. q-axis component command (secondary current command)
Generate i qr * . The primary frequency calculation circuit 35 uses the electrical rotation frequency ω r obtained from the rotation frequency detector 2 and the d-axis component i ds of the primary current obtained from the current component calculation circuit 36.
And the q-axis component i qs based on the primary frequency ω and the secondary magnetic flux φ.
Calculate dr . In this way, the primary frequency calculation means 33
Generates a secondary magnetic flux φ dr and a primary frequency ω based on the primary currents i vs , i us obtained from the current detector 3 and the electrical rotation frequency ω r obtained from the rotation frequency detector 2.

【0062】また、電流成分指令演算回路34は一次周
波数演算手段33が演算した二次磁束φdr及び一次周波
数ωと指令発生回路30が出力した二次磁束指令φdr *
と二次電流指令iqr * に基づいて一次電流のd軸成分指
令ids * とq軸成分指令iqs * を発生する。以上のよう
に、一次周波数演算手段33及び電流成分指令演算手段
34からなる指令変換手段31は指令発生回路30が出
力した二次磁束指令φdr * と二次電流指令iqr * を一次
電流のd軸成分指令ids * とq軸成分指令iqs * に変換
する。制御手段32では一次電流のd軸成分idsとq軸
成分iqsが一次電流のd軸成分指令ids * とq軸成分指
令iqs * に追従するように制御する。
Further, the current component command calculation circuit 34 has the secondary magnetic flux φ dr calculated by the primary frequency calculation means 33, the primary frequency ω and the secondary magnetic flux command φ dr * outputted by the command generation circuit 30 .
And the d-axis component command i ds * and the q-axis component command i qs * of the primary current are generated based on the secondary current command i qr * . As described above, the command conversion unit 31 including the primary frequency calculation unit 33 and the current component command calculation unit 34 outputs the secondary magnetic flux command φ dr * and the secondary current command i qr * output from the command generation circuit 30 to the primary current. It is converted into a d-axis component command i ds * and a q-axis component command i qs * . The control means 32 controls so that the d-axis component i ds and the q-axis component i qs of the primary current follow the d-axis component command i ds * and the q-axis component command i qs * of the primary current.

【0063】図2は、この実施の形態1による誘導電動
機の制御装置の指令発生回路30を示す構成図であり、
図において、38,39は係数器、40,41は除算
器、42は関数発生器である。関数発生器42は一次周
波数ω及び二次磁束φdrから鉄損抵抗Rm の変動を考慮
し、式(38),(39)に基づいた演算、またはメモ
リ回路に記憶されたデータのテーブルを参照して| iqr
* /φdr * | を発生する。係数器38はトルク指令τm *
を1/pm 倍し−φdr * ・iqr * の値を出力し、除算器
40は−φdr * ・iqr * の値を| iqr * /φdr * | で除
算し、φdr *2(或いは−φdr *2)を出力する。関数発生
器18によって除算器40の出力の絶対値の平方根を演
算し、φdr * を発生する。また、除算器41は、係数器
39によって得られたφd r *・iqr * の値をφdr * で除
算しiqr * を出力する。
FIG. 2 is a block diagram showing the command generation circuit 30 of the control device for the induction motor according to the first embodiment.
In the figure, 38 and 39 are coefficient units, 40 and 41 are dividers, and 42 is a function generator. The function generator 42 considers the variation of the iron loss resistance R m from the primary frequency ω and the secondary magnetic flux φ dr, and calculates based on the equations (38) and (39) or a table of data stored in the memory circuit. Refer to | i qr
* / Φ dr * | is generated. The coefficient unit 38 calculates the torque command τ m *
Multiplied by the 1 / p m outputs -φ dr * · i qr * value, the divider 40 is -φ dr * · i qr * of the value | i qr * / φ dr * | divided by, phi Output dr * 2 (or -φ dr * 2 ). The function generator 18 calculates the square root of the absolute value of the output of the divider 40 to generate φ dr * . Also, the divider 41 outputs a divided by i qr * values of φ d r * · i qr * obtained by the coefficient multiplier 39 in phi dr *.

【0064】従来制御装置では、一次周波数のみの関数
で損失最小条件を与えていた。しかし、上述した通り、
損失最小条件は一次周波数ωだけでなく二次磁束φdr
よっても変化するので、φdrが変化するような制御を施
す場合では、損失最小条件を一次周波数ωのみの関数で
与えることは困難である。しかし、図2に示した構成で
は、二次磁束φdr * の変化が起因して鉄損抵抗Rm が変
動した場合でも、関数発生器42は一次周波数ωだけで
なく二次磁束φdrも参照して、誘導電動機の二次磁束の
d軸成分に対する二次電流のq軸成分の比の関係を出力
するので、損失最小条件を満足する二次磁束指令φdr *
及び二次電流指令iqr * を得ることができる。
In the conventional control device, the minimum loss condition is given by a function of only the primary frequency. However, as mentioned above,
Since the minimum loss condition changes not only by the primary frequency ω but also by the secondary magnetic flux φ dr , it is difficult to give the minimum loss condition as a function of only the primary frequency ω when performing control such that φ dr changes. is there. However, in the configuration shown in FIG. 2, even when the iron loss resistance R m changes due to the change in the secondary magnetic flux φ dr * , the function generator 42 generates not only the primary frequency ω but also the secondary magnetic flux φ dr. With reference to the output, since the relation of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor is output, the secondary magnetic flux command φ dr * that satisfies the minimum loss condition .
And the secondary current command i qr * can be obtained.

【0065】また、電流成分指令演算手段34では、一
次周波数演算手段33により演算された二次磁束φdr
一次周波数ωに基づいて、二次磁束φdrと二次電流のq
軸成分iqrの相互干渉を防止するための補正量を演算
し、上記指令発生手段30から出力された二次磁束のd
軸成分指令φdr * 及び二次電流のq軸成分指令iqr *
上記補正量に基づいてids * 及びiqs * を演算する。図
3は、この実施の形態1による誘導電動機の制御装置の
電流成分指令演算回路34を示す構成図であり、図にお
いて、43〜46は関数発生器、47,48は演算器、
49〜51は乗算器、52は係数器、53は加算器、5
4は減算器である。前述した通り、鉄損抵抗Rm の値は
一次周波数ωだけでなく二次磁束φdrの関数でもある。
また、鉄損抵抗を考慮した場合、φdr,iqrとids,i
qsとの間には式(15),(19)より式(40)の関
係があることがわかる。
Further, in the current component command calculating means 34, based on the secondary magnetic flux φ dr calculated by the primary frequency calculating means 33 and the primary frequency ω, the secondary magnetic flux φ dr and q of the secondary current are calculated.
A correction amount for preventing mutual interference of the axial components i qr is calculated, and d of the secondary magnetic flux output from the command generating means 30 is calculated.
I ds * and i qs * are calculated based on the axis component command φ dr *, the secondary current q-axis component command i qr *, and the correction amount. FIG. 3 is a configuration diagram showing a current component command arithmetic circuit 34 of the control device for the induction motor according to the first embodiment. In the figure, 43 to 46 are function generators, 47 and 48 are arithmetic units,
49 to 51 are multipliers, 52 is a coefficient unit, 53 is an adder, 5
4 is a subtractor. As described above, the value of the iron loss resistance R m is a function of not only the primary frequency ω but also the secondary magnetic flux φ dr .
Further, considering the iron loss resistance, φ dr , i qr and i ds , i
It can be seen from equations (15) and (19) that qs has a relation of equation (40).

【0066】[0066]

【数31】 但し、 Tr2:Tr +a2 Rr /M 式(40)からφdrとidsの間には鉄損が及ぼす外乱a
r /(M2 +a2 )・iq r があり、同様にiqrとi
qsの間には鉄損が及ぼす外乱a(1+lr P/Rr )/
(M2 +a2 )・φdrがあることがわかる。一次電流の
d軸成分指令ids * 及びq軸成分指令iqs * にこれらの
外乱分をφdrとiqrの相互干渉を防止するための補正量
として加算することによって、φdrとiqrの相互干渉を
防止することができる。そこで、式(40)右辺に
φdr,iqrの代わりにφdr * ,iqr * を代入して式(4
1),(42)でids * ,iqs *を与えると相互干渉の
影響を受けずにφdr,iqrが制御される。
[Equation 31] However, T r2 : T r + a 2 R r / M From equation (40), the disturbance a caused by the iron loss is between φ dr and i ds.
l r / (M 2 + a 2 ) · i q r , and similarly i qr and i
Between the qs disturbance on iron loss a (1 + l r P / R r) /
It can be seen that there is (M 2 + a 2 ) · φ dr . By adding a correction amount for the d-axis component command i ds * and q-axis component command i qs * these disturbances minute to prevent mutual interference of phi dr and i qr of the primary current, phi dr and i qr Mutual interference can be prevented. Therefore, the equation (40), the right-hand side to φ dr, instead of i qr φ dr *, by substituting the i qr * formula (4
When i ds * and i qs * are given in 1) and (42), φ dr and i qr are controlled without being affected by mutual interference.

【0067】[0067]

【数32】 a(=Rm /ω)は上述した理由から、二次磁束φdr
一次周波数ωの関数である。従って、関数発生器43は
一次周波数ω及び二次磁束φdrに基づいて、メモリ回路
に記憶されたデータのテーブルを参照してa(=g(φ
dr,ω))を発生する。
(Equation 32) a (= R m / ω) is a function of the secondary magnetic flux φ dr and the primary frequency ω for the reason described above. Therefore, the function generator 43 refers to the table of the data stored in the memory circuit on the basis of the primary frequency ω and the secondary magnetic flux φ dr to obtain a (= g (φ
dr , ω)) is generated.

【0068】関数発生器44は関数発生器43が出力し
たaに基づいてTr2を発生し、同様に、関数発生器4
5,関数発生器46はそれぞれa/(M+22 ),
(MLr+a2 )/(M2 +a2 )を発生する。演算器
47はφdr * に対し微分要素を含むM(1+Tr2P)/
(M2 +a2 )の演算を行い、同様に演算器48はφdr
*に対し微分要素を含むa(1+lr /Rr P)/(M2
+a2 )の演算を行う。演算器47の出力と、乗算器
49の出力をlr 倍する係数器52の出力の和を演算す
る加算器53は式(41)右辺を出力する。また、乗算
器50の出力と乗算器51の出力の差を演算する減算器
54は式(42)右辺を出力する。
The function generator 44 generates T r2 based on a output from the function generator 43, and similarly, the function generator 4
5, the function generator 46 is a / (M + 2 a 2 ),
Generate (ML r + a 2 ) / (M 2 + a 2 ). The calculator 47 includes M (1 + T r2 P) / which includes a differential element with respect to φ dr *.
(M 2 + a 2) performs an operation of similarly calculator 48 phi dr
* With respect to including the differential element a (1 + l r / R r P) / (M 2
+ A 2 ) is calculated. The adder 53 that calculates the sum of the output of the calculator 47 and the output of the coefficient unit 52 that multiplies the output of the multiplier 49 by l r outputs the right side of Expression (41). Further, the subtractor 54 that calculates the difference between the output of the multiplier 50 and the output of the multiplier 51 outputs the right side of the equation (42).

【0069】図16に示した従来制御装置では、鉄損抵
抗を含む値aとして、一次周波数ωの1.6乗に比例す
る値を与えていた。しかし、二次磁束φdrが変化する場
合、鉄損抵抗も変動するため、実際はφdrとiqrの相互
干渉の影響を防止する為の補正量も変化するにも係わら
ず、鉄損抵抗値を一次周波数ωのみの関数で与えていた
ために正確な補正量を与えることができなかった。しか
し、関数発生器43のようにφdrとωを参照しながら鉄
損抵抗値を含む値aを出力する構成にすることにより正
確な上記補正量を演算することができるので、φdrとi
qrの相互干渉の影響を受けることなく、一次電流のd軸
成分指令及びq軸成分指令を得ることができる。
In the conventional control device shown in FIG. 16, the value a including the iron loss resistance is given a value proportional to the 1.6th power of the primary frequency ω. However, when the secondary flux φdr changes, since the iron loss resistance varies actually despite changes the correction amount for preventing the influence of mutual interference of phi dr and i qr, the iron loss resistance Since it was given as a function of only the primary frequency ω, an accurate correction amount could not be given. However, it is possible to calculate an accurate the correction amount by the structure to output the value a containing iron loss resistance value with reference to the phi dr and ω as a function generator 43, phi dr and i
The d-axis component command and the q-axis component command of the primary current can be obtained without being affected by the mutual interference of qr .

【0070】図4は、この実施の形態1による誘導電動
機の制御装置の一次周波数演算回路35を示す構成図で
あり、図において、13は従来技術と同一の加算器、5
5〜58は関数発生器、59〜64は乗算器、65〜6
7は係数器、68,69は減算器、70,71は加算
器、72は除算器、73は積分器、74はa(=Rm
ω)を発生する関数発生器である。式(15)とφqr
0を式(19)に代入すると次式が得られる。
FIG. 4 is a block diagram showing a primary frequency arithmetic circuit 35 of the induction motor controller according to the first embodiment. In the figure, 13 is the same adder and 5 as in the prior art.
5 to 58 are function generators, 59 to 64 are multipliers, and 65 to 6
7 is a coefficient unit, 68 and 69 are subtractors, 70 and 71 are adders, 72 is a divider, 73 is an integrator, and 74 is a (= R m /
ω) is a function generator. Equation (15) and φ qr =
Substituting 0 into equation (19) yields:

【0071】[0071]

【数33】 但し、 Tr1:Tr +a2 /Lrr 実際の二次磁束は検出できないので、式(43)からφ
drを推定すれば良い。一方、式(15)とφqr=0から
式(44)が得られる。
[Expression 33] However, since T r1 : T r + a 2 / L r R r the actual secondary magnetic flux cannot be detected, φ from Equation (43)
Estimate dr . On the other hand, equation (44) is obtained from equation (15) and φ qr = 0.

【0072】[0072]

【数34】 二次磁束と同様に実際の二次電流iqrは検出できないの
で、式(44)からi qrを推定すれば、式(20)に従
って鉄損抵抗の影響を受けずにすべり周波数ωs を演算
することができる。
[Equation 34]Similar to the secondary magnetic flux, the actual secondary current iqrCan't detect
Then, from equation (44), i qrIf we estimate
Slip frequency ω without being affected by iron loss resistances Calculate
can do.

【0073】関数発生器74は上記関数発生器43と同
様にφdrとωに基づいてa(=Rm/ω)の値を出力す
る。乗算器63は関数発生器57が出力するM+a2
rの値とidsとを乗算し、(M+a2 /Lr )ids
出力する。一方係数器66は乗算器60から得られたa
・iqsをlr /Lr 倍し、alr /Lr ・iqsを出力す
る。周知のように、一次遅れ系の演算は積分器を含んだ
閉ループで実現できる。減算器69,積分器73,関数
発生器58,乗算器64は、加算器71の出力に対して
1/[1+(Lr 2+a2 )P/Lrr ]という一次遅
れの演算を行う。加算器71の出力は(M+a2 /L
r )ids+alr /Lr ・iqsであるから、式(43)
の右辺を乗算器64は出力する。
The function generator 74 outputs the value of a (= R m / ω) based on φ dr and ω, similarly to the function generator 43. The multiplier 63 outputs M + a 2 / output from the function generator 57.
The value of L r is multiplied by i ds, and (M + a 2 / L r ) i ds is output. On the other hand, the coefficient unit 66 is the a obtained from the multiplier 60.
Multiplies i qs by l r / L r and outputs al r / L r · i qs . As is well known, the calculation of the first-order lag system can be realized by a closed loop including an integrator. The subtractor 69, the integrator 73, the function generator 58, and the multiplier 64 perform a first-order delay calculation of 1 / [1+ (L r 2 + a 2 ) P / L r R r ] on the output of the adder 71. To do. The output of the adder 71 is (M + a 2 / L
r ) i ds + al r / L r · i qs , the formula (43)
The multiplier 64 outputs the right side of the.

【0074】関数発生器55、56はそれぞれa/(L
r 2+a2 ),(MLr +a2 )/(Lr 2+a2 )を発生
する。従って、関数発生器55,56、乗算器59,6
1,62、係数器65、減算器68、加算器70によっ
て式(44)右辺が演算される。即ち加算器70は二次
電流iqrを出力する。−Rr 倍する係数器67と除算器
72によって式(20)右辺が演算され、すべり周波数
ωs を係数器67は出力する。そして、加算器13によ
って電気的回転周波数ωr とすべり周波数ωs とを加算
し、一次周波数ωを得る。関数発生器74では、二次磁
束と一次周波数に基づいて鉄損抵抗を含む値aを出力す
るので、二次磁束が変化する場合でも正確に二次磁束及
び一次周波数を演算することが可能である。以上によっ
て一次周波数演算回路35は二次磁束φdrと一次周波数
ωを発生する。
The function generators 55 and 56 are respectively a / (L
r 2 + a 2 ), (ML r + a 2 ) / (L r 2 + a 2 ). Therefore, the function generators 55 and 56 and the multipliers 59 and 6
1, 62, the coefficient unit 65, the subtractor 68, and the adder 70 calculate the right side of Expression (44). That is, the adder 70 outputs the secondary current i qr . The right side of Expression (20) is calculated by the coefficient unit 67 and the divider 72 which multiply by −R r, and the coefficient unit 67 outputs the slip frequency ω s . Then, the adder 13 adds the electrical rotation frequency ω r and the slip frequency ω s to obtain the primary frequency ω. Since the function generator 74 outputs the value a including the iron loss resistance based on the secondary magnetic flux and the primary frequency, it is possible to accurately calculate the secondary magnetic flux and the primary frequency even when the secondary magnetic flux changes. is there. As described above, the primary frequency calculation circuit 35 generates the secondary magnetic flux φ dr and the primary frequency ω.

【0075】図5は、この実施の形態1による誘導電動
機の制御装置の電流成分演算回路36を示す構成図であ
り、図において、5は座標変換器,14は積分器であ
り、従来装置と同一のものである。積分器14は一次周
波数演算回路35より得られた一次周波数ωを積分し位
相θを発生する。座標変換器5は位相θと電流検出器3
から得られた一次電流ius,ivsに基づいて一次電流の
d軸成分ids及びq軸成分iqsを発生する。以上によっ
て電流成分演算回路36は一次電流ius,ivs及び一次
周波数ωに基づいて、一次電流のd軸成分idsとq軸成
分iqsを発生する。
FIG. 5 is a block diagram showing a current component calculating circuit 36 of the induction motor control apparatus according to the first embodiment. In the figure, 5 is a coordinate converter and 14 is an integrator, which is different from the conventional apparatus. They are the same. The integrator 14 integrates the primary frequency ω obtained from the primary frequency calculation circuit 35 to generate the phase θ. The coordinate converter 5 has a phase θ and a current detector 3
The d-axis component i ds and the q-axis component i qs of the primary current are generated based on the primary currents i us and i vs obtained from the above. As described above, the current component calculation circuit 36 generates the d-axis component i ds and the q-axis component i qs of the primary current based on the primary currents i us , i vs and the primary frequency ω.

【0076】図6は、この実施の形態1による誘導電動
機の制御装置の電流制御回路37を示す構成図であり、
図において、6,7は減算器、8,9は制御器、10は
座標変換器,14は積分器であり、従来装置と同一のも
のである。指令変換手段31から得られた一次電流のd
軸成分指令ids * とd軸成分idsの偏差を減算器6は出
力し、その偏差を制御器8は増幅し一次電圧のd軸成分
指令vds * を発生する。同様に、指令変換手段31から
得られた一次電流のq軸成分指令iqs * とq軸成分iqs
の偏差を減算器7は出力し、その偏差を制御器9は増幅
し一次電圧のq軸成分指令vqs * を発生する。積分器1
4は指令変換手段31から得られた一次周波数ωを積分
し位相θを発生する。座標変換器10は位相θに基づい
て一次電圧のd軸成分指令vds * 及びq軸成分指令vqs
* を三相電圧指令vus * ,vvs * ,vws * に変換する。
以上により、一次電流のd軸成分及びq軸成分が、一次
電流のd軸成分指令及びq軸成分指令にそれぞれ追従す
る。
FIG. 6 is a block diagram showing the current control circuit 37 of the control device for the induction motor according to the first embodiment.
In the figure, 6 and 7 are subtractors, 8 and 9 are controllers, 10 is a coordinate converter, and 14 is an integrator, which are the same as those of the conventional apparatus. D of the primary current obtained from the command conversion means 31
The subtracter 6 outputs the deviation between the axis component command i ds * and the d axis component i ds , and the controller 8 amplifies the deviation to generate the d axis component command v ds * of the primary voltage. Similarly, the q-axis component command i qs * and the q-axis component i qs of the primary current obtained from the command conversion means 31.
The subtractor 7 outputs the deviation, and the controller 9 amplifies the deviation to generate the q-axis component command v qs * of the primary voltage. Integrator 1
Reference numeral 4 integrates the primary frequency ω obtained from the command conversion means 31 to generate a phase θ. The coordinate converter 10 determines the d-axis component command v ds * and the q-axis component command v qs of the primary voltage based on the phase θ.
* Is converted into a three-phase voltage command v us * , v vs * , v ws * .
As described above, the d-axis component and the q-axis component of the primary current follow the d-axis component command and the q-axis component command of the primary current, respectively.

【0077】このように、この実施の形態1では、二次
磁束の変化が起因して鉄損抵抗が変動する場合でも、二
次磁束のd軸成分指令及び二次電流のq軸成分指令に追
従するように二次磁束のd軸成分及び二次電流のq軸成
分を制御することができる。
As described above, in the first embodiment, even if the iron loss resistance fluctuates due to the change of the secondary magnetic flux, the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current are designated. The d-axis component of the secondary magnetic flux and the q-axis component of the secondary current can be controlled so as to follow.

【0078】実施の形態2.上記実施の形態1では一次
周波数演算手段33において一次電流ivs,ius及び回
転周波数ωr に基づいて二次電流のq軸成分iqrを得て
いたが、回路構成の簡略化の上で、iqrの代わりに二次
電流のq軸成分指令iqr * を用いても良い。図7におい
て、実施の形態1と同一符号は同一又は相当部分を示す
ので、その説明を省略する。31bは指令変換手段、3
3bは一次周波数演算手段、35bは一次周波数演算回
路である。一次周波数演算回路35bは一次電流のd軸
成分ids,一次電流のq軸成分iqs,二次電流のq軸成
分指令iqr * 及び電気的回転周波数ωr に基づいて二次
磁束φdr及び一次周波数ωを発生する。
Embodiment 2 In the first embodiment, the primary frequency calculation means 33 obtains the q-axis component i qr of the secondary current on the basis of the primary currents i vs , i us and the rotation frequency ω r. , I qr may be used instead of the q-axis component command i qr * of the secondary current. In FIG. 7, the same reference numerals as those in the first embodiment indicate the same or corresponding portions, and thus the description thereof will be omitted. 31b is a command conversion means, 3
3b is a primary frequency calculation means, and 35b is a primary frequency calculation circuit. The primary frequency calculation circuit 35b uses the d-axis component i ds of the primary current, the q-axis component i qs of the primary current, the q-axis component command i qr * of the secondary current, and the electrical rotation frequency ω r to generate the secondary magnetic flux φ dr. And a primary frequency ω.

【0079】このように一次周波数演算手段33bは、
上記電流検出器2により検出された一次電流ivs,ius
に基づいて上記誘導電動機1の一次電流のd軸成分ids
及びq軸成分iqsを演算する電流成分演算回路36と、
上記電流成分演算回路36により演算された一次電流の
d軸成分ids及びq軸成分iqsに基づいて上記誘導電動
機1の二次磁束のd軸成分φdrを演算すると共に、その
二次磁束のd軸成分φdrと上記指令発生手段30から出
力された二次電流のq軸成分指令iqr * と上記回転周波
数検出器3により検出された回転周波数ωr に基づいて
上記誘導電動機の二次磁束のq軸成分φdrが零になる一
次周波数ωを演算する一次周波数演算回路35bから構
成される。
In this way, the primary frequency calculation means 33b is
Primary current i vs , i us detected by the current detector 2
The d-axis component i ds of the primary current of the induction motor 1 based on
And a current component calculation circuit 36 for calculating the q-axis component i qs ,
The d-axis component φ dr of the secondary magnetic flux of the induction motor 1 is calculated based on the d-axis component i ds and the q-axis component i qs of the primary current calculated by the current component calculation circuit 36, and the secondary magnetic flux thereof is also calculated. Of the induction motor based on the d-axis component φ dr of the above, the q-axis component command i qr * of the secondary current output from the command generation means 30, and the rotation frequency ω r detected by the rotation frequency detector 3. It is composed of a primary frequency calculation circuit 35b for calculating the primary frequency ω at which the q-axis component φ dr of the secondary magnetic flux becomes zero.

【0080】図8は、この実施の形態2による誘導電動
機の制御装置の一次周波数演算回路35bを示す構成図
であり、図において、13は加算器であり、従来装置と
同一のものである。80は磁束演算回路、81は除算
器、82は係数器である。磁束演算回路80は電流成分
演算回路36から得られた一次電流のd軸成分ids及び
q軸成分iqsに基づいて二次磁束φdrを演算する。ま
た、除算器81は二次電流指令iqr * を磁束演算回路8
0の出力φdrで除算する。そして、係数器82によって
除算器81の出力を−Rr 倍することによってすべり周
波数ωs が得られる。加算器13は電気的回転周波数ω
r とすべり周波数ωs を加算し一次周波数ωを出力す
る。このように、一次周波数演算回路35bは二次磁束
φdrと一次周波数ωを発生する。
FIG. 8 is a block diagram showing a primary frequency arithmetic circuit 35b of the induction motor control apparatus according to the second embodiment. In the figure, 13 is an adder, which is the same as the conventional apparatus. Reference numeral 80 is a magnetic flux calculation circuit, 81 is a divider, and 82 is a coefficient unit. The magnetic flux calculation circuit 80 calculates the secondary magnetic flux φ dr based on the d-axis component i ds and the q-axis component i qs of the primary current obtained from the current component calculation circuit 36. Further, the divider 81 outputs the secondary current command i qr * to the magnetic flux calculation circuit 8
Divide by 0 output φ dr . Then, the slip frequency ω s is obtained by multiplying the output of the divider 81 by −R r by the coefficient unit 82. The adder 13 has an electrical rotation frequency ω
The primary frequency ω is output by adding r and the slip frequency ω s . In this way, the primary frequency calculation circuit 35b generates the secondary magnetic flux φ dr and the primary frequency ω.

【0081】図9は、この実施の形態2による誘導電動
機の制御装置の磁束演算回路80を示す構成図であり、
図において、実施の形態1と同一符号は同一または相当
部分を示すので、その説明を省略する。図9の構成は、
実施の形態1の図4に示した一次周波数演算回路35の
構成からすべり周波数演算の機能を省略したものであ
る。図8および図9の構成によって二次電流iqrを一次
電流から演算することなしに一次周波数ωを得ることが
できると共に、式(43)に従った二次磁束φdrを演算
することができる。
FIG. 9 is a block diagram showing a magnetic flux calculation circuit 80 of the induction motor controller according to the second embodiment.
In the figure, the same reference numerals as those in the first embodiment indicate the same or corresponding portions, and therefore their explanations are omitted. The configuration of FIG. 9 is
It is a configuration in which the function of slip frequency calculation is omitted from the configuration of the primary frequency calculation circuit 35 shown in FIG. 4 of the first embodiment. With the configurations of FIGS. 8 and 9, the primary frequency ω can be obtained without calculating the secondary current i qr from the primary current, and the secondary magnetic flux φ dr can be calculated according to the equation (43). .

【0082】実施の形態3.上記実施の形態1及び実施
の形態2では電流成分指令演算回路34が一次電流のd
軸成分指令ids * 及びq軸成分指令iqs * を演算するも
のについて示したが、図10に示すように、一次周波数
演算手段33により演算された二次磁束φdrと一次周波
数ωに基づいて、φdrと二次電流のq軸成分iqrの相互
干渉を防止するための補正量を演算し、上記指令発生回
路30から出力された二次磁束指令φdr * と二次磁束φ
drの偏差及び二次電流のq軸成分指令iqr * と上記補正
量に基づいてids * 及びiqs * を演算しても良い。
Third Embodiment In the above-described first and second embodiments, the current component command calculation circuit 34 sets the primary current d
Although the calculation of the axial component command i ds * and the q-axis component command i qs * has been shown, as shown in FIG. 10, based on the secondary magnetic flux φ dr and the primary frequency ω calculated by the primary frequency calculation means 33. Then, a correction amount for preventing mutual interference between φ dr and the q-axis component i qr of the secondary current is calculated, and the secondary magnetic flux command φ dr * and the secondary magnetic flux φ output from the command generation circuit 30 are calculated.
It is also possible to calculate i ds * and i qs * based on the deviation of dr and the q-axis component command i qr * of the secondary current and the correction amount.

【0083】図10において、実施の形態1と同一符号
は同一または相当部分を示すので、その説明を省略す
る。34bは電流成分指令演算回路(電流成分指令演算
手段)、83は減算器、84は制御器である。上述した
通り、式(40)からφdrとidsの間には鉄損が及ぼす
外乱alr /(M2 +a2 )・iqrがあり、同様にiqr
とiqsの間には鉄損が及ぼす外乱a(1+lr P/R
r )/(M2 +a2 )・φdrがあることがわかる。そこ
で、ids * ,iqs * をそれぞれ式(45),(46)で
与えると、鉄損抵抗が及ぼす外乱即ちφdrとiqrの相互
干渉を受けずにφdr,iqrが得られる。
In FIG. 10, the same reference numerals as those used in the first embodiment indicate the same or corresponding portions, and the description thereof will be omitted. 34b is a current component command calculation circuit (current component command calculation means), 83 is a subtracter, and 84 is a controller. As described above, there are disturbances al r / (M 2 + a 2) · i qr on iron loss between the formula (40) from phi dr and i ds, likewise i qr
And i qs between the disturbance a (1 + l r P / R
It can be seen that there is r ) / (M 2 + a 2 ) · φ dr . Therefore, when i ds * and i qs * are given by the equations (45) and (46), respectively, φ dr and i qr can be obtained without receiving the disturbance caused by the iron loss resistance, that is, the mutual interference between φ dr and i qr. .

【0084】[0084]

【数35】 但し、 Kfp:比例ゲイン Kfi:積分ゲイン s :ラプラス演算子 式(45),(46)に従ってids * ,iqs * の演算を
行えば、φdr,iqrはφdr * ,iqr * に追従する。な
お、式(45)において右辺第1項は磁束制御演算項で
あり、ゲインを設計することによって磁束応答を調整す
ることができる。
(Equation 35) However, K fp : Proportional gain K fi : Integral gain s: Laplace operator If i ds * and i qs * are calculated according to the equations (45) and (46), then φ dr and i qr are φ dr * and i Follow qr * . The first term on the right-hand side of the equation (45) is a magnetic flux control operation term, and the magnetic flux response can be adjusted by designing the gain.

【0085】実装に際しては、電圧形インバータ4の電
流容量の制限によってids * にidsが追従しない場合二
次磁束φdrも二次磁束指令φdr * に追従しない。実施の
形態1で示したような電流成分指令演算手段34では相
互干渉を防止する補正量をφdr * に基づいて演算してい
るために、この様な場合、補正量に誤差を含んだi
ds * ,iqs * を与えることになった。また、トルク指令
がステップ的に変化するような場合、二次磁束指令の微
分演算が行えないという問題があった。しかし、式(4
5),(46)に従った演算を行えば、φdr * の微分演
算を行わずにφdrがφdr * に追従するように制御できる
と同時に、補正量の演算にはφdrを用いるので、φdr
φdr * に追従しない場合でも上記補正量は正確に演算さ
れる。
In mounting, if i ds does not follow i ds * due to the limitation of the current capacity of the voltage source inverter 4, the secondary magnetic flux φ dr also does not follow the secondary magnetic flux command φ dr * . In the current component command calculation means 34 as shown in the first embodiment, the correction amount for preventing mutual interference is calculated based on φ dr *, and in such a case, the correction amount includes an error i
It is supposed to give ds * and i qs * . Further, when the torque command changes stepwise, there is a problem that the differential operation of the secondary magnetic flux command cannot be performed. However, the formula (4
5) (by computing according to 46), and at the same time can be controlled to φ dr * φ dr without differential operation follows the phi dr *, uses phi dr the calculation of the correction amount since, the correction amount even when phi dr does not follow the phi dr * is accurately calculated.

【0086】減算器83は二次磁束指令φdr * と二次磁
束φdrとの偏差を出力し、制御器84によってその偏差
を増幅し式(45)右辺第1項を演算する。a/(M2
+a2 )の値を発生する関数発生器45と乗算器49,
係数器52によって式(45)第2項を演算し、加算器
55によって式(45)で表されるids * を発生する。
同様に乗算器50と関数発生器45によって式(46)
第1項を演算し、(MLr +a2 )/(M2 +a2 )の
値を発生する関数発生器46と乗算器51によって同右
辺第2項を、減算器51によって式(46)で表される
qs * を発生する。以上によってφdrとiqrの相互干渉
の影響を受けることなく、二次磁束φdrが二次磁束指令
φdr * に追従するように、一次電流のd軸成分指令ids
* 及びq軸成分指令iqs * を発生することができる。
The subtractor 83 outputs the deviation between the secondary magnetic flux command φ dr * and the secondary magnetic flux φ dr, and the controller 84 amplifies the deviation to calculate the first term on the right side of the equation (45). a / (M 2
+ A 2 ) value generator 45 and multiplier 49,
The coefficient terminator 52 calculates the second term of the equation (45), and the adder 55 generates i ds * represented by the equation (45).
Similarly, the equation (46) is calculated by the multiplier 50 and the function generator 45.
The second term of the same right side is calculated by the function generator 46 and the multiplier 51, which calculate the first term and generate the value of (ML r + a 2 ) / (M 2 + a 2 ), and the subtracter 51 by the equation (46). Generate the represented i qs * . As described above, the d-axis component command i ds of the primary current is set so that the secondary magnetic flux φ dr follows the secondary magnetic flux command φ dr * without being affected by the mutual interference between φ dr and i qr.
* And the q-axis component command i qs * can be generated.

【0087】実施の形態4.上記実施の形態1から実施
の形態3では上記指令発生回路30によってφdr *及び
qr * を演算していたが、誘導電動機1の二次磁束φdr
に対する二次電流iqrの比の関係を表す一次周波数と二
次磁束のd軸成分の関数と、その二次磁束φdrと二次電
流iqrの積がトルク指令に比例する関係とに基づいて、
その二次磁束指令φdr * を演算すると同時に、トルク指
令を上記一次周波数演算手段によって演算された二次磁
束φdrで除算した値に基づいて二次電流のq軸成分指令
qs *を演算してもよい。図11は、この実施の形態4
による誘導電動機の制御装置の指令発生回路(指令発生
手段)30bを示す構成図であり、図において、実施の
形態1と同一符号は同一又は相当部分を示すので、その
説明を省略する。41bは係数器39の出力を二次磁束
φdrで除算する除算器である。
Embodiment 4 In the first to third embodiments described above, φ dr * and i qr * are calculated by the command generation circuit 30, but the secondary magnetic flux φ dr of the induction motor 1 is calculated.
Based on the function of the d-axis component of the secondary frequency and the secondary magnetic flux that expresses the relationship of the ratio of the secondary current i qr to , and the relation that the product of the secondary magnetic flux φ dr and the secondary current i qr is proportional to the torque command. hand,
At the same time that the secondary magnetic flux command φ dr * is calculated, the q-axis component command i qs * of the secondary current is calculated based on the value obtained by dividing the torque command by the secondary magnetic flux φ dr calculated by the primary frequency calculation means. You may. FIG. 11 shows the fourth embodiment.
FIG. 3 is a configuration diagram showing a command generation circuit (command generation means) 30b of the induction motor control device according to FIG. 1. In the drawings, the same reference numerals as those in the first embodiment indicate the same or corresponding portions, and therefore the description thereof will be omitted. Reference numeral 41b is a divider that divides the output of the coefficient unit 39 by the secondary magnetic flux φ dr .

【0088】二次磁束φdr * に二次磁束φdrが追従しな
い場合、τm *=φdr * ・iqr * の関係は成立しない。従
って、図2に示した指令発生回路ではこのような場合、
トルク指令に発生トルクが追従しない事態が発生した。
しかし、図11に示した構成のように二次電流指令iqr
* をトルク指令を二次磁束φdrで除算した値に比例させ
て与えると、φdrがφdr * に追従しない場合でもτm *
φdr・iqr * の関係は成り立つので、φdrの応答に係わ
らず所望のトルクを得ることができる。
[0088] If the secondary magnetic flux φ dr * to the secondary magnetic flux φ dr does not follow, τ m * = φ dr * · i qr * of the relationship is not established. Therefore, in the command generation circuit shown in FIG.
A situation has occurred in which the generated torque does not follow the torque command.
However, as in the configuration shown in FIG. 11, the secondary current command i qr
* To impart to the torque command is proportional to a value obtained by dividing the secondary magnetic flux phi dr, phi even if dr is not follow the phi dr * tau m * =
Since the relationship of φ dr · i qr * is established, a desired torque can be obtained regardless of the response of φ dr .

【0089】実施の形態5.上記実施の形態1から実施
の形態4では損失最小条件を満足する二次磁束指令φdr
* と二次電流指令iqr * を演算するものについて示した
が、さらに、その演算された二次磁束指令φdr * が所定
の最大値より大きい場合あるいは所定の最小値より小さ
い場合には、その二次磁束のd軸成分指令φdr * を当該
最大値或いは最小値に制限し、その二次磁束のd軸成分
指令φdr * に従って二次電流指令iqr * を演算するよう
にしてもよい。これにより、運転効率及び速度応答性の
向上を図ることができる。図12は、この実施の形態5
による誘導電動機の制御装置の指令発生回路30cを示
す構成図であり、図において、実施の形態1と同一符号
は同一または相当部分を示すので、その説明を省略す
る。90は制限回路である。
Embodiment 5 In Embodiments 1 to 4 above, the secondary magnetic flux command φ dr that satisfies the minimum loss condition
Although the calculation of the * and the secondary current command i qr * has been shown, when the calculated secondary magnetic flux command φ dr * is larger than a predetermined maximum value or smaller than a predetermined minimum value, Even if the d-axis component command φ dr * of the secondary magnetic flux is limited to the maximum value or the minimum value and the secondary current command i qr * is calculated according to the d-axis component command φ dr * of the secondary magnetic flux. Good. As a result, it is possible to improve driving efficiency and speed response. FIG. 12 shows the fifth embodiment.
FIG. 3 is a configuration diagram showing a command generation circuit 30c of the induction motor control device according to FIG. 1. In the drawings, the same reference numerals as those in the first embodiment indicate the same or corresponding portions, and therefore the description thereof will be omitted. 90 is a limiting circuit.

【0090】関数発生器18の出力側に制限回路90を
設けた点以外は、ほぼ実施の形態1と同様であるので、
主に制限回路90について説明する。先ず、上記実施の
形態1のように、制限回路90がない場合には、二次磁
束指令φdr * は式(38)を満足する限り、大きな値を
取ることができるので、二次磁束の振幅を大きくするこ
とができるが、二次磁束の振幅はある程度以上大きくな
ると、磁気飽和が発生してしまうので、高精度のトルク
制御性能が得られなくなってしまう不具合がある。
Except that the limiting circuit 90 is provided on the output side of the function generator 18, it is almost the same as that of the first embodiment.
The limiting circuit 90 will be mainly described. First, as in the first embodiment, in the case where the limiting circuit 90 is not provided, the secondary magnetic flux command φ dr * can take a large value as long as Expression (38) is satisfied. Although the amplitude can be increased, if the amplitude of the secondary magnetic flux becomes larger than a certain level, magnetic saturation will occur, resulting in a problem that high-precision torque control performance cannot be obtained.

【0091】また、二次磁束のd軸成分φdrは、式(4
0)から明らかなように一次電流のd軸成分idsに対し
て一次遅れの特性をもって応答するので、二次磁束のd
軸成分φdrが小さくなりすぎると、急速に発生トルクを
増大させる必要が生じた場合、一次電流のd軸成分ids
を急変させても、二次磁束のd軸成分φdrの応答が遅い
ため、指令通りの発生トルクを得るまでに要する時間が
長くなる不具合もある。そこで、この実施の形態5で
は、上記のような不具合を解消するために、関数発生器
18により演算された二次磁束のd軸成分指令φdr *
所定の最大値より大きい場合には、その二次磁束のd軸
成分指令φdr * を当該最大値に制限し、所定の最小値よ
り小さい場合には、その二次磁束のd軸成分指令φdr *
を当該最小値に制限する制限回路90を設けることによ
って、二次磁束のd軸成分φdrの振幅の大きさを制限し
ている。
Further, the d-axis component φ dr of the secondary magnetic flux is given by the equation (4
(0), since it responds to the d-axis component i ds of the primary current with a characteristic of a primary delay, the d of the secondary magnetic flux d
If it is necessary to rapidly increase the generated torque when the axial component φ dr becomes too small, the d-axis component i ds of the primary current is generated.
Even if the value is suddenly changed, the response of the d-axis component φ dr of the secondary magnetic flux is slow, so that there is a problem that the time required to obtain the generated torque as instructed becomes long. Therefore, in the fifth embodiment, in order to solve the above-mentioned problems, when the d-axis component command φ dr * of the secondary magnetic flux calculated by the function generator 18 is larger than a predetermined maximum value, If the d-axis component command φ dr * of the secondary magnetic flux is limited to the maximum value and is smaller than a predetermined minimum value, the d-axis component command φ dr * of the secondary magnetic flux is given .
Is provided to limit the amplitude of the d-axis component φ dr of the secondary magnetic flux by providing the limiting circuit 90.

【0092】実施の形態6.図13は、この実施の形態
6による誘導電動機の制御装置の指令発生回路30dを
示す構成図であり、図において、実施の形態5と同一符
号は同一または相当部分を示すので、その説明を省略す
る。実施の形態5では、指令発生回路30における関数
発生器18の出力側に制限回路90を設けたが、同様に
実施の形態4で示した指令発生回路30bにおける関数
発生器18の出力側に制限回路90を設けても良い。こ
れにより、運転効率及び速度応答性の向上を図ることが
できる。
Sixth Embodiment FIG. 13 is a configuration diagram showing a command generation circuit 30d of the induction motor control device according to the sixth embodiment. In the figure, the same reference numerals as those in the fifth embodiment indicate the same or corresponding portions, and therefore the description thereof will be omitted. To do. In the fifth embodiment, the limiting circuit 90 is provided on the output side of the function generator 18 in the command generating circuit 30, but similarly, the limiting circuit 90 is provided on the output side of the function generator 18 in the command generating circuit 30b shown in the fourth embodiment. The circuit 90 may be provided. As a result, it is possible to improve driving efficiency and speed response.

【0093】実施の形態7.二次磁束φdrが正常に制御
されている場合、二次磁束φdrはその指令値φdr *に一
致している。また、二次磁束φdrと一次電流のd軸成分
dsとは定常状態では略比例しているので、鉄損抵抗R
m はidsの略関数である。従って、前記実施の形態1か
ら6では関数発生器42,43,74の入力として二次
磁束φdrと一次周波数ωを使用していたが、φdrの代わ
りに二次磁束指令φdr * ,一次電流のd軸成分ids及び
一次電流のd軸成分指令ids * の何れを使用しても良
い。
Embodiment 7 FIG. When the secondary magnetic flux φ dr is normally controlled, the secondary magnetic flux φ dr matches the command value φ dr * . Further, since the secondary magnetic flux φ dr and the d-axis component i ds of the primary current are substantially proportional in the steady state, the iron loss resistance R
m is an approximate function of i ds . Accordingly, the had been using a secondary magnetic flux phi dr and primary frequency ω as input of the function generator 42,43,74 In Modes 1 6 embodiment, phi secondary flux command instead of dr phi dr *, Either the d-axis component i ds of the primary current or the d-axis component command i ds * of the primary current may be used.

【0094】実施の形態8.上記実施の形態では、ハー
ドウェアによって構成したものについて示したが、マイ
クロコンピュータを用いたソフトウェア処理によって実
現しても良い。
Embodiment 8 FIG. In the above embodiment, the hardware configuration is shown, but it may be implemented by software processing using a microcomputer.

【0095】[0095]

【発明の効果】以上のように、請求項1記載の発明によ
れば、指令変換手段により、二次磁束のd軸成分指令及
び二次電流のq軸成分指令を一次電流のd軸成分指令及
びq軸成分指令に変換し、制御手段により、誘導電動機
の一次電流のd軸成分及びq軸成分が上記一次電流のd
軸成分指令及びq軸成分指令に一致するように構成した
ので、二次磁束の変化が起因して鉄損抵抗が変動した場
合でも、二次磁束のd軸成分指令及び二次電流のq軸成
分指令に追従するように二次磁束のd軸成分及び二次電
流のq軸成分が制御され、その鉄損抵抗の変動影響を受
けずに誘導電動機を制御できる効果がある。
As described above, according to the first aspect of the invention, the command converting means converts the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current into the d-axis component command of the primary current. And q-axis component command, and the d-axis component and q-axis component of the primary current of the induction motor are converted to d of the primary current by the control means.
Since it is configured to match the axial component command and the q-axis component command, even if the iron loss resistance changes due to the change in the secondary magnetic flux, the d-axis component command of the secondary magnetic flux and the q-axis of the secondary current The d-axis component of the secondary magnetic flux and the q-axis component of the secondary current are controlled so as to follow the component command, and the induction motor can be controlled without being affected by the fluctuation of the iron loss resistance.

【0096】請求項2記載の発明によれば、一次周波数
演算手段により、一次電流に基づいて二次磁束のd軸成
分と一次周波数を演算すると共に、電流成分指令演算手
段により、二次磁束のd軸成分指令及び二次電流のq軸
成分指令を一次電流のd軸成分指令及びq軸成分指令に
変換し、制御手段により、誘導電動機の一次電流のd軸
成分及びq軸成分が上記一次電流のd軸成分指令及びq
軸成分指令に一致するように構成したので、二次磁束の
変化が起因して鉄損抵抗が変動する場合でも、二次磁束
のd軸成分指令及び二次電流のq軸成分指令に追従する
ように二次磁束のd軸成分及び二次電流のq軸成分が制
御され、その鉄損抵抗の変動影響を受けずに誘導電動機
を制御できる効果がある。
According to the second aspect of the present invention, the primary frequency calculating means calculates the d-axis component and the primary frequency of the secondary magnetic flux based on the primary current, and the current component command calculating means calculates the secondary magnetic flux. The d-axis component command and the q-axis component command of the secondary current are converted into the d-axis component command and the q-axis component command of the primary current, and the d-axis component and the q-axis component of the primary current of the induction motor are controlled by the control means. Current d-axis component command and q
Since it is configured to match the axial component command, it follows the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current even when the iron loss resistance changes due to the change of the secondary magnetic flux. As described above, the d-axis component of the secondary magnetic flux and the q-axis component of the secondary current are controlled, and the induction motor can be controlled without being affected by the fluctuation of the iron loss resistance.

【0097】請求項3記載の発明によれば、請求項2に
おける一次周波数演算手段を、電流成分演算回路によ
り、一次電流に基づいて一次電流のd軸成分及びq軸成
分を演算すると共に、一次周波数演算回路により、その
一次電流のd軸成分及びq軸成分と検出手段により検出
された回転周波数に基づいて誘導電動機の二次磁束のq
軸成分が零になる一次周波数と、誘導電動機の二次磁束
のd軸成分とを演算するように構成したので、二次磁束
の変化が起因して鉄損抵抗が変動する場合でも、二次磁
束のd軸成分指令及び二次電流のq軸成分指令に追従す
るように二次磁束のd軸成分及び二次電流のq軸成分が
制御され、その鉄損抵抗の変動影響を受けずに誘導電動
機を制御できる効果がある。
According to the third aspect of the invention, the primary frequency calculating means in the second aspect calculates the d-axis component and the q-axis component of the primary current based on the primary current by the current component calculating circuit, and Based on the d-axis component and q-axis component of the primary current and the rotation frequency detected by the detecting means by the frequency calculation circuit, q of the secondary magnetic flux of the induction motor.
Since the primary frequency at which the axial component becomes zero and the d-axis component of the secondary magnetic flux of the induction motor are calculated, even if the iron loss resistance fluctuates due to the change in the secondary magnetic flux, the secondary The d-axis component of the secondary magnetic flux and the q-axis component of the secondary current are controlled so as to follow the d-axis component command of the magnetic flux and the q-axis component command of the secondary current, without being affected by the fluctuation of the iron loss resistance. This has the effect of controlling the induction motor.

【0098】請求項4記載の発明によれば、請求項2に
おける一次周波数演算手段を、電流成分演算回路により
演算された一次電流のd軸成分及びq軸成分に基づいて
誘導電動機の二次磁束のd軸成分を演算すると共に、そ
の二次磁束のd軸成分と指令発生手段から出力された二
次電流のq軸成分指令と検出手段により検出された回転
周波数に基づいてその誘導電動機の二次磁束のq軸成分
が零になる一次周波数を演算する一次周波数演算回路を
設けるように構成したので、一次電流のq軸成分を二次
電流のq軸成分に変換することなく該一次周波数を演算
することができ、その結果、一次周波数演算手段の構成
が簡単になる効果がある。
According to the invention as defined in claim 4, the primary frequency computing means according to claim 2 is used for the secondary magnetic flux of the induction motor based on the d-axis component and the q-axis component of the primary current computed by the current component computing circuit. The d-axis component of the secondary magnetic flux, the q-axis component command of the secondary current output from the command generating means, and the rotation frequency detected by the detecting means, the induction motor Since the primary frequency calculation circuit for calculating the primary frequency at which the q-axis component of the secondary magnetic flux becomes zero is provided, the primary frequency can be calculated without converting the q-axis component of the primary current into the q-axis component of the secondary current. The calculation can be performed, and as a result, there is an effect that the configuration of the primary frequency calculation means is simplified.

【0099】請求項5記載の発明によれば、請求項2か
ら請求項4における電流成分指令演算手段を、一次周波
数演算手段により演算された二次磁束のd軸成分と一次
周波数に基づいて二次磁束のd軸成分と二次電流のq軸
成分の相互干渉を防止するための補正量を演算し、指令
発生手段から出力された二次磁束のd軸成分指令及び二
次電流のq軸成分指令と上記補正量に基づいて、一次電
流のd軸成分指令及びq軸成分指令を演算するように構
成したので、二次磁束の変化が起因して鉄損抵抗が変動
するような場合でも、その影響を受けずに二次磁束及び
発生トルクの応答特性が向上する効果がある。
According to the fifth aspect of the present invention, the current component command calculating means according to the second aspect to the fourth aspect is used based on the d-axis component of the secondary magnetic flux calculated by the primary frequency calculating means and the primary frequency. A correction amount for preventing mutual interference between the d-axis component of the secondary magnetic flux and the q-axis component of the secondary current is calculated, and the d-axis component command of the secondary magnetic flux output from the command generating means and the q-axis of the secondary current are output. Since the d-axis component command and the q-axis component command of the primary current are calculated based on the component command and the correction amount, even when the iron loss resistance fluctuates due to the change of the secondary magnetic flux. There is an effect that the response characteristics of the secondary magnetic flux and the generated torque are improved without being affected by the influence.

【0100】請求項6記載の発明によれば、請求項1か
ら請求項5における指令発生手段を、誘導電動機の二次
磁束のd軸成分に対する二次電流のq軸成分の比の関係
を表す一次周波数と二次磁束のd軸成分またはd軸成分
指令の関数と、その二次磁束のd軸成分と二次電流のq
軸成分の積が発生トルクに比例する関係とに基づいて、
その二次磁束のd軸成分指令及び二次電流のq軸成分指
令を演算するように構成したので、誘導電動機の運転損
失が最小になる二次磁束のd軸成分指令及び二次電流の
q軸成分指令が得られ、誘導電動機の運転損失を最小に
できる効果がある。
According to the sixth aspect of the present invention, the command generating means in the first to fifth aspects represents the relationship of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. The function of the primary frequency and the d-axis component of the secondary magnetic flux or the d-axis component command, and the d-axis component of the secondary magnetic flux and q of the secondary current
Based on the relationship that the product of axial components is proportional to the generated torque,
Since the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current are configured to be calculated, the d-axis component command of the secondary magnetic flux and the q of the secondary current that minimize the operating loss of the induction motor. The axial component command can be obtained, and the operation loss of the induction motor can be minimized.

【0101】請求項7記載の発明によれば、請求項2か
ら請求項5における指令発生手段を、誘導電動機の二次
磁束のd軸成分に対する二次電流のq軸成分の比の関係
を表す一次周波数と二次磁束のd軸成分またはd軸成分
指令の関数と、その二次磁束のd軸指令成分と二次電流
のq軸成分の積がトルク指令に比例する関係とに基づい
て、その二次磁束のd軸成分指令及び二次電流のq軸成
分指令を演算するように構成したので、誘導電動機の運
転損失が最小になる二次磁束のd軸成分指令及び二次電
流のq軸成分指令が得られると共に、発生トルクの応答
性を向上させることができる効果がある。
According to the invention described in claim 7, the command generating means in claims 2 to 5 represents the relationship of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. Based on the function of the primary frequency and the d-axis component of the secondary magnetic flux or the d-axis component command, and the product of the d-axis command component of the secondary magnetic flux and the q-axis component of the secondary current, which is proportional to the torque command, Since the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current are configured to be calculated, the d-axis component command of the secondary magnetic flux and the q of the secondary current that minimize the operating loss of the induction motor. The axial component command can be obtained, and the responsiveness of the generated torque can be improved.

【0102】請求項8記載の発明によれば、請求項2か
ら請求項5における指令発生手段を、演算された二次磁
束のd軸成分指令が所定の最大値より大きい場合或いは
所定の最小値より小さい場合には、その二次磁束のd軸
成分指令を当該最大値或いは最小値に制限し、その二次
磁束のd軸成分指令に従って二次電流のq軸成分指令を
演算するように構成したので、二次磁束の振幅が大きく
なり過ぎることによる磁気飽和の発生が抑えられ、ま
た、仮にトルク不足が生じても直ちにトルク不足が解消
できる範囲内で二次磁束の振幅が保たれ、誘導電動機の
応答速度を向上させることができると共に、磁気飽和の
発生を防止できる効果がある。
According to the invention described in claim 8, the command generating means according to claims 2 to 5 is used when the d-axis component command of the calculated secondary magnetic flux is larger than a predetermined maximum value or a predetermined minimum value. If it is smaller, the d-axis component command of the secondary magnetic flux is limited to the maximum value or the minimum value, and the q-axis component command of the secondary current is calculated according to the d-axis component command of the secondary magnetic flux. Therefore, the occurrence of magnetic saturation due to the amplitude of the secondary magnetic flux becoming too large is suppressed, and even if a torque shortage occurs, the amplitude of the secondary magnetic flux is maintained within the range where the torque shortage can be immediately resolved, It is possible to improve the response speed of the electric motor and prevent the occurrence of magnetic saturation.

【0103】請求項9記載の発明によれば、請求項2か
ら請求項5における指令発生手段を、演算された二次磁
束のd軸成分指令が所定の最大値より大きい場合或いは
所定の最小値より小さい場合には、その二次磁束のd軸
成分指令を当該最大値或いは最小値に制限し、トルク指
令を上記一次周波数演算手段によって演算された二次磁
束のd軸成分で除算した値に基づいて二次電流のq軸成
分指令を演算するように構成したので、二次磁束の振幅
が大きくなり過ぎることによる磁気飽和の発生が抑えら
れ、また仮にトルク不足が生じても直ちにトルク不足が
解消できる範囲内で二次磁束の振幅が保たれるととも
に、良好なトルク応答が得られ、誘導電動機の応答速度
を向上させることができるとともに、磁気飽和の発生を
防止できる効果がある。
According to the invention described in claim 9, the command generating means in claim 2 to claim 5 is used, when the calculated d-axis component command of the secondary magnetic flux is larger than a predetermined maximum value or a predetermined minimum value. If it is smaller, the d-axis component command of the secondary magnetic flux is limited to the maximum value or the minimum value, and the torque command is divided by the d-axis component of the secondary magnetic flux calculated by the primary frequency calculating means. Since it is configured to calculate the q-axis component command of the secondary current based on the above, the occurrence of magnetic saturation due to the amplitude of the secondary magnetic flux becoming too large is suppressed, and even if a torque shortage occurs, a torque shortage immediately occurs. The amplitude of the secondary magnetic flux is maintained within the range that can be eliminated, good torque response is obtained, the response speed of the induction motor can be improved, and the effect of preventing magnetic saturation can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による誘導電動機の
制御装置を示す構成図である。
FIG. 1 is a configuration diagram showing a control device for an induction motor according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1による指令発生回路
を示す構成図である。
FIG. 2 is a configuration diagram showing a command generation circuit according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1による電流成分指令
演算回路を示す構成図である。
FIG. 3 is a configuration diagram showing a current component command calculation circuit according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1による一次周波数演
算回路を示す構成図である。
FIG. 4 is a configuration diagram showing a primary frequency operation circuit according to the first embodiment of the present invention.

【図5】 この発明の実施の形態1による電流成分演算
回路を示す構成図である。
FIG. 5 is a configuration diagram showing a current component arithmetic circuit according to the first embodiment of the present invention.

【図6】 この発明の実施の形態1による電流制御回路
を示す構成図である。
FIG. 6 is a configuration diagram showing a current control circuit according to the first embodiment of the present invention.

【図7】 この発明の実施の形態2による誘導電動機の
制御装置を示す構成図である。
FIG. 7 is a configuration diagram showing a control device for an induction motor according to a second embodiment of the present invention.

【図8】 この発明の実施の形態2による一次周波数演
算回路を示す構成図である。
FIG. 8 is a configuration diagram showing a primary frequency operation circuit according to a second embodiment of the present invention.

【図9】 この発明の実施の形態2による磁束演算回路
を示す構成図である。
FIG. 9 is a configuration diagram showing a magnetic flux calculation circuit according to a second embodiment of the present invention.

【図10】 この発明の実施の形態3による電流成分指
令演算回路を示す構成図である。
FIG. 10 is a configuration diagram showing a current component command calculation circuit according to a third embodiment of the present invention.

【図11】 この発明の実施の形態4による指令発生回
路を示す構成図である。
FIG. 11 is a configuration diagram showing a command generation circuit according to a fourth embodiment of the present invention.

【図12】 この発明の実施の形態5による指令発生回
路を示す構成図である。
FIG. 12 is a configuration diagram showing a command generation circuit according to a fifth embodiment of the present invention.

【図13】 この発明の実施の形態6による指令発生回
路を示す構成図である。
FIG. 13 is a configuration diagram showing a command generation circuit according to a sixth embodiment of the present invention.

【図14】 誘導電動機の二次磁束及び一次周波数と誘
導電動機の鉄損抵抗の関係を示す特性図である。
FIG. 14 is a characteristic diagram showing the relationship between the secondary magnetic flux and the primary frequency of the induction motor and the iron loss resistance of the induction motor.

【図15】 従来の誘導電動機の制御装置を示す構成図
である。
FIG. 15 is a configuration diagram showing a conventional control device for an induction motor.

【図16】 従来の誘導電動機の制御装置を示す構成図
である。
FIG. 16 is a configuration diagram showing a conventional control device for an induction motor.

【符号の説明】[Explanation of symbols]

1 誘導電動機、2 回転周波数検出器(検出手段)、
3 電流検出器(検出手段)、30,30b〜30d
指令発生回路(指令発生手段)、31,31b指令変換
手段、32 制御手段、33,33b 一次周波数演算
手段、34,34b 電流成分指令演算回路(電流成分
指令演算手段)、35,35b 一次周波数演算回路、
36 電流成分演算回路。
1 induction motor, 2 rotation frequency detector (detection means),
3 current detectors (detection means) 30, 30b to 30d
Command generation circuit (command generation means), 31, 31b command conversion means, 32 control means, 33, 33b primary frequency calculation means, 34, 34b current component command calculation circuit (current component command calculation means), 35, 35b primary frequency calculation circuit,
36 Current component calculation circuit.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機のトルク指令を入力しそのト
ルク指令,一次周波数及び二次磁束の関数に基づいて一
次周波数で回転する回転直交座標軸上のd軸成分及びq
軸成分として二次磁束のd軸成分指令及び二次電流のq
軸成分指令を出力する指令発生手段と、上記誘導電動機
の一次電流及び回転周波数を検出する検出手段と、上記
検出手段により検出された一次電流及び回転周波数に基
づいて一次周波数及び二次磁束を演算し上記指令発生手
段に出力すると共にその指令発生手段から出力された二
次磁束のd軸成分指令及び二次電流のq軸成分指令を一
次電流のd軸成分指令及びq軸成分指令に変換する指令
変換手段と、上記誘導電動機の一次電流のd軸成分及び
q軸成分が上記指令変換手段により変換されたd軸成分
指令及びq軸成分指令に一致するように制御する制御手
段とを備えた誘導電動機の制御装置。
1. A d-axis component and q on a rotation orthogonal coordinate axis which receives a torque command of an induction motor and rotates at the primary frequency based on a function of the torque command, the primary frequency and the secondary magnetic flux.
The d-axis component command of the secondary magnetic flux as the axial component and the q of the secondary current
Command generating means for outputting a shaft component command, detecting means for detecting the primary current and rotation frequency of the induction motor, and calculating primary frequency and secondary magnetic flux based on the primary current and rotation frequency detected by the detecting means. Then, the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current, which are output to the command generating device, are converted into the d-axis component command and the q-axis component command of the primary current. Command conversion means and control means for controlling the d-axis component and the q-axis component of the primary current of the induction motor to match the d-axis component command and the q-axis component command converted by the command conversion means. Induction motor controller.
【請求項2】 誘導電動機のトルク指令を入力しそのト
ルク指令,一次周波数及び二次磁束の関数に基づいて一
次周波数で回転する回転直交座標軸上のd軸成分及びq
軸成分として二次磁束のd軸成分指令及び二次電流のq
軸成分指令を出力する指令発生手段と、上記誘導電動機
の一次電流及び回転周波数を検出する検出手段と、上記
検出手段により検出された一次電流に基づいて上記誘導
電動機の一次電流のd軸成分及びq軸成分を演算すると
共にその一次電流のd軸成分及びq軸成分と上記回転周
波数に基づいて上記誘導電動機の二次磁束のq軸成分が
零になる一次周波数及び二次磁束のd軸成分を演算する
一次周波数演算手段と、その一次周波数演算手段により
演算された二次磁束のd軸成分と一次周波数に基づいて
上記指令発生手段から出力された二次磁束のd軸成分指
令及び二次電流のq軸成分指令を上記一次電流のd軸成
分指令及びq軸成分指令に変換する電流成分指令演算手
段と、上記誘導電動機の一次電流のd軸成分及びq軸成
分が上記電流成分指令演算手段により変換されたd軸成
分指令及びq軸成分指令に一致するように制御する制御
手段とを備えた誘導電動機の制御装置。
2. A d-axis component and q on a rotation orthogonal coordinate axis which receives a torque command of an induction motor and rotates at the primary frequency based on a function of the torque command, the primary frequency and the secondary magnetic flux.
The d-axis component command of the secondary magnetic flux as the axial component and the q of the secondary current
Command generating means for outputting a shaft component command, detecting means for detecting the primary current and rotation frequency of the induction motor, and d-axis component of the primary current of the induction motor based on the primary current detected by the detecting means. The q-axis component is calculated, and the d-axis component of the secondary magnetic flux and the q-axis component of the secondary magnetic flux of the induction motor become zero on the basis of the d-axis component and the q-axis component of the primary current and the rotation frequency. And a d-axis component command of the secondary magnetic flux output from the command generating means based on the d-axis component and the primary frequency of the secondary magnetic flux calculated by the primary frequency computing device and the secondary frequency. Current component command calculation means for converting the q-axis component command of the current into the d-axis component command and the q-axis component command of the primary current, and the d-axis component and the q-axis component of the primary current of the induction motor are the current components. Control device for an induction motor and a control means for controlling so as to coincide with the transformed d-axis component command and a q-axis component command by decree calculating means.
【請求項3】 上記一次周波数演算手段は、上記検出手
段により検出された一次電流に基づいて上記誘導電動機
の一次電流のd軸成分及びq軸成分を演算する電流成分
演算回路と、その電流成分演算回路により演算された一
次電流のd軸成分及びq軸成分と上記検出手段により検
出された回転周波数に基づいて上記誘導電動機の二次磁
束のq軸成分が零になる一次周波数と上記誘導電動機の
二次磁束のd軸成分を演算する一次周波数演算回路とか
ら構成されたことを特徴とする請求項2記載の誘導電動
機の制御装置。
3. A current component calculation circuit for calculating the d-axis component and the q-axis component of the primary current of the induction motor based on the primary current detected by the detection means, and the current component thereof. The primary frequency at which the q-axis component of the secondary magnetic flux of the induction motor becomes zero and the induction motor based on the d-axis component and the q-axis component of the primary current calculated by the arithmetic circuit and the rotation frequency detected by the detecting means. 3. The control device for an induction motor according to claim 2, further comprising a primary frequency calculation circuit that calculates a d-axis component of the secondary magnetic flux of.
【請求項4】 上記一次周波数演算手段は、上記検出手
段により検出された一次電流に基づいて上記誘導電動機
の一次電流のd軸成分及びq軸成分を演算する電流成分
演算回路と、その電流成分演算回路により演算された一
次電流のd軸成分及びq軸成分に基づいて上記誘導電動
機の二次磁束のd軸成分を演算すると共にその二次磁束
のd軸成分と上記指令発生手段から出力された二次電流
のq軸成分指令と上記検出手段により検出された回転周
波数に基づいて上記誘導電動機の二次磁束のq軸成分が
零になる一次周波数を演算する一次周波数演算回路とか
ら構成されたことを特徴とする請求項2記載の誘導電動
機の制御装置。
4. The current component calculation circuit for calculating the d-axis component and the q-axis component of the primary current of the induction motor based on the primary current detected by the detection means, and the current component thereof. The d-axis component of the secondary magnetic flux of the induction motor is calculated on the basis of the d-axis component and the q-axis component of the primary current calculated by the arithmetic circuit, and the d-axis component of the secondary magnetic flux and the command generating means are output. And a primary frequency calculation circuit for calculating the primary frequency at which the q-axis component of the secondary magnetic flux of the induction motor becomes zero based on the rotation frequency detected by the detecting means. The control device for an induction motor according to claim 2, wherein
【請求項5】 上記電流成分指令演算手段は、上記一次
周波数演算手段により演算された二次磁束のd軸成分と
一次周波数に基づいて、二次磁束のd軸成分と二次電流
のq軸成分の相互干渉を防止する補正量を演算し、上記
指令発生手段から出力された二次磁束のd軸成分指令及
び二次電流のq軸成分指令とその補正量に基づいて一次
電流のd軸成分指令及びq軸成分指令を演算することを
特徴とする請求項2から請求項4のうちいずれか1項記
載の誘導電動機の制御装置。
5. The current component command calculating means, based on the d-axis component and the primary frequency of the secondary magnetic flux calculated by the primary frequency calculating means, the d-axis component of the secondary magnetic flux and the q-axis of the secondary current. A correction amount for preventing mutual interference of the components is calculated, and the d-axis of the primary current is output based on the d-axis component command of the secondary magnetic flux and the q-axis component command of the secondary current output from the command generating means and the correction amount. The control device for an induction motor according to any one of claims 2 to 4, wherein a component command and a q-axis component command are calculated.
【請求項6】 上記指令発生手段は、上記誘導電動機の
二次磁束のd軸成分に対する二次電流のq軸成分の比の
関係を表す二次磁束のd軸成分或いはその指令と一次周
波数の関数と、上記二次磁束のd軸成分及び二次電流の
q軸成分の積が発生トルクに比例する関係とに基づい
て、その二次磁束のd軸成分指令及び二次電流のq軸成
分指令を演算することを特徴とする請求項1から請求項
5のうちいずれか1項記載の誘導電動機の制御装置。
6. The command generating means represents the d-axis component of the secondary magnetic flux or the command and the primary frequency of the secondary magnetic flux, which represents the relationship of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. Based on the function and the relationship that the product of the d-axis component of the secondary magnetic flux and the q-axis component of the secondary current is proportional to the generated torque, the d-axis component command of the secondary magnetic flux and the q-axis component of the secondary current The control device for an induction motor according to any one of claims 1 to 5, wherein a command is calculated.
【請求項7】 上記指令発生手段は、上記誘導電動機の
二次磁束のd軸成分に対する二次電流のq軸成分の比の
関係を表す二次磁束のd軸成分或いはその指令と一次周
波数の関数に基づいて、トルク指令から上記二次磁束の
d軸成分指令を演算すると共に、上記一次周波数演算手
段によって演算された二次磁束のd軸成分でそのトルク
指令を除算した値に基づいて二次電流のq軸成分指令を
演算することを特徴とする請求項2から請求項5のうち
いずれか1項記載の誘導電動機の制御装置。
7. The command generating means represents the d-axis component of the secondary magnetic flux or the command and the primary frequency of the secondary magnetic flux, which represents the relationship of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. Based on the function, the d-axis component command of the secondary magnetic flux is calculated from the torque command, and the torque command is divided by the d-axis component of the secondary magnetic flux calculated by the primary frequency calculating means. The control device for an induction motor according to any one of claims 2 to 5, wherein a q-axis component command of the next current is calculated.
【請求項8】 上記指令発生手段は、上記誘導電動機の
二次磁束のd軸成分に対する二次電流のq軸成分の比の
関係を表す二次磁束のd軸成分或いはその指令と一次周
波数の関数に基づいて、トルク指令から上記二次磁束の
d軸成分指令を演算すると共に、その演算された二次磁
束のd軸成分指令が所定の最大値より大きい場合或いは
所定の最小値より小さい場合には、その二次磁束のd軸
成分指令を当該最大値或いは最小値に制限し、その二次
磁束のd軸成分指令に従って二次電流のq軸成分指令を
演算することを特徴とする請求項1から請求項5のうち
いずれか1項記載の誘導電動機の制御装置。
8. The command generating means represents the d-axis component of the secondary magnetic flux or the command and the primary frequency of the secondary magnetic flux, which represents the relationship of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. When the d-axis component command of the secondary magnetic flux is calculated from the torque command based on the function, and the calculated d-axis component command of the secondary magnetic flux is larger than a predetermined maximum value or smaller than a predetermined minimum value. The d-axis component command of the secondary magnetic flux is limited to the maximum value or the minimum value, and the q-axis component command of the secondary current is calculated according to the d-axis component command of the secondary magnetic flux. The control device for an induction motor according to any one of claims 1 to 5.
【請求項9】 上記指令発生手段は、上記誘導電動機の
二次磁束のd軸成分に対する二次電流のq軸成分の比の
関係を表す二次磁束のd軸成分或いはその指令と一次周
波数の関数に基づいて、トルク指令から上記二次磁束の
d軸成分指令を演算すると共に、その演算された二次磁
束のd軸成分指令が所定の最大値より大きい場合或いは
所定の最小値より小さい場合には、その二次磁束のd軸
成分指令を当該最大値或いは最小値に制限し、上記一次
周波数演算手段によって演算された二次磁束のd軸成分
でトルク指令を除算した値に基づいて二次電流のq軸成
分指令を演算することを特徴とする請求項2から請求項
5のうちいずれか1項記載の誘導電動機の制御装置。
9. The command generating means represents the d-axis component of the secondary magnetic flux or the command and the primary frequency of the secondary magnetic flux, which represents the relation of the ratio of the q-axis component of the secondary current to the d-axis component of the secondary magnetic flux of the induction motor. When the d-axis component command of the secondary magnetic flux is calculated from the torque command based on the function, and the calculated d-axis component command of the secondary magnetic flux is larger than a predetermined maximum value or smaller than a predetermined minimum value. Is based on the value obtained by limiting the d-axis component command of the secondary magnetic flux to the maximum value or the minimum value and dividing the torque command by the d-axis component of the secondary magnetic flux calculated by the primary frequency calculation means. The control device for an induction motor according to any one of claims 2 to 5, wherein a q-axis component command of the next current is calculated.
JP18945195A 1995-07-25 1995-07-25 Induction motor control device Expired - Lifetime JP3283729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18945195A JP3283729B2 (en) 1995-07-25 1995-07-25 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18945195A JP3283729B2 (en) 1995-07-25 1995-07-25 Induction motor control device

Publications (2)

Publication Number Publication Date
JPH0947097A true JPH0947097A (en) 1997-02-14
JP3283729B2 JP3283729B2 (en) 2002-05-20

Family

ID=16241477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18945195A Expired - Lifetime JP3283729B2 (en) 1995-07-25 1995-07-25 Induction motor control device

Country Status (1)

Country Link
JP (1) JP3283729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141059A1 (en) 2012-03-22 2013-09-26 日産自動車株式会社 Control device for three-phase ac induction motor and control method for three-phase ac induction motor
CN111726050A (en) * 2019-03-20 2020-09-29 上海汽车集团股份有限公司 Method and device for determining iron loss of permanent magnet synchronous motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141059A1 (en) 2012-03-22 2013-09-26 日産自動車株式会社 Control device for three-phase ac induction motor and control method for three-phase ac induction motor
US9318989B2 (en) 2012-03-22 2016-04-19 Nissan Motor Co., Ltd. Three-phase AC induction motor control device and three-phase AC induction motor control method
CN111726050A (en) * 2019-03-20 2020-09-29 上海汽车集团股份有限公司 Method and device for determining iron loss of permanent magnet synchronous motor
CN111726050B (en) * 2019-03-20 2022-03-22 上海汽车集团股份有限公司 Method and device for determining iron loss of permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP3283729B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP3520002B2 (en) Vector control device for induction motor
JP2010011564A (en) Controller for permanent magnet synchronous motor and motor control system
JPS61180592A (en) Controller of induction motor
JP2002330600A (en) Control system for induction motor drive with no speed sensor, observer, and control method
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JP4725011B2 (en) V / f control device for permanent magnet synchronous motor
JP4154149B2 (en) Vector control inverter device
JP3064671B2 (en) Control circuit of power converter
JP4601900B2 (en) Induction motor control device
JP5998663B2 (en) AC motor drive control device
JP3283729B2 (en) Induction motor control device
JP6604436B2 (en) Motor control device and control method
JP7433445B2 (en) Motor iron loss calculation device and motor control device equipped with the same
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP3266790B2 (en) Induction motor control device
JP3958920B2 (en) Spindle controller
JP3687331B2 (en) Induction machine variable speed drive
US11750141B2 (en) Rotating machine control device
JP3067660B2 (en) Control method of induction motor
Finch Scalar and vector: a simplified treatment of induction motor control performance
JP2004180480A (en) Driving device for stepping motor
JP6768594B2 (en) AC motor control device
JPH1118498A (en) Controller for servo motor
JPH0965700A (en) Induction motor controller
JP3770302B2 (en) Induction motor speed control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term