JPH09232134A - Anisotropic flat circular permanent magnet and manufacture thereof - Google Patents

Anisotropic flat circular permanent magnet and manufacture thereof

Info

Publication number
JPH09232134A
JPH09232134A JP3497396A JP3497396A JPH09232134A JP H09232134 A JPH09232134 A JP H09232134A JP 3497396 A JP3497396 A JP 3497396A JP 3497396 A JP3497396 A JP 3497396A JP H09232134 A JPH09232134 A JP H09232134A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
magnet
permanent magnet
flat annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3497396A
Other languages
Japanese (ja)
Other versions
JP3007293B2 (en
Inventor
Toshikuni Miyagi
敏訓 宮城
Atsushi Goto
淳 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP8034973A priority Critical patent/JP3007293B2/en
Publication of JPH09232134A publication Critical patent/JPH09232134A/en
Application granted granted Critical
Publication of JP3007293B2 publication Critical patent/JP3007293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily reduce difference in magnetic characteristics between both faces of a magnet without causing a defect such as a crack or peeling on the magnet by making a thickness size of the magnet to be a specific value or less and difference in residual magnetic flux on both faces of the magnet to be a specific value or less. SOLUTION: A first magnetic body 1 and a second magnetic body 2 comprising a magnetic body are provided on opposite faces of upper and lower punches, wherein the first magnetic body 1 has a structure wherein a part opposite to a molding space is swollen 1a in a protrusion in a similar shape to an upper face of the molding space. Further, the first and second magnetic bodies 1, 2 provided on the upper and lower punches are covered by a first non-magnetic body 6 and a second non-magnetic body 10 respectively. The molding space is formed by a non-magnetic mortar 7 and a center rod B, and an anisotropic flat circular permanent magnet is compression-molded by the upper and lower punches. In this case a thickness size of the magnet is 5mm or less, and difference in residual magnetic flux between both faces of the magnet is 1% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】コンピュータのフロッピード
ライブユニットやVTR等、電子機器の駆動部に用いら
れるモータ用異方性偏平環状永久磁石に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic flat annular permanent magnet for a motor used in a drive unit of an electronic device such as a floppy drive unit of a computer or a VTR.

【0002】[0002]

【従来の技術】異方性偏平環状永久磁石は、安価で高い
磁気特性を持つことから電子民生用機器の駆動用モータ
ーとして、広範囲にわたり使用されている。
2. Description of the Related Art An anisotropic flat annular permanent magnet is widely used as a drive motor for electronic consumer equipment because it is inexpensive and has high magnetic properties.

【0003】従来の異方性偏平環状永久磁石は、異方性
方向、即ち磁化容易軸方向の両端面で磁性の強さが異な
っていた。その理由は、磁石の移動パンチ側の圧縮成型
時における成形密度が固定パンチ側の成形密度より高く
なることにより、移動パンチ側の磁性が高くなるものと
考えられていた。
In the conventional anisotropic flat annular permanent magnet, the magnetic strength is different on both end faces in the anisotropic direction, that is, the direction of the easy axis of magnetization. It has been considered that the reason is that the compacting density of the magnet on the moving punch side during compression molding is higher than the compacting density on the fixed punch side, so that the magnetism on the moving punch side is increased.

【0004】磁石の両端面に上記のような磁性の差があ
ることは、例えばマグネトロンやプリントモーターへの
応用のように有利な場合もあるが、リレースイッチ用マ
グネットのように一つのコアから切り出して使用する場
合は両端面の差がない方が良いし、減磁を行って使用す
るマグネットの場合も作業性の面から強磁性面と弱磁性
面の差がない方が有利となる。
The above-mentioned difference in magnetism between both end faces of the magnet may be advantageous in application to, for example, a magnetron or a print motor, but cut out from one core like a relay switch magnet. It is better that there is no difference between the two end surfaces when used as a magnet, and in the case of a magnet that is used after demagnetization, it is advantageous from the viewpoint of workability that there is no difference between the ferromagnetic surface and the weak magnetic surface.

【0005】そこで、両端面の磁気特性の強弱を制御す
る方法が、特公昭62ー11042号公報等において提
案されている。
Therefore, a method of controlling the strength of the magnetic properties of both end surfaces has been proposed in Japanese Patent Publication No. 62-11042.

【0006】該公報において、磁石の両端面における磁
気特性の強弱を制御するため図4に示すような方法がと
られている。磁場中の圧縮成型時における下側パンチ5
4の磁極面54a面積を固定して、上側パンチ51の磁
極面51aの面積を非磁性リング52の大きさを変化さ
せることにより変化させ、磁気特性を制御する。ここ
で、53は臼型であり、55は成型空間であって、3a
は磁場をかけるためのコイルである。
In this publication, a method as shown in FIG. 4 is used to control the strength of the magnetic characteristics on both end faces of the magnet. Lower punch 5 during compression molding in a magnetic field
The area of the magnetic pole surface 51a of the upper punch 51 is changed by changing the size of the non-magnetic ring 52 while the area of the magnetic pole surface 54a of No. 4 is fixed, and the magnetic characteristics are controlled. Here, 53 is a mortar type, 55 is a molding space, and 3a
Is a coil for applying a magnetic field.

【0007】本図に示すように、下側パンチ54の磁極
面54a面積と上側パンチ51の磁極面51a面積を等
しくすると、磁石の両端面における磁気特性が等しくな
るのである。
As shown in the figure, when the area of the magnetic pole surface 54a of the lower punch 54 and the area of the magnetic pole surface 51a of the upper punch 51 are made equal, the magnetic characteristics at both end surfaces of the magnet become equal.

【0008】しかし、前記公報に開示されているような
上下パンチの磁極面における面積比を変えて磁気特性を
制御する方法では、上下パンチの被圧縮体、即ち成型体
である磁石に直接接触する面が磁性体と非磁性体の2つ
の部材で構成されることになりパンチ部と成型体が接触
している部分56では、磁石にクラック、はがれ等の欠
陥が生じやすくなり歩留まりの低下を招くばかりでな
く、特性を制御することが困難であって、磁石の両端面
における磁気特性を等しくすることはできなかった。
However, in the method of controlling the magnetic characteristics by changing the area ratio of the magnetic pole surfaces of the upper and lower punches as disclosed in the above publication, the compressed object of the upper and lower punches, that is, the magnet which is the molded body is directly contacted. Since the surface is composed of two members, a magnetic body and a non-magnetic body, in the portion 56 where the punch portion and the molded body are in contact with each other, defects such as cracks and peeling are likely to occur in the magnet, leading to a decrease in yield. Not only that, it was difficult to control the characteristics, and it was not possible to make the magnetic characteristics equal on both end surfaces of the magnet.

【0009】しかしながら、異方性偏平環状永久磁石の
主要な用途である電子民生用機器の駆動用モーターとし
て使用する場合には異方性偏平環状永久磁石の一方端面
しか使用されないため、使用面である強磁性面側の磁気
特性が一定の大きさ以上であればよく、両端面に磁気特
性の差が生じていても問題とされることはなかった。
However, when the anisotropic flat annular permanent magnet is used as a drive motor for electronic consumer equipment, which is a main application, only one end surface of the anisotropic flat annular permanent magnet is used, and therefore, in terms of usage. It suffices that the magnetic characteristics on a certain ferromagnetic surface side be equal to or greater than a certain level, and there is no problem even if there is a difference in magnetic characteristics on both end surfaces.

【0010】したがって、磁石をモーター等の装置に組
み込む作業時に、使用面である強磁性面が識別できるよ
う、あらかじめ磁石の内径側または外径側に成型時金型
によるカット付けを行ったり、インク等によるマーキン
グを行う工程が必要であった。
Therefore, when the magnet is incorporated into a device such as a motor, the inner surface or outer surface of the magnet can be cut with a die during molding so that the ferromagnetic surface, which is the surface to be used, can be identified. It was necessary to have a process of marking with the above.

【0011】[0011]

【発明が解決しようとする課題】しかし、近年の軽薄短
小の流れの中、異方性偏平環状永久磁石についても例外
ではなく製品厚み5mm以下の薄型形状のものが主流と
なり、特に製品厚み3mm以下の異方性偏平環状永久磁
石にあっては該永久磁石の内径側または外径側に成型時
金型によるカット付けをおこなうことは事実上困難とな
り、製品完成後インク等によるマーキングを行うことが
不可欠となった。しかし、これらのインク等によるマー
キング作業は手作業で施工せざるを得ず、成型時金型に
よるカット付けを行うことと比較すると作業効率が著し
く悪化するため、製造コストが増大するという問題が避
けられなくなった。
However, in the recent trend of light, thin, short, and small flows, anisotropic flat annular permanent magnets are no exception, and thin-shaped products with a product thickness of 5 mm or less are the mainstream, and product thicknesses of 3 mm or less are the mainstream. In the case of anisotropic flat annular permanent magnets, it is practically difficult to perform cutting on the inner diameter side or outer diameter side of the permanent magnet with a mold at the time of molding, and marking with ink etc. can be performed after the product is completed. Became essential. However, the marking work with these inks, etc. has to be done manually, and the work efficiency is significantly deteriorated compared to cutting with a mold at the time of molding, so the problem of increased manufacturing cost is avoided. I can no longer.

【0012】そこで、磁石にクラック、はがれ等の欠陥
が発生することがなく、容易に磁石両面の磁気特性の差
が低減することが可能となるような磁気特性を制御する
方法を提供することにより、磁石両面のどちらでも駆動
モーター等に使用面として組み込むことが可能となり、
使用面の識別をするために行うインク等によるマーキン
グ工程を不要とすることが可能なので、異方性偏平環状
永久磁石の製造コストの低減を図ることができる異方性
偏平環状永久磁石の製造方法を提供することを目的とす
る。
Therefore, by providing a method for controlling the magnetic characteristics such that defects such as cracks and peeling are not generated in the magnet and the difference between the magnetic characteristics on both sides of the magnet can be easily reduced. , Both sides of the magnet can be incorporated into the drive motor etc.
A method of manufacturing an anisotropic flat annular permanent magnet, which can reduce the manufacturing cost of the anisotropic flat annular permanent magnet, since a marking step using ink or the like for identifying the used surface can be unnecessary. The purpose is to provide.

【0013】また、製品の厚みが5mm以下であり、モ
ーター等に組み込む場合の組み付けラインの簡素化およ
び管理負担の大幅な軽減を図ることが可能となる異方性
偏平環状永久磁石を提供することを目的とする。
Also, to provide an anisotropic flat annular permanent magnet having a product thickness of 5 mm or less, which can simplify the assembly line and greatly reduce the management load when it is incorporated in a motor or the like. With the goal.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明は、磁化容易軸方向に異方性を有
する異方性偏平環状永久磁石において、該磁石の厚み寸
法が5mm以下であって磁石両面の残留磁束密度の差が
1%以下であることを特徴とする異方性偏平環状永久磁
石を提供する。
In order to achieve the above object, the invention according to claim 1 is an anisotropic flat annular permanent magnet having anisotropy in the direction of easy magnetization axis, wherein the thickness of the magnet is 5 mm. Provided is an anisotropic flat annular permanent magnet characterized in that the difference in residual magnetic flux densities on both sides of the magnet is 1% or less.

【0015】したがって、前記磁石両端面のいづれに
も、一方端面を識別するための処理を施していないこと
を特徴とする異方性偏平環状永久磁石を提供することが
できる。
Therefore, it is possible to provide an anisotropic flat annular permanent magnet which is characterized in that neither of the both end faces of the magnet is subjected to a treatment for identifying one end face.

【0016】さらに、請求項2記載の発明は、上下パン
チ、臼型、中棒等から構成される異方性偏平環状永久磁
石用成型装置であって、該異方性偏平環状永久磁石用成
型装置は、前記上下パンチ、臼型、中棒の配置によって
造り出される成型空間を備え、該成型空間にて上下パン
チの圧縮方向と同方向の磁場中で原料粉末を圧縮成形
し、該成形体を焼結して焼結型異方性偏平環状永久磁石
を製造する方法において、前記上側パンチは前記成型空
間と対向する方向に第1の磁性体を備え、該第1の磁性
体は非磁性体で覆われており、かつ前記下側パンチも前
記成型空間と対向する方向に磁性体からなる第2の磁性
体を備え、該第2の磁性体も非磁性体で覆われており、
さらに、前記第1の磁性体は前記成型空間と対向する部
分が凸状に***している異方性偏平環状永久磁石の製造
方法を提供する。
Further, the invention according to claim 2 is a molding apparatus for anisotropic flat annular permanent magnets, which is composed of upper and lower punches, a die, a center rod, etc., and is a molding apparatus for anisotropic flat annular permanent magnets. The apparatus has a molding space created by arranging the upper and lower punches, a die, and a center rod, and the raw material powder is compression-molded in the molding space in a magnetic field in the same direction as the compression direction of the upper and lower punches. In the method of manufacturing a sintered anisotropic flat annular permanent magnet by sintering, the upper punch is provided with a first magnetic body in a direction facing the molding space, and the first magnetic body is a non-magnetic material. And the lower punch is also provided with a second magnetic body made of a magnetic body in a direction facing the molding space, and the second magnetic body is also covered with a non-magnetic body,
Further, the first magnetic body provides a method for manufacturing an anisotropic flat annular permanent magnet in which a portion facing the molding space is raised in a convex shape.

【0017】ここで、凸状に***した前記第1の磁性体
の頂上部の面積は、該磁性体と対向する成型空間の上面
面積の±5%以内であることが望ましく、成型空間の上
面と等しくすることが、さらに望ましい。
Here, it is desirable that the area of the top of the first magnetic body that is raised in a convex shape is within ± 5% of the upper surface area of the molding space facing the magnetic body. Is even more desirable.

【0018】また加えて、請求項3記載の発明は、前記
第1の磁性体を覆う非磁性体部の厚み寸法であって、第
1の磁性体の凸状***部の頂上部に対応する第1の厚み
寸法(L1)と、前記凸状***部の底部に対応する第2
の厚み寸法(L2)の比であるL1/L2が20乃至5
0%である異方性偏平環状永久磁石の製造方法である。
In addition, the invention according to claim 3 is the thickness dimension of the non-magnetic body portion covering the first magnetic body, and corresponds to the top of the convex raised portion of the first magnetic body. A first thickness dimension (L1) and a second thickness corresponding to the bottom of the raised ridge.
L1 / L2, which is the ratio of the thickness dimension (L2), is 20 to 5
It is a method of manufacturing an anisotropic flat annular permanent magnet with 0%.

【0019】[0019]

【発明の実施の形態】従来の異方性偏平環状永久磁石の
両端面に磁気特性の差が生じるのは、図5に示すような
従来から一般に使用されている成型装置において上側パ
ンチ内磁性体60の成型空間62に対向する面の面積が
下側パンチ内磁性体57の成型空間62に対向する面の
面積より大きいため、磁場中成型時、成型空間62内を
通る磁束線3が磁化容易軸方向に対して平行にならず、
放射状になってしまうためである。
BEST MODE FOR CARRYING OUT THE INVENTION The difference between the magnetic characteristics of both end faces of a conventional anisotropic flat annular permanent magnet is caused by a magnetic material in the upper punch in a conventional molding apparatus as shown in FIG. Since the area of the surface of 60 facing the molding space 62 is larger than the area of the surface of the lower punch magnetic body 57 facing the molding space 62, the magnetic flux lines 3 passing through the molding space 62 are easily magnetized during molding in a magnetic field. Not parallel to the axial direction,
This is because it becomes radial.

【0020】ここで、図5のうち58は非磁性ダイスで
あり、59、61はそれぞれ上下の磁性体57、60を
覆う非磁性体を示す。
In FIG. 5, 58 is a non-magnetic die, and 59 and 61 are non-magnetic materials that cover the upper and lower magnetic materials 57 and 60, respectively.

【0021】そこで、上側パンチに備えられている第1
の磁性体であって成型空間と対向する部分を成型空間と
同等の形状、面積にて凸状に***させることにより、成
型空間を通る磁束線が前記第1の磁性体を通るべく制御
され、その結果成型空間内を通る磁束線の向きを制御す
る。このような制御方法をとることにより、成型空間内
を通る磁束線の向きを磁化容易軸方向にたいして均一に
平行とすることができるため、磁石両端面の磁気特性差
は大幅に低減され、どちらの面もモーター等の使用面と
して使うことができることとなる。
Therefore, the first punch provided on the upper punch
Of the magnetic body, the portion facing the molding space is raised in a convex shape in the same shape and area as the molding space, the magnetic flux lines passing through the molding space are controlled to pass through the first magnetic body, As a result, the direction of the magnetic flux lines passing through the molding space is controlled. By adopting such a control method, the direction of the magnetic flux lines passing through the molding space can be made parallel to the easy axis of magnetization uniformly, so that the difference in magnetic characteristics between the two end surfaces of the magnet is significantly reduced. The surface can also be used as a usage surface of a motor or the like.

【0022】しかも、前記第1の磁性体は非磁性体で覆
われており、直接に磁性面が成型空間に面していないた
め、磁性体からなる磁性面と該磁性体の保持等に供する
非磁性体の境界が直接成型空間に接することがないた
め、磁束の乱れが生づることが少なく容易に磁束の向き
を制御することができる。
Moreover, since the first magnetic body is covered with the non-magnetic body and the magnetic surface does not directly face the molding space, it is used for holding the magnetic surface composed of the magnetic body and the like. Since the boundary of the non-magnetic material does not directly contact the molding space, disturbance of the magnetic flux is less likely to occur and the direction of the magnetic flux can be easily controlled.

【0023】さらに、磁性体からなる磁性面と該磁性体
の保持等に供する非磁性体の境界が直接成型空間に接す
ることがないため、成型空間で成型される異方性偏平環
状永久磁石に、クラック、はがれ等の欠陥が発生するこ
とがない。
Furthermore, since the boundary between the magnetic surface made of a magnetic material and the non-magnetic material used for holding the magnetic material does not directly contact the molding space, an anisotropic flat annular permanent magnet molded in the molding space can be obtained. Defects such as cracks, peeling, etc. do not occur.

【0024】このとき、凸状に***した前記第1の磁性
体の頂上部の面積は、該磁性体と対向する成型空間の上
面面積の±5%以内であることが望ましく、成型空間の
上面と等しくすることが、さらに望ましい。
At this time, it is desirable that the area of the top of the convex first magnetic body is within ± 5% of the upper surface area of the molding space facing the magnetic body. Is even more desirable.

【0025】また、上側パンチに備えられている第1の
磁性体を覆う非磁性体部の厚み寸法であって、凸状***
部の頂上部に対応する第1の厚み寸法(L1)は薄いほ
ど磁気特性の向上が期待できるが、薄くなりすぎると金
型の製造が困難となり、厚くなりすぎると成型空間内を
通る磁束線の向きを制御することができなくなるため、
第1の厚み寸法(L1)は凸状***部の底部に対応する
第2の厚み寸法(L2)の20乃至50%であることが
望ましく、より好ましくは30乃至40%が望ましい。
Further, the thickness dimension of the non-magnetic material portion covering the first magnetic material provided in the upper punch, and the first thickness dimension (L1) corresponding to the top of the convex ridge is thin. The magnetic properties can be expected to improve as much as possible, but if the thickness is too thin, it becomes difficult to manufacture the mold, and if it is too thick, it is not possible to control the direction of the magnetic flux lines passing through the molding space.
The first thickness dimension (L1) is preferably 20 to 50% of the second thickness dimension (L2) corresponding to the bottom of the convex ridge, and more preferably 30 to 40%.

【0026】[0026]

【実施例】次に図を用いてさらに詳細に説明することと
する。
Embodiments will now be described in more detail with reference to the drawings.

【0027】図1(a)に示す製造方法で図1(b)に
示すような異方性偏平環状永久磁石を圧縮成型する。
An anisotropic flat annular permanent magnet as shown in FIG. 1 (b) is compression molded by the manufacturing method shown in FIG. 1 (a).

【0028】図1(a)は上下パンチの対向面に磁性体
からなる第1の磁性体1および第2の磁性体2を備えて
おり、第1の磁性体は成型空間と対向する部分が成型空
間上面部と同等の形状にて凸状に***1aした構造とな
っている。またさらに、上下パンチに具備される前記第
1および第2の磁性体はそれぞれ第1の非磁性体6およ
び第2の非磁性体10で覆われている。
In FIG. 1A, a first magnetic body 1 and a second magnetic body 2 made of a magnetic material are provided on the facing surfaces of the upper and lower punches, and the first magnetic body has a portion facing the molding space. It has a structure in which a protrusion 1a is formed in a convex shape in the same shape as the upper surface of the molding space. Furthermore, the first and second magnetic bodies provided in the upper and lower punches are covered with a first non-magnetic body 6 and a second non-magnetic body 10, respectively.

【0029】非磁性の臼型7と中棒8によって成型空間
を形成し上下パンチによって外形60mm、内径30m
m厚み2.6mmの異方性偏平環状永久磁石を圧縮成型
する。
A molding space is formed by the non-magnetic mortar die 7 and the intermediate rod 8 and an outer diameter of 60 mm and an inner diameter of 30 m are obtained by punching vertically.
An anisotropic flat annular permanent magnet having a thickness of 2.6 mm is compression molded.

【0030】ここで、凸状***部の頂上部に対応する第
1の厚み寸法(L1)4と凸状***部の底部に対応する
第2の厚み寸法(L2)の比を変化させることにより磁
束線3の向きを制御し、完成した異方性偏平環状永久磁
石の両面における残留磁束密度および発生磁束量とこれ
らの差を図2の図表で示す。また、図3は前記残留磁束
密度および発生磁束量の差とL1/L2の関係を示した
グラフである。
By changing the ratio of the first thickness dimension (L1) 4 corresponding to the top of the convex ridge and the second thickness dimension (L2) corresponding to the bottom of the convex ridge, The orientation of the magnetic flux lines 3 is controlled, and the residual magnetic flux density and the generated magnetic flux amount on both surfaces of the completed anisotropic flat annular magnet are shown in the diagram of FIG. FIG. 3 is a graph showing the relationship between the difference between the residual magnetic flux density and the generated magnetic flux amount and L1 / L2.

【0031】ここで、図2、図3の表における差(%)
は以下の式によって算出した。
Here, the difference (%) in the tables of FIG. 2 and FIG.
Was calculated by the following formula.

【0032】差(%)=(強磁性面の値ー弱磁性面の
値)÷強磁性面の値×100 図2、図3より、L1/L2を小さくすれば異方性偏平
環状永久磁石の両面における残留磁束密度および発生磁
束量の差が小さくなることがわかる。
Difference (%) = (value of ferromagnetic surface−value of weak magnetic surface) ÷ value of ferromagnetic surface × 100 From FIGS. 2 and 3, if L1 / L2 is reduced, an anisotropic flat annular permanent magnet is obtained. It can be seen that the difference between the residual magnetic flux density and the amount of generated magnetic flux on both sides of is small.

【0033】したがって、異方性偏平環状永久磁石の両
面における残留磁束密度および発生磁束量の差が小さく
なっているので、磁束の向きが磁化容易軸と同等の方向
に水平に並び、その結果両面の磁気特性の値の間に差が
無くなっていることが容易に推定できる。
Therefore, since the difference between the residual magnetic flux density and the generated magnetic flux amount on both surfaces of the anisotropic flat annular permanent magnet is small, the directions of the magnetic flux are aligned horizontally in the same direction as the easy axis of magnetization, resulting in both surfaces. It can be easily estimated that there is no difference between the values of the magnetic properties.

【0034】ここで、異方性偏平環状永久磁石の両面に
おける残留磁束密度の差が1%を超えると磁石両面の磁
気特性が同等とはいえなくなるため、本実施例よりL1
/L2の値が50%以下でなければならないことがわか
る。
Here, if the difference in the residual magnetic flux densities on both sides of the anisotropic flat annular permanent magnet exceeds 1%, the magnetic characteristics on both sides of the magnet cannot be said to be equivalent, so L1 is more than that of this embodiment.
It can be seen that the value of / L2 must be 50% or less.

【0035】さらに図2、図3をみると、L1/L2の
値が25〜33%の範囲では逆に、異方性偏平環状永久
磁石の両面における残留磁束密度および発生磁束量の値
の差が大きくなっている。
2 and 3, when the value of L1 / L2 is in the range of 25 to 33%, conversely, the difference between the residual magnetic flux density and the generated magnetic flux amount on both surfaces of the anisotropic flat annular permanent magnet. Is getting bigger.

【0036】これは、前記第1の磁性体は非磁性体で覆
われており、直接に磁性面が成型空間に面していないた
め、磁性体からなる磁性面と該磁性体の保持等に供する
非磁性体の境界が直接成型空間に接することがなく、磁
束の乱れが生づることが少なくなるような構造となって
いるが、凸状***部の頂上部に対応する第1の厚み寸法
(L1)4が非常に小さく、磁性面と該磁性体の保持等
に供する非磁性体の境界が直接成型空間に接したのと近
似した状態になり、結果として磁気特性を制御できない
状態となるためである。
This is because the first magnetic body is covered with a non-magnetic body, and the magnetic surface does not directly face the molding space. The boundary of the non-magnetic material to be served is not in direct contact with the molding space, and the structure is such that turbulence of magnetic flux is less likely to occur, but the first thickness dimension corresponding to the top of the convex ridge. (L1) 4 is so small that the boundary between the magnetic surface and the non-magnetic material used for holding the magnetic material is in direct contact with the molding space, and as a result, the magnetic characteristics cannot be controlled. This is because.

【0037】また、金型製作上、凸状***部の頂上部に
対応する第1の厚み寸法(L1)は実質的に6mm以上
でなければ実現することができない。また、凸状***部
の底部に対応する第2の厚み寸法(L2)はあまり厚く
しても要求する特性に関与せず、材料費の負担につなが
るため30mm以下とすることが妥当である。
Further, in manufacturing the mold, the first thickness dimension (L1) corresponding to the top of the convex ridge cannot be realized unless it is substantially 6 mm or more. Further, the second thickness dimension (L2) corresponding to the bottom of the convex raised portion does not contribute to the required characteristics even if it is too thick, and leads to a burden of material cost, so it is appropriate to set it to 30 mm or less.

【0038】したがって、本実施例よりL1/L2は2
0乃至50%であることが望ましく、30乃至40%と
することがさらに好ましいことがわかる。
Therefore, according to the present embodiment, L1 / L2 is 2
It can be seen that it is preferably 0 to 50%, and more preferably 30 to 40%.

【0039】[0039]

【発明の効果】本発明により、製品の厚みが5mm以下
であり、モーター等に組み込む場合の組み付けラインの
簡素化および管理負担の大幅な軽減を図ることが可能と
なる異方性偏平環状永久磁石を提供することが可能とな
った。
As described above, according to the present invention, the thickness of the product is 5 mm or less, and the anisotropic flat annular permanent magnet which can simplify the assembling line and greatly reduce the management load when it is incorporated in a motor or the like. It has become possible to provide.

【0040】また、磁石にクラック、はがれ等の欠陥が
発生することがなく、容易に磁石両面の磁気特性の差が
低減することが可能となるような磁気特性を制御する方
法を提供することにより、磁石両面のどちらでも駆動モ
ーター等に使用面として組み込むことが可能となり、使
用面の識別をするために行うインク等によるマーキング
工程を不要とすることが可能であって異方性偏平環状永
久磁石の製造コストの低減を図ることができる異方性偏
平環状永久磁石の製造方法を提供することができる。
Further, by providing a method for controlling the magnetic characteristics such that defects such as cracks and peeling are not generated in the magnet and the difference between the magnetic characteristics on both surfaces of the magnet can be easily reduced. , Both sides of the magnet can be incorporated into the drive motor etc. as the use surface, and the marking process using ink or the like for identifying the use surface can be eliminated, and the anisotropic flat annular permanent magnet can be used. It is possible to provide a method for manufacturing an anisotropic flat annular permanent magnet capable of reducing the manufacturing cost of the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる異方性偏平環状永久磁石の製造
方法での圧縮成型工程概念図
FIG. 1 is a conceptual diagram of a compression molding process in a method for manufacturing an anisotropic flat annular permanent magnet according to the present invention.

【図2】本発明にかかる製造方法で製造した磁石の磁気
特性を示す図表
FIG. 2 is a chart showing magnetic characteristics of a magnet manufactured by a manufacturing method according to the present invention.

【図3】本発明にかかる製造方法で製造した磁石の磁気
特性を示すグラフ
FIG. 3 is a graph showing magnetic characteristics of a magnet manufactured by a manufacturing method according to the present invention.

【図4】従来の異方性偏平環状永久磁石の磁気特性を制
御する方法の説明図
FIG. 4 is an explanatory diagram of a method for controlling the magnetic characteristics of a conventional anisotropic flat annular permanent magnet.

【図5】従来の異方性偏平環状永久磁石の製造方法での
圧縮成型工程概念図
FIG. 5 is a conceptual diagram of a compression molding process in a conventional method for producing an anisotropic flat annular permanent magnet.

【符号の説明】[Explanation of symbols]

1 第1の磁性体 2 第2の磁性体 3 磁束線 4 凸状***部の頂上部に対応する第1の厚み寸法(L
1) 5 凸状***部の底部に対応する第2の厚み寸法(L
2) 6 第1の非磁性体 9 成型空間 10 第2の磁性体 51 上側パンチ 54 下側パンチ
1 1st magnetic body 2 2nd magnetic body 3 Magnetic flux line 4 1st thickness dimension (L corresponding to the top of a convex ridge part)
1) 5 Second thickness dimension corresponding to the bottom of the convex ridge (L
2) 6 first non-magnetic material 9 molding space 10 second magnetic material 51 upper punch 54 lower punch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁化容易軸方向に異方性を有する異方性偏
平環状永久磁石において、該磁石の厚み寸法が5mm以
下であって磁石両面の残留磁束密度の差が1%以下であ
ることを特徴とする異方性偏平環状永久磁石。
1. An anisotropic flat annular permanent magnet having anisotropy in the direction of easy axis of magnetization, wherein the thickness of the magnet is 5 mm or less and the difference in residual magnetic flux density on both sides of the magnet is 1% or less. An anisotropic flat annular permanent magnet.
【請求項2】上下パンチ、臼型、中棒等から構成される
異方性偏平環状永久磁石用成型装置であって、該異方性
偏平環状永久磁石用成型装置は、前記上下パンチ、臼
型、中棒の配置によって造り出される成型空間を備え、
該成型空間にて上下パンチの圧縮方向と同方向の磁場中
で原料粉末を圧縮成形し、該成形体を焼結して焼結型異
方性偏平環状永久磁石を製造する方法において、 前記上側パンチは前記成型空間と対向する方向に第1の
磁性体を備え、該第1の磁性体は非磁性体で覆われてお
り、かつ前記下側パンチも前記成型空間と対向する方向
に磁性体からなる第2の磁性体を備え、該第2の磁性体
も非磁性体で覆われており、 さらに、前記第1の磁性体は前記成型空間と対向する部
分が凸状に***していることを特徴とする異方性偏平環
状永久磁石の製造方法。
2. An anisotropic flat annular permanent magnet molding apparatus comprising an upper and lower punch, a die, a center rod and the like, wherein the anisotropic flat annular permanent magnet molding apparatus comprises the upper and lower punches and a die. Equipped with a molding space created by the arrangement of the mold and center rod,
In the method for producing a sintered anisotropic flat annular permanent magnet by compression molding raw material powder in a magnetic field in the same direction as the compression direction of upper and lower punches in the molding space, and sintering the compact. The punch includes a first magnetic body in a direction facing the molding space, the first magnetic body is covered with a non-magnetic body, and the lower punch also has a magnetic body in a direction facing the molding space. And a second magnetic body which is also covered with a non-magnetic body. Further, the first magnetic body has a convex portion protruding in a portion facing the molding space. A method of manufacturing an anisotropic flat annular permanent magnet, characterized in that
【請求項3】前記第1の磁性体を覆う非磁性体部の厚み
寸法であって、第1の磁性体の凸状***部の頂上部に対
応する第1の厚み寸法(L1)と、前記凸状***部の底
部に対応する第2の厚み寸法(L2)の比であるL1/
L2が20乃至50%であることを特徴とする請求項2
記載の異方性偏平環状永久磁石の製造方法。
3. A thickness dimension of a non-magnetic body portion covering the first magnetic body, the first thickness dimension (L1) corresponding to the top of the convex ridge portion of the first magnetic body, The ratio L1 / of the second thickness dimension (L2) corresponding to the bottom of the convex ridge is L1 /.
L2 is 20 to 50%.
A method for producing the anisotropic flat annular permanent magnet described.
JP8034973A 1996-02-22 1996-02-22 Anisotropic flat annular permanent magnet and manufacturing method thereof Expired - Fee Related JP3007293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034973A JP3007293B2 (en) 1996-02-22 1996-02-22 Anisotropic flat annular permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8034973A JP3007293B2 (en) 1996-02-22 1996-02-22 Anisotropic flat annular permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09232134A true JPH09232134A (en) 1997-09-05
JP3007293B2 JP3007293B2 (en) 2000-02-07

Family

ID=12429094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034973A Expired - Fee Related JP3007293B2 (en) 1996-02-22 1996-02-22 Anisotropic flat annular permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3007293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615859B (en) * 2016-10-14 2018-02-21 財團法人金屬工業研究發展中心 Anisotropic magnet manufacturing method and magnet manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615859B (en) * 2016-10-14 2018-02-21 財團法人金屬工業研究發展中心 Anisotropic magnet manufacturing method and magnet manufacturing equipment

Also Published As

Publication number Publication date
JP3007293B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
EP0685983B1 (en) Magnetic circuit unit for loud-speaker and method of manufacturing the same
JP2010087240A (en) Electronic component and method for manufacturing electronic component
JP5904124B2 (en) Arc-shaped magnet having polar anisotropic orientation, method for manufacturing the same, and mold for manufacturing the same
JP2001025189A (en) Permanent magnet of permanent magnet rotor
JP3007293B2 (en) Anisotropic flat annular permanent magnet and manufacturing method thereof
WO2003103115A1 (en) Voice coil motor
JP4057092B2 (en) Dry magnetic field molding equipment for arc-shaped ferrite magnets
EP0542521A2 (en) Radial anisotropic ring magnet and producing method thereof
CN213752288U (en) EP type soft magnetic ferrite magnetic core blank
JP2005277180A (en) Magnet-manufacturing method, magnetic powder forming method and dry forming equipment
JP4300525B2 (en) Magnetic pole face spherical bonded magnet and manufacturing method thereof
JP2860858B2 (en) Mold for magnetic powder molding
JPH07111924B2 (en) Magnetic roll and method for manufacturing cylindrical magnet for magnetic roll
JPS5923448B2 (en) anisotropic magnet
CN2606097Y (en) Electromagnetic crane
JPS6358033B2 (en)
JPS6137901A (en) Molding apparatus of anisotropic ferrite magnet
JP5008803B2 (en) Coil parts
JPS5919303A (en) Manufacture of sintered magnet
JPH0353445Y2 (en)
JP2004072818A (en) Method and apparatus for manufacturing permanent magnet of motor
JPS6241583Y2 (en)
JPH08124759A (en) Mn-zn ferrite core and its manufacture
JPH05326232A (en) Magnetic circuit component and manufacture thereof
JPH038305A (en) Magnet roll and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991116

LAPS Cancellation because of no payment of annual fees