JPH09258619A - Power source circuit for printer device - Google Patents

Power source circuit for printer device

Info

Publication number
JPH09258619A
JPH09258619A JP8091918A JP9191896A JPH09258619A JP H09258619 A JPH09258619 A JP H09258619A JP 8091918 A JP8091918 A JP 8091918A JP 9191896 A JP9191896 A JP 9191896A JP H09258619 A JPH09258619 A JP H09258619A
Authority
JP
Japan
Prior art keywords
voltage
current
output
outside
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091918A
Other languages
Japanese (ja)
Other versions
JP3737559B2 (en
Inventor
Koji Ida
幸司 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Data Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Data Corp filed Critical Oki Data Corp
Priority to JP09191896A priority Critical patent/JP3737559B2/en
Priority to US08/821,943 priority patent/US5814978A/en
Publication of JPH09258619A publication Critical patent/JPH09258619A/en
Application granted granted Critical
Publication of JP3737559B2 publication Critical patent/JP3737559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1665Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat
    • G03G15/167Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer
    • G03G15/1675Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer with means for controlling the bias applied in the transfer nip
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate optimum printing voltage by monitoring output voltage outputted to the outside from a power source circuit and changing an output current based on the monitored output voltage. SOLUTION: A reference current setting part RC decides reference voltage Vr so that a reference current Ir optimum for paper size may be applied, and outputs it to an arithmetic part E. A voltage monitoring part VM outputs monitor voltage Vm to the arithmetic part E. The arithmetic part E outputs correction reference voltage ΔV to a current control part C by adding the reference voltage Vr and the monitor voltage Vm. The control part C controls a voltage generation part VG based on the correction reference voltage ΔV and sets the value of the current which should be outputted to the outside, smaller as the monitor voltage Vm is larger. By on/off controlling the transistor of the control part C according to the voltage ΔV, the voltage generation part V generates the optimum voltage along the specified volt-ampere characteristic, so that excellent printing is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プリンタ装置等に
用いられる電源回路に関するものであり、特に、そのよ
うな電源回路の出力電流を制御する技術に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply circuit used in a printer or the like, and more particularly to a technique for controlling an output current of such a power supply circuit.

【0002】[0002]

【従来の技術】従来から、コンピュータ等で作成した文
章や画像を印刷するプリンタ装置として、電子写真プリ
ンタ装置が広く使用されている。図7は、その電子写真
プリンタ装置の構成を示す図である。文章や画像を印刷
する場合には、最初に、帯電ローラが、マイナスの電荷
を印加することにより、回転する感光ドラムをマイナス
の電荷に帯電させる。次に、LED等の光源が、その感
光ドラムに光を照射することにより、印刷しようとする
文章や画像の静電潜像を作成する。そして、現像器が、
その静電潜像に対し、マイナスに帯電したトナーを付着
させて現像する。さらに、転写用電源からプラス電圧を
印加されている転写ローラが、静電気力によって、感光
ドラムに付着しているトナーを用紙へ転写している。こ
こで、良好な状態で転写するには、トナーを感光ドラム
上から用紙上へ転写する静電気力を一定に保つ必要があ
る。従って、例えば、転写ローラのインピーダンスや用
紙のインピーダンスが変化した場合には、それらの変化
によって静電気力が変わってしまわないように、転写ロ
ーラに印加する電圧を補正する必要がある。
2. Description of the Related Art Conventionally, an electrophotographic printer device has been widely used as a printer device for printing sentences and images created by a computer or the like. FIG. 7 is a diagram showing the configuration of the electrophotographic printer device. When printing a text or an image, first, the charging roller applies a negative charge to charge the rotating photosensitive drum to a negative charge. Next, a light source such as an LED irradiates the photosensitive drum with light to create an electrostatic latent image of a sentence or image to be printed. And the developing device
The electrostatic latent image is developed by attaching negatively charged toner. Further, the transfer roller, to which a positive voltage is applied from the transfer power source, transfers the toner adhering to the photosensitive drum onto the paper by electrostatic force. Here, in order to transfer in a good state, it is necessary to maintain a constant electrostatic force for transferring the toner from the photosensitive drum onto the paper. Therefore, for example, when the impedance of the transfer roller or the impedance of the paper is changed, it is necessary to correct the voltage applied to the transfer roller so that the electrostatic force is not changed by those changes.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のプリ
ンタ装置等に使用される電源回路では、プリンタ装置の
設置環境、例えば、温度や湿度等が変化しても、一定値
の電流しか出力できない。従って、その定電流によって
定まる転写電圧が、その設置環境の下でのプリンタ装置
の印字条件に合致しない場合が生じる。図8は、プリン
タ装置の転写ローラに通電される電流と、その電流によ
り発生する転写電圧との関係を示す図である。図8にお
いて、曲線は、その設置環境におけるプリンタ装置の最
適な印字条件を示す。例えば、高温高湿の環境下では、
定電流Icを流すことにより、転写電圧Vhが生起す
る。この転写電圧Vhは、最適な印字条件Chの範囲内
に位置するので、良好に転写される。同様にして、常温
の環境下では、定電流Icを流すことにより、転写電圧
Vnが生起する。この転写電圧Vnは、最適な印字条件
Cnの範囲内に位置するので、良好に転写される。一
方、低温低湿の環境下では、定電流Icを流すことによ
り、転写電圧Vlが生起する。しかし、この転写電圧V
lは、最適な印字条件Clの範囲内に位置せず、必要以
上に高い電圧となる。従って、この転写電圧Vlの下で
は、不良な転写となってしまうという問題があった。
By the way, in the power supply circuit used in the conventional printer device or the like, even if the installation environment of the printer device, for example, temperature or humidity changes, only a constant current can be output. Therefore, the transfer voltage determined by the constant current may not match the printing conditions of the printer device under the installation environment. FIG. 8 is a diagram showing the relationship between the current supplied to the transfer roller of the printer and the transfer voltage generated by the current. In FIG. 8, a curved line shows the optimum printing condition of the printer device in the installation environment. For example, in an environment of high temperature and high humidity,
The transfer voltage Vh is generated by passing the constant current Ic. This transfer voltage Vh is positioned within the range of the optimum printing condition Ch, so that the transfer is performed well. Similarly, under normal temperature environment, the transfer voltage Vn is generated by passing the constant current Ic. Since the transfer voltage Vn is located within the range of the optimum printing condition Cn, the transfer is performed well. On the other hand, under the environment of low temperature and low humidity, the transfer voltage Vl is generated by flowing the constant current Ic. However, this transfer voltage V
l is not located within the range of the optimum printing condition Cl, and has a voltage higher than necessary. Therefore, there is a problem that the transfer becomes defective under the transfer voltage Vl.

【0004】[0004]

【課題を解決するための手段】本発明は、以上の問題点
を解決するために、次の構成を採用する。 〈構成〉本発明のプリンタ装置の電源回路は、外部へ出
力する電流の基準値を定める基準電流設定部と、外部へ
電流を出力するための出力電圧を生成する電圧生成部
と、出力電圧を監視する電圧監視部と、基準電流設定部
によって定められた基準電流と、電圧監視部によって監
視された出力電圧とから、外部へ出力すべき電流の値を
算出する演算部と、演算部によって算出された結果に基
づいて、電圧生成部を制御する電流制御部とからなり、
監視された出力電圧が大きければ大きいほど、外部へ出
力すべき電流の値を小さくすることを特徴とする。
The present invention employs the following structure in order to solve the above problems. <Structure> The power supply circuit of the printer of the present invention includes a reference current setting unit that determines a reference value of a current to be output to the outside, a voltage generation unit that generates an output voltage to output the current to the outside, and an output voltage. A voltage monitoring unit for monitoring, a reference current set by the reference current setting unit, and an output unit monitored by the voltage monitoring unit for calculating the value of the current to be output to the outside. And a current control unit that controls the voltage generation unit based on the result of
The larger the monitored output voltage, the smaller the value of the current to be output to the outside.

【0005】〈構成の内容〉以下、構成の内容について
説明する。基準電流設定部とは、外部へ出力する電流の
基準値を定める、例えば、オペアンプや可変抵抗等から
なる回路をいう。電圧生成部とは、外部へ出力するため
の出力電圧を生成する、例えば、トランス等からなる回
路をいう。電圧監視部とは、出力電圧を監視する、例え
ば、オペアンプ等からなる回路をいう。演算部とは、外
部へ出力すべき電流の値を算出する、例えば、オペアン
プやCPU等からなる回路をいう。電流制御部とは、電
圧生成部を制御する、例えば、トランジスタ等からなる
回路をいう。
<Contents of Configuration> The contents of the configuration will be described below. The reference current setting unit refers to a circuit including an operational amplifier, a variable resistor, or the like, which determines a reference value of a current output to the outside. The voltage generator is a circuit that generates an output voltage to be output to the outside, and includes, for example, a transformer. The voltage monitoring unit refers to a circuit configured to monitor the output voltage, such as an operational amplifier. The arithmetic unit is a circuit for calculating the value of the current to be output to the outside, which is composed of, for example, an operational amplifier or a CPU. The current control unit refers to a circuit that controls the voltage generation unit and that includes, for example, a transistor.

【0006】〈作用、効果〉本発明のプリンタ装置の電
源回路では、電源回路から外部へ出力される出力電圧を
監視し、その監視された出力電圧に基づき出力電流を変
化させることにより、所望の電圧を生成している。従っ
て、本発明のプリンタ装置の電源回路によれば、環境の
相違、用紙のインピーダンスの相違、転写ローラの電気
抵抗の相違等に対応した、最適な印字電圧を生成するこ
とが可能となる。
<Operations and Effects> In the power supply circuit of the printer of the present invention, the output voltage output from the power supply circuit to the outside is monitored, and the output current is changed based on the monitored output voltage. Generating voltage. Therefore, according to the power supply circuit of the printer of the present invention, it is possible to generate an optimum printing voltage corresponding to a difference in environment, a difference in sheet impedance, a difference in electric resistance of the transfer roller, and the like.

【0007】[0007]

【発明の実施の形態】以下、本発明の電源回路を実施の
形態に沿って説明する。 〈具体例1の構成〉図1は、具体例1の電源回路のブロ
ック図である。この電源回路PSは、基準電流設定部R
C、電圧監視部VM、電流監視部CM、演算部E、電流
制御部C、電圧生成部VGから構成されている。基準電
流設定部RCは、出力電流の基準値を設定する機能を有
する。電圧監視部VMは、出力電圧の状態を帰還させる
機能を有する。電流監視部CMは、出力電流の状態を帰
還させる機能を有する。演算部Eは、基準電流設定部R
Cに設定された電流値と、電圧監視部VMが監視する出
力電圧とに基づき、後述する図3のような電圧電流特性
から出力すべき電流値を演算する機能を有する。電流制
御部Cは、演算部Eによって演算された電流値に基づい
て電圧生成部VGを制御する機能を有する。電圧生成部
VGは、電流制御部Cによる制御の下に、電圧を外部へ
出力する。
BEST MODE FOR CARRYING OUT THE INVENTION The power supply circuit of the present invention will be described below with reference to embodiments. <Structure of Concrete Example 1> FIG. 1 is a block diagram of a power supply circuit of Concrete Example 1. This power supply circuit PS includes a reference current setting unit R
C, a voltage monitoring unit VM, a current monitoring unit CM, a calculation unit E, a current control unit C, and a voltage generation unit VG. The reference current setting unit RC has a function of setting a reference value of the output current. The voltage monitoring unit VM has a function of feeding back the state of the output voltage. The current monitoring unit CM has a function of feeding back the state of the output current. The calculation unit E is a reference current setting unit R
Based on the current value set in C and the output voltage monitored by the voltage monitoring unit VM, it has a function of calculating the current value to be output from the voltage-current characteristic as shown in FIG. 3 described later. The current controller C has a function of controlling the voltage generator VG based on the current value calculated by the calculator E. The voltage generator VG outputs the voltage to the outside under the control of the current controller C.

【0008】図2は、図1の電源回路のブロック図に対
応する回路図である。この電源回路PSにおいて、基準
電流設定部RCは、オペアンプop10、可変抵抗rv
10等から構成される。電圧監視部VMは、オペアンプ
op20、抵抗r20、21、22、23、ダイオード
D20等から構成される。電流監視部CMは、抵抗r3
0等から構成されている。演算部Eは、オペアンプop
40、抵抗r40、41、42、43、44、45等か
ら構成される。電流制御部Cは、オペアンプop50、
トランジスタTr50、抵抗r50等から構成される。
電圧生成部VGは、トランスT60等から構成される。
FIG. 2 is a circuit diagram corresponding to the block diagram of the power supply circuit of FIG. In this power supply circuit PS, the reference current setting unit RC includes an operational amplifier op10 and a variable resistor rv.
It is composed of 10 etc. The voltage monitoring unit VM includes an operational amplifier op20, resistors r20, 21, 22, 23 and a diode D20. The current monitoring unit CM has a resistor r3.
0 and so on. The arithmetic unit E is an operational amplifier op.
40, resistors r40, 41, 42, 43, 44, 45 and the like. The current control unit C includes an operational amplifier op50,
It is composed of a transistor Tr50, a resistor r50, and the like.
The voltage generator VG includes a transformer T60 and the like.

【0009】〈動作の説明〉図3は、具体例1の電源回
路における、出力すべき電圧と出力すべき電流との関係
を示す図である。ここで、Ch、Cn、Clは、それぞ
れ各環境での最適な印字条件を示し、また、Sは、電圧
電流特性を示す。以下、具体例1の電源回路の動作を図
2の回路図と図3の電圧電流特性とに沿って説明する。
基準電流設定部RCでは、印刷する用紙サイズに最適な
基準電流Irを流すべく、可変抵抗rv10を調整し、
基準電圧Vrを定める。調整された電圧は、演算部Eへ
出力される。電圧監視部VMでは、出力電圧の電圧値を
モニターするべく、トランス60に誘起された電圧をダ
イオードD20によって整流した後に、オペアンプop
20を介して演算部Eへ、モニター電圧Vmとして出力
する。演算部Eでは、基準電流設定部RCの基準電圧V
rと電圧監視部VMのモニター電圧Vmとを加算する
(実際には、基準電流Ir−a・Vmの演算を行い、V
mの値に応じて補正された出力電流値を示す補正基準電
圧ΔVを求めることを意味する)。そして、演算部E
は、この補正基準電圧ΔVを電流制御部Cへ出力する。
<Description of Operation> FIG. 3 is a diagram showing the relationship between the voltage to be output and the current to be output in the power supply circuit of the first specific example. Here, Ch, Cn, and Cl indicate optimum printing conditions in each environment, and S indicates voltage-current characteristics. Hereinafter, the operation of the power supply circuit of the first specific example will be described with reference to the circuit diagram of FIG. 2 and the voltage-current characteristics of FIG.
In the reference current setting unit RC, the variable resistance rv10 is adjusted so that the reference current Ir optimal for the size of the paper to be printed flows.
The reference voltage Vr is determined. The adjusted voltage is output to the arithmetic unit E. In the voltage monitoring unit VM, in order to monitor the voltage value of the output voltage, the voltage induced in the transformer 60 is rectified by the diode D20 and then the operational amplifier op.
The monitor voltage Vm is output to the arithmetic unit E via 20. In the calculation unit E, the reference voltage V of the reference current setting unit RC
r is added to the monitor voltage Vm of the voltage monitoring unit VM (actually, the reference current Ir-a · Vm is calculated to obtain V
It means obtaining a correction reference voltage ΔV indicating the output current value corrected according to the value of m). And the arithmetic unit E
Outputs the corrected reference voltage ΔV to the current controller C.

【0010】電流制御部Cでは、オペアンプop50の
マイナス端子に上記の補正基準電圧ΔVが入力される一
方で、電流監視部CMによってモニターされる出力電流
を電圧へ換算し、この換算された電圧Vcが、オペアン
プop50のプラス端子に入力される。このオペアンプ
op50は、コンパレータとして機能し、トランジスタ
Tr50をオンにすることにより、出力電流を増加さ
せ、反対に、トランジスタTr50をオフにすることに
より、出力電流を減少させる。ここで、op50のプラ
ス端子の入力に関し、出力電流が多く流れるほど、抵抗
r30による電圧降下は大きくなるので、電圧Vcは小
さくなり、逆に、少なく流れるほど、電圧降下は小さく
なるので、電圧Vcは大きくなる。
In the current control section C, while the above-mentioned corrected reference voltage ΔV is inputted to the negative terminal of the operational amplifier op50, the output current monitored by the current monitoring section CM is converted into a voltage, and this converted voltage Vc Is input to the positive terminal of the operational amplifier op50. The operational amplifier op50 functions as a comparator, and turns on the transistor Tr50 to increase the output current, and conversely turns off the transistor Tr50 to decrease the output current. Here, regarding the input to the plus terminal of op50, the larger the output current flows, the larger the voltage drop due to the resistor r30, and thus the smaller the voltage Vc, and conversely, the smaller the flow, the smaller the voltage drop becomes. Grows.

【0011】このように構成することにより、op50
の入力である補正基準電圧ΔVに対して、電圧Vcが小
さいと、トランジスタTr50をオフにするlowレベ
ル(Gnd)を出力し、反対に、補正基準電圧ΔVに対
して、電圧Vcが大きいと、トランジスタTr50をオ
ンにするhighレベル(+Vcc)を出力する。
With this configuration, op50
When the voltage Vc is small with respect to the correction reference voltage ΔV that is the input of, the low level (Gnd) that turns off the transistor Tr50 is output, and conversely, when the voltage Vc is large with respect to the correction reference voltage ΔV, A high level (+ Vcc) that turns on the transistor Tr50 is output.

【0012】このように、補正基準電圧ΔVに従って、
トランジスタTr50をオン/オフ制御することで、電
圧生成部VGは、図3の電圧電流特性Sに沿って最適な
電圧を生成することができ、良好な印字をすることが可
能となる。
Thus, according to the correction reference voltage ΔV,
By controlling the transistor Tr50 to be turned on / off, the voltage generator VG can generate an optimum voltage along the voltage-current characteristic S of FIG. 3, and good printing can be performed.

【0013】〈具体例2の説明〉次に、具体例2の電源
回路について説明する。図4は、具体例2の電源回路の
ブロック図である。この電源回路PSは、具体例1の電
源回路と同様に、基準電流設定部RC、電圧監視部V
M、電流監視部CM、演算部E、電流制御部C、電圧生
成部VGから構成されているだけでなく、さらに、記憶
部Mを有している。各部は、必要に応じて、論理回路、
A/Dコンバータ等を有している。特に、演算部Eは、
CPU(Central Processing Unit )、クロック発生器
等も有している。また、記憶部Mは、図3に示すような
電圧電流特性Sを記憶している。
<Description of Specific Example 2> Next, a power supply circuit of specific example 2 will be described. FIG. 4 is a block diagram of the power supply circuit of the second specific example. This power supply circuit PS, like the power supply circuit of the first specific example, has a reference current setting unit RC and a voltage monitoring unit V.
M, a current monitoring unit CM, a calculation unit E, a current control unit C, and a voltage generation unit VG, and further includes a storage unit M. Each part has a logic circuit,
It has an A / D converter and the like. In particular, the arithmetic unit E
It also has a CPU (Central Processing Unit), a clock generator, and the like. The storage unit M also stores the voltage-current characteristic S as shown in FIG.

【0014】〈動作の説明〉具体例1の動作と同様に、
基準電流設定部RCで設定された基準電流値と電圧監視
部VMでモニターされた出力電圧とから、出力すべき電
流値を演算により求める。電流値を求める際の演算式
は、図3の電圧電流特性Sを再現するように決定され
る。これにより、具体例1の場合と同様に、良好な転写
電圧を出力することが可能となる。
<Description of Operation> Similar to the operation of the first specific example,
The current value to be output is calculated from the reference current value set by the reference current setting unit RC and the output voltage monitored by the voltage monitoring unit VM. The arithmetic expression for obtaining the current value is determined so as to reproduce the voltage-current characteristic S of FIG. This makes it possible to output a good transfer voltage as in the case of the first specific example.

【0015】また、図5に示すように、用紙の幅が広い
場合の特性と、用紙の幅が狭い場合の特性とを記憶部M
に記憶させる。これにより、用紙の幅が広いときであっ
ても、また、用紙の幅が狭いときであっても、より適し
た電圧電流特性を選択することが可能となる。従って、
様々な用紙に対し、より最適な転写電圧を出力すること
ができるようになる。
As shown in FIG. 5, the storage unit M stores the characteristics when the width of the paper is wide and the characteristics when the width of the paper is narrow.
To memorize. This makes it possible to select a more suitable voltage-current characteristic even when the width of the paper is wide or when the width of the paper is narrow. Therefore,
It becomes possible to output a more optimal transfer voltage for various types of paper.

【0016】さらに、図6に示すように、印刷時におけ
る電圧電流特性S1、S2とは別に、用紙が転写ローラ
と感光ドラムとの間に入るまでの電圧電流特性T1、T
2を記憶部Mに記憶しておき、用紙が転写ローラと感光
ドラムとの間に入る直前の電圧値と電流値とを検出・保
持する(図6における点a1、点b1)。そして、印刷
する際には、印刷時の電圧電流特性S1、S2に基づ
き、転写電圧を制御する(図6における点a2、点b
2)。これにより、ローラのインピーダンスや用紙のイ
ンピーダンスに対して、二段階に転写電流を制御するこ
とができる。従って、ローラのインピーダンスが、ロー
ラ毎にばらついていても、あるいは、用紙のインピーダ
ンスが用紙毎にばらついていても、より最適な出力特性
を選択できることになる。
Further, as shown in FIG. 6, in addition to the voltage-current characteristics S1 and S2 at the time of printing, the voltage-current characteristics T1 and T until the sheet enters between the transfer roller and the photosensitive drum.
2 is stored in the storage unit M, and the voltage value and the current value immediately before the sheet enters between the transfer roller and the photosensitive drum are detected and held (points a1 and b1 in FIG. 6). When printing, the transfer voltage is controlled based on the voltage-current characteristics S1 and S2 at the time of printing (point a2 and point b in FIG. 6).
2). As a result, the transfer current can be controlled in two steps with respect to the impedance of the roller and the impedance of the paper. Therefore, even if the impedance of the roller varies from roller to roller, or even if the impedance of the sheet varies from sheet to sheet, more optimal output characteristics can be selected.

【図面の簡単な説明】[Brief description of drawings]

【図1】具体例1の電源回路のブロック図である。FIG. 1 is a block diagram of a power supply circuit according to a specific example 1.

【図2】具体例1の電源回路の回路図である。FIG. 2 is a circuit diagram of a power supply circuit according to a specific example 1.

【図3】具体例1の電源回路の電圧電流特性である。FIG. 3 is a voltage-current characteristic of the power supply circuit of the first specific example.

【図4】具体例2の電源回路のブロック図である。FIG. 4 is a block diagram of a power supply circuit according to a specific example 2.

【図5】具体例2の電源回路の電圧電流特性(その1)
である。
FIG. 5: Voltage-current characteristics of power supply circuit of specific example 2 (part 1)
It is.

【図6】具体例2の電源回路の電圧電流特性(その2)
である。
FIG. 6 is a voltage-current characteristic of the power supply circuit of the second specific example (part 2).
It is.

【図7】従来のプリンタ装置の構成図である。FIG. 7 is a configuration diagram of a conventional printer device.

【図8】従来の電源回路の電圧電流特性である。FIG. 8 is a voltage-current characteristic of a conventional power supply circuit.

【符号の説明】[Explanation of symbols]

PS 電源回路 RC 基準電流設定部 DM 電圧監視部 E 演算部 C 電流制御部 VG 電圧生成部 PS power supply circuit RC reference current setting unit DM voltage monitoring unit E computing unit C current control unit VG voltage generation unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外部へ出力する電流の基準値を定める基
準電流設定部と、 前記外部へ電流を出力するための出力電圧を生成する電
圧生成部と、 前記出力電圧を監視する電圧監視部と、 基準電流設定部によって定められた基準電流と、電圧監
視部によって監視された出力電圧とから、外部へ出力す
べき電流の値を算出する演算部と、 前記演算部によって算出された結果に基づいて、前記電
圧生成部を制御する電流制御部とからなり、 前記監視された出力電圧が大きければ大きいほど、前記
外部へ出力すべき電流の値を小さくすることを特徴とす
るプリンタ装置の電源回路。
1. A reference current setting unit that determines a reference value of a current output to the outside, a voltage generation unit that generates an output voltage for outputting the current to the outside, and a voltage monitoring unit that monitors the output voltage. A calculation unit that calculates the value of the current to be output to the outside from the reference current determined by the reference current setting unit and the output voltage monitored by the voltage monitoring unit; and based on the result calculated by the calculation unit. And a current control unit for controlling the voltage generation unit, and the larger the monitored output voltage is, the smaller the value of the current to be output to the outside is. .
【請求項2】 外部へ出力する電圧と、前記外部へ出力
する出力電流との関係を示す電圧電流特性を記憶する記
憶部を有しており、制御部が、電圧監視部によって監視
された出力電圧を元にして、前記電圧電流特性から出力
すべき電流の値を算出することを特徴とする請求項1記
載のプリンタ装置の電源回路。
2. A storage unit that stores a voltage-current characteristic indicating a relationship between a voltage output to the outside and an output current output to the outside, and the control unit outputs the output monitored by the voltage monitoring unit. 2. The power supply circuit for a printer device according to claim 1, wherein the value of the current to be output is calculated from the voltage-current characteristic based on the voltage.
【請求項3】 前記記憶部が、印刷前において外部へ出
力する電圧と外部へ出力する電流との関係を示す第一の
電圧電流特性と、印刷時において外部へ出力する電圧と
外部へ出力する電流との関係を示す複数の第二の電圧電
流特性とを予め記憶しており、 前記制御部が、印刷前において第一の電圧電流特性から
得た電圧値と電流値とを保持し、その電圧値と電流値と
に基づいて、複数の第二の電圧電流特性かの中から適当
な電圧電流特性を選択することを特徴とする請求項1記
載のプリンタ装置の電源回路。
3. The storage unit outputs a first voltage-current characteristic indicating a relationship between a voltage output to the outside and a current output to the outside before printing, and a voltage output to the outside during printing. A plurality of second voltage-current characteristics indicating the relationship with the current are stored in advance, the control unit holds the voltage value and the current value obtained from the first voltage-current characteristics before printing, and 2. A power supply circuit for a printer device according to claim 1, wherein an appropriate voltage-current characteristic is selected from among a plurality of second voltage-current characteristics based on the voltage value and the current value.
JP09191896A 1996-03-21 1996-03-21 Printer apparatus and power supply circuit thereof Expired - Fee Related JP3737559B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09191896A JP3737559B2 (en) 1996-03-21 1996-03-21 Printer apparatus and power supply circuit thereof
US08/821,943 US5814978A (en) 1996-03-21 1997-03-21 Power supply circuit for a printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09191896A JP3737559B2 (en) 1996-03-21 1996-03-21 Printer apparatus and power supply circuit thereof

Publications (2)

Publication Number Publication Date
JPH09258619A true JPH09258619A (en) 1997-10-03
JP3737559B2 JP3737559B2 (en) 2006-01-18

Family

ID=14039972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09191896A Expired - Fee Related JP3737559B2 (en) 1996-03-21 1996-03-21 Printer apparatus and power supply circuit thereof

Country Status (2)

Country Link
US (1) US5814978A (en)
JP (1) JP3737559B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195609A (en) * 1997-09-24 1999-04-09 Brother Ind Ltd Energizing device for image forming device
JP2016173520A (en) * 2015-03-18 2016-09-29 株式会社沖データ Image forming apparatus and image forming method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420247A (en) * 1979-12-28 1983-12-13 Canon Kabushiki Kaisha Computer control means for an electrostatic recording apparatus
US5179397A (en) * 1989-04-03 1993-01-12 Canon Kabushiki Kaisha Image forming apparatus with constant voltage and constant current control
JP2817391B2 (en) * 1990-11-02 1998-10-30 キヤノン株式会社 Charging device
EP0520819B1 (en) * 1991-06-28 1998-08-19 Canon Kabushiki Kaisha Image forming apparatus having charging member
JP2601974B2 (en) * 1992-09-16 1997-04-23 インターナショナル・ビジネス・マシーンズ・コーポレイション Power supply for electronic equipment and electronic equipment system
EP0647889B1 (en) * 1993-10-08 1998-04-01 Oki Electric Industry Co., Ltd. Electrophotographic recording apparatus and method of transferring a toner image
US5684685A (en) * 1994-05-06 1997-11-04 Canon Kabushiki Kaisha High voltage power supply for image transfer and image forming apparatus using the same
US5705919A (en) * 1996-09-30 1998-01-06 Linear Technology Corporation Low drop-out switching regulator architecture

Also Published As

Publication number Publication date
JP3737559B2 (en) 2006-01-18
US5814978A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP2010102289A (en) Power source control device for image forming apparatus and method therefor
JP6232865B2 (en) Image forming apparatus, bias voltage control method for image forming apparatus, and program
JP2020042239A (en) Power-supply unit and image forming apparatus
JP2012048032A (en) Image forming apparatus and control method of charger
JP2003233225A (en) Image forming apparatus and method for compensating development quantity
JP3737559B2 (en) Printer apparatus and power supply circuit thereof
US5819131A (en) Technique for controlling the developing voltage to accomodate the environment
KR960032116A (en) The developing device
JP3423152B2 (en) Image forming device
JP3777972B2 (en) Power supply
KR100477669B1 (en) Electrophotographic printer
JP2002357989A (en) Image forming device
JP2002153062A (en) Power device and output voltage control method
JP3308722B2 (en) Image forming device
JPH11153930A (en) Image forming device and image processor
JP2951993B2 (en) Image forming device
JP2001255711A (en) Image forming device
KR100433541B1 (en) Apparatus and method for controlling high voltage of electro-photograph process
JP2001109206A (en) Image forming device
JP2023148180A (en) Image forming apparatus
JP2002049250A (en) Electrophotographic type printer
JP2004056854A (en) Power supply device
JP2002244407A (en) Image forming device
JPH06230656A (en) Corona discharger
JP2022140132A (en) Image forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees