JPH0886328A - Vibration dissipation device - Google Patents

Vibration dissipation device

Info

Publication number
JPH0886328A
JPH0886328A JP24690494A JP24690494A JPH0886328A JP H0886328 A JPH0886328 A JP H0886328A JP 24690494 A JP24690494 A JP 24690494A JP 24690494 A JP24690494 A JP 24690494A JP H0886328 A JPH0886328 A JP H0886328A
Authority
JP
Japan
Prior art keywords
movable plate
actuator
yoke
magnetic
magnetic leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24690494A
Other languages
Japanese (ja)
Inventor
Shigeki Yoshioka
茂樹 吉岡
Koichiro Yonekura
光一郎 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24690494A priority Critical patent/JPH0886328A/en
Publication of JPH0886328A publication Critical patent/JPH0886328A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE: To always obtain sufficient reduction effect of engine vibration by decreasing change of adsorption force due to variation of size of a clearance. CONSTITUTION: In a control type engine mount, an actuator 7 is arranged with a proper clearance from a movable plate 6. A magnetic leakage portion 11 having a section composed of a triangular projection is formed on a circumference on an upper surface of a yoke 8b of an electromagnet 8 of the actuator, oppositely to an outer periphery of the movable plate 6. A spacer 12 is formed on an upper surface of the yoke 8b for preventing adsorption of the movable plate 6 to the actuator 7. When length of the clearance between the movable plate 6 and the yoke 8b is reduced, a part of magnetic flux leaks from the magnetic leakage portion 11. Attraction increase of the actuator 7 is deteriorated. Amplitude of the movable plate is substantially equalized in respect to current carrying of positive and negative currents to the electromagnet 8. It is thus possible to always obtain sufficient vibration reduction effect, and prevent scattering of a control system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両等に用いられる制
御型エンジンマウントなどの、電磁アクチュエータを用
いた振動吸収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration absorbing device using an electromagnetic actuator, such as a control type engine mount used in a vehicle or the like.

【0002】[0002]

【従来の技術】従来のエンジンマウントとしては、上下
の取付ブロックの間に配された弾性体内に流体室を設
け、上の取付ブロック側に設けられたダイアフラムを有
する調圧室と流体室がオリフィスで連通されているもの
がある。流体室および調圧室には作動流体が封入されて
おり、上の取付ブロックがエンジン側に結合され、下の
取付ブロックが車体側に取り付けられる。流体室に封入
された作動流体がエンジンからの振動によって起こる弾
性体の変形によって加圧されると、オリフィスを通過し
て調圧室内に無圧収容される構造になっており、そのた
め、流体室と調圧室内の流体圧は定常的には変化せず、
これにより車体側への振動の伝達を遮断することを図っ
ている。
2. Description of the Related Art As a conventional engine mount, a fluid chamber is provided in an elastic body disposed between upper and lower mounting blocks, and a pressure regulating chamber and a fluid chamber having a diaphragm provided on the upper mounting block side are orifices. There are things that are communicated with. A working fluid is enclosed in the fluid chamber and the pressure adjusting chamber, the upper mounting block is coupled to the engine side, and the lower mounting block is mounted to the vehicle body side. When the working fluid enclosed in the fluid chamber is pressurized by the deformation of the elastic body caused by the vibration from the engine, it passes through the orifice and is stored in the pressure regulation chamber without pressure. And the fluid pressure in the pressure regulation chamber does not change steadily,
This is intended to block the transmission of vibration to the vehicle body side.

【0003】しかし、このような装置では、エンジンか
らの振動が高周波になると、オリフィスを通過しての作
動流体の移動が充分に行なわれなくなり、例えば車室内
こもり音の発生源となる80〜200Hz程度のエンジ
ンの振動が車体に伝達されてしまうという問題があっ
た。この対策として、本出願人は先に特願平5−220
700号により、電磁アクチュエータを用いた制御型エ
ンジンマウントを提案している。これは、例えば図8に
示すような構成を有する。
However, in such a device, when the vibration from the engine becomes a high frequency, the working fluid is not sufficiently moved through the orifice, and for example, 80 to 200 Hz becomes a source of muffled noise in the passenger compartment. There was a problem that some engine vibration was transmitted to the vehicle body. As a countermeasure against this, the present applicant has previously filed Japanese Patent Application No. 5-220.
No. 700 proposes a control type engine mount using an electromagnetic actuator. This has a structure as shown in FIG. 8, for example.

【0004】すなわち、流体室101の一壁面を磁性材
料で構成された可動板102で構成し、コイル103a
およびヨーク103bよりなる電磁石103と永久磁石
104とを備えるアクチュエータ105を上記可動板1
02に対向させて配置してある。アクチュエータ105
の電磁石103のコイル電流を正負の任意の値に調整す
ることにより、永久磁石104の吸引力を任意に制御し
て、可動板102を加振して、エンジン振動によって生
じる脈動と逆位相の脈動を流体室101内に生じさせる
ことで振動を低減する。そして、いわゆる車両のこもり
音の主成分であるエンジン回転2次成分の振動をエンジ
ンの最高回転付近の6000rpmまで低減するため
に、電磁石103には200Hz程度までの応答性を持
たせることができる。
That is, one wall surface of the fluid chamber 101 is constituted by the movable plate 102 made of a magnetic material, and the coil 103a is formed.
The movable plate 1 is provided with an actuator 105 including an electromagnet 103 including a yoke 103b and a permanent magnet 104.
It is arranged to face 02. Actuator 105
By adjusting the coil current of the electromagnet 103 to an arbitrary positive or negative value, the attractive force of the permanent magnet 104 is arbitrarily controlled, the movable plate 102 is vibrated, and the pulsation in a phase opposite to the pulsation caused by the engine vibration is generated. Is generated in the fluid chamber 101 to reduce vibration. Then, in order to reduce the vibration of the secondary component of the engine rotation, which is the main component of so-called muffled noise of the vehicle, to 6000 rpm near the maximum rotation of the engine, the electromagnet 103 can have a response up to about 200 Hz.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この制
御型エンジンマウントにあっては、アクチュエータ10
5の吸引力が可動板102との空隙長(エアギャップ)
が小さくなると急激に大きくなる傾向がある。すなわ
ち、アクチュエータ105においては、磁束は図9に示
す磁路Aのように流れる。このとき、吸引力Fは次式で
表わされる。 F=(Bg2 ・S)/(2μ0 ) ここで、Bg:磁束密度 S :空隙の断面積 μ0 :真空の透磁率 である。
However, in this control type engine mount, the actuator 10 is used.
The suction force of 5 is the gap length with the movable plate 102 (air gap)
When becomes smaller, it tends to increase rapidly. That is, in the actuator 105, the magnetic flux flows like the magnetic path A shown in FIG. At this time, the suction force F is expressed by the following equation. F = (Bg 2 · S) / (2μ 0), where Bg: magnetic flux density S: cross-sectional area of void μ 0: magnetic permeability of vacuum.

【0006】アクチュエータ105の場合、可動板10
2がヨーク103bに近づいて空隙長が小さくなるほ
ど、磁気抵抗が小さくなるので磁束密度が大きくなり、
アクチュエータ105の吸引力Fは、図10のように、
空隙長が小さくなると急激に大きくなる。図10は、空
隙長と吸引力の関係を示す。 アクチュエータ105の
吸引力曲線は反比例に近い特性を示すため、その傾斜は
空隙長が小さくなるほど急激に大きくなる。
In the case of the actuator 105, the movable plate 10
As 2 approaches the yoke 103b and the air gap length decreases, the magnetic resistance decreases and the magnetic flux density increases.
The suction force F of the actuator 105 is, as shown in FIG.
It rapidly increases as the void length decreases. FIG. 10 shows the relationship between the void length and the suction force. Since the suction force curve of the actuator 105 exhibits a characteristic that is nearly inversely proportional, the inclination thereof increases sharply as the void length decreases.

【0007】そのため、可動板支持ばね106の負荷線
とコイル103aに+5A流したときのアクチュエータ
の吸引力曲線との交点G30と、永久磁石104のみの
吸引力と可動板支持ばね106の負荷線との交点G20
間の可動板ストロークL10は、可動板支持ばね106
の負荷線とコイルに−5A流した時のアクチュエータの
吸引力曲線との交点G10と、永久磁石のみの吸引力と
可動板支持ばね106の負荷線との交点G20の可動板
ストロークL20よりも大きくなる。
Therefore, the intersection G30 of the load line of the movable plate support spring 106 and the attraction force curve of the actuator when +5 A is applied to the coil 103a, the attraction force of only the permanent magnet 104, and the load line of the movable plate support spring 106. Intersection G20
The movable plate stroke L10 between them is the movable plate support spring 106.
Is larger than the movable plate stroke L20 at the intersection G10 between the load line of No. 4 and the attraction force curve of the actuator when -5A is applied to the coil, and the intersection G20 between the attraction force of only the permanent magnet and the load line of the movable plate support spring 106. Become.

【0008】したがって電流をプラス側に0〜+5A流
したときと、電流をマイナス側に0〜−5A流したとき
とで、可動板102の振動振幅がかなり異なる。このた
め、エンジン振動の低減効果が十分でなかったり、制御
系が発散してしまう等の不具合が生じる恐れがあるとい
う問題があった。本発明は、先の提案の振動吸収装置を
さらに改良し、空隙長の大小による吸引力の変化を小さ
くして、常に十分なエンジン振動の低減効果を得ること
のできる振動吸収装置を提供することを目的としてい
る。
Therefore, the vibration amplitude of the movable plate 102 is considerably different between when the current is applied to the plus side of 0 to + 5A and when the current is applied to the minus side of 0 to -5A. Therefore, there is a problem that the effect of reducing the engine vibration is not sufficient, or the control system may diverge. The present invention further improves the previously proposed vibration absorbing device, and provides a vibration absorbing device that can obtain a sufficient effect of reducing engine vibration at all times by reducing the change in suction force due to the size of the gap length. It is an object.

【0009】[0009]

【課題を解決するための手段】このため本発明は、磁性
体により形成され流体室の一部に弾性部材で支持された
可動板と、この可動板と所定の距離をもって対向し、永
久磁石および該永久磁石の磁束を増減する電磁石を備え
たアクチュエータとを有する制御型エンジンマウントに
おいて、電磁石のヨークの円周部に可動板の外周部に対
向させて突起状の磁気漏洩部を設け、可動板の変位に対
応して可動板の外周部と磁気漏洩部との対向面積が変化
するように構成されたものとした。
Therefore, according to the present invention, a movable plate which is formed of a magnetic material and is supported by an elastic member in a part of a fluid chamber, is opposed to the movable plate with a predetermined distance, and a permanent magnet and In a control type engine mount having an actuator equipped with an electromagnet that increases and decreases the magnetic flux of the permanent magnet, a protrusion-like magnetic leakage portion is provided in the circumferential portion of the yoke of the electromagnet so as to face the outer peripheral portion of the movable plate. The facing area between the outer peripheral portion of the movable plate and the magnetic leakage portion is changed in accordance with the displacement of.

【0010】上記可動板とアクチュエータとの対向面間
には、該対向面間の空隙長を制限するスペーサを設け、
磁気漏洩部と可動板の外周部との対向距離をスペーサで
制限された空隙長より小さく設定するのが好ましい。ま
た、磁気漏洩部は、電磁石のヨークを軸方向に切断した
断面においてその軸方向と平行の辺を有する3角形状と
することができる。あるいはまた、磁気漏洩部は、電磁
石のヨークを軸方向に切断した断面において軸方向と平
行の辺を有する矩形をなし、可動板は磁気漏洩部と対向
する外周部の下面にテーパ部を備えて、可動板の変位に
対応して可動板の外周部と磁気漏洩部との対向距離が変
化するようにしてもよい。
A spacer for limiting a gap length between the facing surfaces of the movable plate and the actuator is provided between the facing surfaces.
It is preferable to set the facing distance between the magnetic leakage portion and the outer peripheral portion of the movable plate to be smaller than the gap length limited by the spacer. Further, the magnetic leakage portion can be formed in a triangular shape having a side parallel to the axial direction in a cross section obtained by cutting the yoke of the electromagnet in the axial direction. Alternatively, the magnetic leakage portion has a rectangular shape having a side parallel to the axial direction in a cross section obtained by cutting the yoke of the electromagnet in the axial direction, and the movable plate has a tapered portion on the lower surface of the outer peripheral portion facing the magnetic leakage portion. The facing distance between the outer peripheral portion of the movable plate and the magnetic leakage portion may be changed according to the displacement of the movable plate.

【0011】[0011]

【作用】請求項1のものにあっては、ヨークの円周部
に、可動板の外周部に対向させて突起状の磁気漏洩部を
設けたので、可動板がヨーク面に近づいて、可動板とヨ
ーク面との間の距離、すなわち空隙長が小さくなったと
きに、磁束の一部が磁気漏洩部に流れ、空隙部に働く有
効磁束が減少する。これにより、空隙長の変化に対する
アクチュエータの吸引力の変化が小さくなる。なお、磁
気漏洩部と可動板の外周部との対向距離をスペーサで制
限された空隙長より小さく設定することにより、上記磁
気漏洩部を通じての磁束漏洩が確実に行なわれる。また
とくに磁気漏洩部を矩形となし、可動板外周部の下面に
テーパ部を備えることにより、可動板の変位に対応して
可動板の外周部と磁気漏洩部との対向面積だけでなく対
向距離も変化するので、アクチュエータの吸引力の変化
をより一層精密に制御することができる。
According to the first aspect of the present invention, since the protruding magnetic leakage portion is provided on the circumferential portion of the yoke so as to face the outer peripheral portion of the movable plate, the movable plate moves closer to the yoke surface and moves. When the distance between the plate and the yoke surface, that is, the air gap length becomes smaller, a part of the magnetic flux flows into the magnetic leakage portion, and the effective magnetic flux acting on the air gap portion decreases. This reduces the change in the suction force of the actuator with respect to the change in the gap length. By setting the facing distance between the magnetic leakage portion and the outer peripheral portion of the movable plate to be smaller than the gap length limited by the spacer, magnetic flux leakage through the magnetic leakage portion is surely performed. In addition, in particular, by forming the magnetic leakage part in a rectangular shape and providing a taper part on the lower surface of the outer peripheral part of the movable plate, not only the facing area between the outer peripheral part of the movable plate and the magnetic leakage part but also the facing distance corresponding to the displacement of the movable plate. Also changes, the change in the suction force of the actuator can be controlled more precisely.

【0012】[0012]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の第1の実施例の構造を示す断面図である。
周囲を弾性体2で覆われた流体室1には作動流体が満た
されており、上部にはダイヤフラム4を備える調圧室1
Aが配設され、流体室1と調圧室1Aはオリフィス3を
介して連通されている。流体室1を構成する一壁面に
は、可動板支持ばね5によって外壁9に支持され、磁性
材料により形成された可動板6が設置されている。可動
板6と適度な空隙長(エアギャップ)を有してアクチュ
エータ7が可動板6に対向して設けられており、アクチ
ュエータ7はコイル8aおよびヨーク8bを備えた電磁
石8と、ヨーク8bの中央に可動板6に対向して配設さ
れた永久磁石10とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the structure of the first embodiment of the present invention.
A fluid chamber 1 whose periphery is covered with an elastic body 2 is filled with a working fluid, and a pressure regulating chamber 1 having a diaphragm 4 at an upper portion thereof.
A is provided, and the fluid chamber 1 and the pressure adjusting chamber 1A are communicated with each other through the orifice 3. A movable plate 6 which is supported by an outer wall 9 by a movable plate support spring 5 and is made of a magnetic material is installed on one wall surface of the fluid chamber 1. An actuator 7 is provided to face the movable plate 6 with an appropriate gap length (air gap) with the movable plate 6, and the actuator 7 includes an electromagnet 8 having a coil 8a and a yoke 8b, and a center of the yoke 8b. And a permanent magnet 10 arranged to face the movable plate 6.

【0013】そして、ヨーク8b上面の円周部には、可
動板6の外周部に対向して、ヨーク8bを軸方向に切断
した断面形状が三角形状の突起よりなる磁気漏洩部11
が形成されている。また、可動板6とヨーク8bとの間
には、可動板6と永久磁石10との間隙がゼロになり可
動板6が吸着することのないようにスペーサ12が設け
られている。スペーサ12は、可動板6と永久磁石10
との距離が可動板6と磁気漏洩部11との距離よりも常
に大きくなるような大きさに形成されている。
On the circumference of the upper surface of the yoke 8b, a magnetic leakage portion 11 is formed by a projection having a triangular cross section, which is formed by axially cutting the yoke 8b so as to face the outer circumference of the movable plate 6.
Are formed. Further, a spacer 12 is provided between the movable plate 6 and the yoke 8b so that the gap between the movable plate 6 and the permanent magnet 10 becomes zero and the movable plate 6 is not attracted. The spacer 12 includes the movable plate 6 and the permanent magnet 10.
Is formed so as to be always larger than the distance between the movable plate 6 and the magnetic leakage portion 11.

【0014】図2には、本実施例の制御装置のブロック
図を示す。振動状態を検出するために、エンジンのクラ
ンク角を検出するクランク角センサ13と、車体の加速
度を検出する加速度センサ14とが設けられている。C
PU16はクランク角センサ13よりクランク角信号
を、加速度センサ14よりA/D変換器15を介して加
速度信号を入力し、アクチュエータ7の制御力を決定し
て、コイル8aの駆動電流指令値を出力する。CPU1
6からのコイル電流指令値はP/A変換器17でD/A
変換され、指令値通りにコイル電流を制御する電流制御
装置18へと送られる。電流制御装置18はコイル8a
の駆動電流を制御してアクチュエータ7の吸引力を制御
する。
FIG. 2 shows a block diagram of the control device of this embodiment. In order to detect the vibration state, a crank angle sensor 13 for detecting the crank angle of the engine and an acceleration sensor 14 for detecting the acceleration of the vehicle body are provided. C
The PU 16 inputs a crank angle signal from the crank angle sensor 13 and an acceleration signal from the acceleration sensor 14 via the A / D converter 15, determines the control force of the actuator 7, and outputs a drive current command value for the coil 8a. To do. CPU1
The coil current command value from 6 is D / A by the P / A converter 17.
It is converted and sent to the current control device 18 that controls the coil current according to the command value. The current control device 18 is the coil 8a
To control the attraction force of the actuator 7.

【0015】本実施例の制御型エンジンマウントでは、
エンジンシェイクのような大きな減衰力を必要とする領
域では、オリフィス3内の作動流体を質量とし、作動流
体の流動にともなう弾性体2の拡張弾性をばねとする共
振周波数を所定の値にチューニングすることで、共振周
波数よりも低い周波数での動ばね定数を小さくして振動
伝達力を低減する。なお、この周波数領域においては、
アクチュエータ7による可動板6の変位の制御は行なわ
ない。
In the control type engine mount of this embodiment,
In a region requiring a large damping force such as an engine shake, the working fluid in the orifice 3 is used as a mass, and the expansion elasticity of the elastic body 2 accompanying the flow of the working fluid is used as a spring to tune the resonance frequency to a predetermined value. This reduces the dynamic spring constant at a frequency lower than the resonance frequency to reduce the vibration transmission force. In this frequency range,
The displacement of the movable plate 6 is not controlled by the actuator 7.

【0016】さらに振動周波数が高い領域になると、動
ばね定数が増大するため振動伝達力を低減できなくな
る。そこでアクチュエータ7により流体室1の内圧を制
御することにより、動ばね定数を低減する。すなわち、
アクチュエータ7によって、コイル8aの駆動電流を制
御することにより、例えば、こもり音発生の主原因とな
る±100μm程度の振幅を有する200Hz以下の領
域において、エンジンマウントに入力される振動変位に
対して、ちょうど逆位相になる可動板変位を発生する。
When the vibration frequency becomes higher, the dynamic spring constant increases, so that the vibration transmission force cannot be reduced. Therefore, the dynamic spring constant is reduced by controlling the internal pressure of the fluid chamber 1 by the actuator 7. That is,
By controlling the drive current of the coil 8a by the actuator 7, for example, in a region of 200 Hz or less having an amplitude of about ± 100 μm, which is the main cause of muffled sound generation, to a vibration displacement input to the engine mount, The displacement of the movable plate that is exactly in the opposite phase is generated.

【0017】そして、後に詳しく説明するように、本実
施例においては、図3、図4に示すように、可動板6が
ヨーク8bの上面に近づき空隙長dが小さくなったとき
に、磁束の一部を磁気漏洩部11に流し、空隙部に働く
有効磁束を減少し、空隙長dの変化に対するアクチュエ
ータ7の吸引力の変化を小さくする。
As will be described later in detail, in this embodiment, as shown in FIGS. 3 and 4, when the movable plate 6 approaches the upper surface of the yoke 8b and the air gap length d becomes smaller, the magnetic flux is reduced. A part of the magnetic flux leaks into the magnetic leakage portion 11 to reduce the effective magnetic flux acting on the gap, thereby reducing the change in the attraction force of the actuator 7 with respect to the change in the gap length d.

【0018】次にアクチュエータ7の動作について説明
する。図5には20℃におけるアクチュエータ7の空隙
長(エアギャップ)対吸引力の関係を示す。永久磁石1
0の吸引力は、コイル電流0アンペア時のバイアス力と
して働く。ここでは、コイル8aの電流を正負に増減す
ることによって起磁力が増減し吸引力が変化する。そし
て、基本的には、この吸引力と可動板支持ばね5の負荷
直線との平衡点、すなわち両者の交点G1、G2、G3
に可動板6が位置決めされる。
Next, the operation of the actuator 7 will be described. FIG. 5 shows the relationship between the gap length (air gap) of the actuator 7 at 20 ° C. and the suction force. Permanent magnet 1
The attraction force of 0 works as a bias force when the coil current is 0 ampere. Here, by increasing / decreasing the current of the coil 8a positively or negatively, the magnetomotive force is increased / decreased and the attractive force is changed. Then, basically, the equilibrium point between the attraction force and the load straight line of the movable plate support spring 5, that is, the intersection points G1, G2, G3 of the two.
The movable plate 6 is positioned at.

【0019】したがって、コイル8aの駆動電流が大き
い程、可動板6はアクチュエータ7に引き寄せられ、流
体室1の液圧を減ずる。一方、電磁石8の電流を負側に
絶対値を大きくするほど、可動板6はアクチュエータ7
から離れ、流体室1の流体圧を高くする。その際、前述
のように、ヨーク8b上面の円周部に、ヨーク8bを軸
方向に切断した断面形状が3角形状の磁気漏洩部11が
設けられているから、可動板6がヨーク8bの上面に近
づいて、空隙長が小さくなると、磁束の一部が磁気漏洩
部11に漏れ、空隙部に働く有効磁束が減少するので吸
引力は減少する。
Therefore, the larger the drive current of the coil 8a, the more the movable plate 6 is attracted to the actuator 7, and the hydraulic pressure in the fluid chamber 1 is reduced. On the other hand, as the absolute value of the current of the electromagnet 8 is increased to the negative side, the movable plate 6 is moved to the actuator 7
And the fluid pressure in the fluid chamber 1 is increased. At this time, as described above, since the magnetic leakage portion 11 having a triangular cross-section obtained by cutting the yoke 8b in the axial direction is provided on the circumferential portion of the upper surface of the yoke 8b, the movable plate 6 serves as the yoke 8b. When the length of the air gap becomes smaller toward the upper surface, a part of the magnetic flux leaks to the magnetic leakage portion 11, and the effective magnetic flux acting on the air gap decreases, so that the attractive force decreases.

【0020】すなわち、図3に示すように、ヨーク8b
上面の円周部に、3角形状の磁気漏洩部11を設ける
と、空隙長、すなわち可動板6とヨーク8b上面の距離
dよりも可動板6と磁気漏洩部11の距離の方が小さい
ので、可動板6と磁気漏洩部11との間の磁気抵抗の方
が可動板6とヨーク8b上面の磁気抵抗より小さくな
る。したがって、可動板6と磁気漏洩部11の間を磁束
が通るようになる。この結果、従来と同様の磁路Aに加
えて、磁路Bにも磁束が流れる。そして、図3における
X部詳細を示す図4の(a)に示すように、可動板6が
ヨーク8bから遠くにあるときには、磁気漏洩部11と
可動板6との近接した磁束の流れる面積は小さく、当該
部の磁気漏洩部11の断面積は小さいため、磁路Bを流
れる漏洩磁束は少なく、吸引力に寄与する磁路Aを流れ
る磁束の減少分は少ない。
That is, as shown in FIG. 3, the yoke 8b
When the triangular magnetic leakage portion 11 is provided on the circumferential portion of the upper surface, the gap length, that is, the distance between the movable plate 6 and the magnetic leakage portion 11 is smaller than the distance d between the upper surface of the movable plate 6 and the yoke 8b. The magnetic resistance between the movable plate 6 and the magnetic leakage portion 11 is smaller than the magnetic resistance between the movable plate 6 and the upper surface of the yoke 8b. Therefore, the magnetic flux passes between the movable plate 6 and the magnetic leakage portion 11. As a result, the magnetic flux flows in the magnetic path B in addition to the magnetic path A similar to the conventional one. Then, as shown in (a) of FIG. 4 showing details of the X part in FIG. 3, when the movable plate 6 is distant from the yoke 8b, the area where the magnetic flux in the proximity of the magnetic leakage part 11 and the movable plate 6 flows is Since it is small and the cross-sectional area of the magnetic leakage portion 11 of that portion is small, the leakage magnetic flux flowing through the magnetic path B is small, and the reduction amount of the magnetic flux flowing through the magnetic path A that contributes to the attractive force is small.

【0021】しかし、図4の(b)に示すように、可動
板6がヨーク8bに近づくと、磁気漏洩部11と可動板
6との近接した磁束が流れる面積は大きく、当該部の磁
気漏洩部11の断面積は大きくなる。このため、磁路B
を流れる漏洩磁束が多くなり、磁路Aを流れる吸引力に
寄与する磁束の減少分が大きくなる。これにより可動板
6がヨーク8bの上面に近づくほど漏洩磁束が多くなる
ため吸引力の減少率が大きくなり、図5に示されるよう
に、結果的に空隙長(エアギャップ)の変化に対する吸
引力の変化は小さくなり、空隙長dと吸引力との関係は
フラットに近い曲線となる。
However, as shown in FIG. 4 (b), when the movable plate 6 approaches the yoke 8b, the magnetic flux leaking area between the magnetic leakage part 11 and the movable plate 6 is large, and the magnetic leakage of the part is large. The cross-sectional area of the part 11 becomes large. Therefore, the magnetic path B
The leakage magnetic flux flowing through the magnetic flux increases, and the amount of decrease in the magnetic flux that contributes to the attractive force flowing through the magnetic path A increases. As a result, the closer the movable plate 6 is to the upper surface of the yoke 8b, the more the leakage magnetic flux increases, so that the reduction rate of the suction force increases, and as shown in FIG. 5, as a result, the suction force with respect to the change in the air gap length (air gap). Changes, and the relationship between the gap length d and the suction force becomes a curve close to a flat line.

【0022】また、図5において、可動板支持ばね5の
負荷線とコイル8aに+5A流したときのアクチュエー
タ7の吸引力曲線との交点G3と、永久磁石10のみの
吸引力曲線と可動板支持ばね5の負荷線との交点G2間
の可動板ストロークL1と、可動板支持ばね5の負荷線
とコイル8aに−5A流したときのアクチュエータ7の
吸引力曲線との交点G1と、永久磁石10のみの吸引力
曲線と可動板支持ばね5の負荷線との交点G2間の可動
板6のストロークL2とは、ほぼ等しくなる。したがっ
て、電流をプラス側に0〜+5A流したときと、電流を
マイナス側に0〜−5A流したときとの、可動板6の振
動振幅がほぼ等しくなる。このため、エンジン振動の低
減効果が十分になり、また制御系が発散してしまう不具
合も防止される。
Further, in FIG. 5, an intersection point G3 between the load line of the movable plate support spring 5 and the attraction force curve of the actuator 7 when + 5A is applied to the coil 8a, the attraction force curve of only the permanent magnet 10 and the movable plate support. The movable plate stroke L1 between the intersection G2 of the spring 5 and the load line, the intersection G1 of the load line of the movable plate support spring 5 and the attraction force curve of the actuator 7 when -5A is applied to the coil 8a, and the permanent magnet 10. The stroke L2 of the movable plate 6 between the intersection points G2 of the attraction force curve of the only and the load line of the movable plate support spring 5 is substantially equal. Therefore, the vibration amplitude of the movable plate 6 becomes substantially equal when the current is applied to the plus side of 0 to + 5A and when the current is applied to the minus side of 0 to -5A. Therefore, the effect of reducing the engine vibration becomes sufficient, and the problem that the control system diverges is prevented.

【0023】本実施例は以上のように構成され、アクチ
ュエータ7の磁気回路構造を改善して、可動板とヨーク
近づいたとき磁気漏洩が大きくなる磁気漏洩部を設けた
ので、アクチュエータ7の特性を空隙長dの変化に対し
て吸引力変化が小さくなり、常に十分なエンジン振動の
低減効果を得ることができる。
The present embodiment is constructed as described above, and the magnetic circuit structure of the actuator 7 is improved to provide the magnetic leakage portion which increases the magnetic leakage when the movable plate and the yoke are approached. The change in the suction force becomes small with respect to the change in the gap length d, and it is possible to always obtain a sufficient effect of reducing engine vibration.

【0024】図6、図7は、第2の実施例の要部を示
す。ヨーク8b’上面の円周部に可動板6’の外周部に
対向して、ヨーク8b’の軸方向に切断した断面形状が
矩形状の突起よりなる磁気漏洩部21が設けられてい
る。また、ヨーク8b’の上面と対向する可動板6’の
下面には、磁気漏洩部21に向かってテーパ部22が形
成されている。
6 and 7 show the essential parts of the second embodiment. A magnetic leakage portion 21 formed of a protrusion having a rectangular cross section cut in the axial direction of the yoke 8b 'is provided on the circumference of the upper surface of the yoke 8b' so as to face the outer peripheral portion of the movable plate 6 '. Further, a taper portion 22 is formed toward the magnetic leakage portion 21 on the lower surface of the movable plate 6 ′ facing the upper surface of the yoke 8 b ′.

【0025】これにより、可動板6’と磁気漏洩部21
との距離の方が可動板6’とヨーク8b’の上面との距
離(空隙長)dよりも小さくなるので、可動板6’と磁
気漏洩部21との間の磁気抵抗が小さくなり、ここを磁
束が通るようになる。このため、磁路Aに加えて磁路B
にも磁束が流れる。そして、図7の(a)に示すよう
に、可動板6’とヨーク8b’が遠いときには、磁気漏
洩部21に磁束が流れる断面積が小さく、かつ可動板
6’の外周部下面にテーパ部22が形成されているの
で、磁気抵抗が比較的に大きい。したがって、磁路Bを
流れる漏洩磁束は小さく、吸引力に寄与する磁路Aを流
れる磁束の減少分は小さい。
As a result, the movable plate 6'and the magnetic leakage portion 21
Is smaller than the distance (gap length) d between the movable plate 6 ′ and the upper surface of the yoke 8b ′, the magnetic resistance between the movable plate 6 ′ and the magnetic leakage portion 21 is reduced, The magnetic flux will pass through. Therefore, in addition to magnetic path A, magnetic path B
Also magnetic flux flows. Then, as shown in FIG. 7A, when the movable plate 6 ′ and the yoke 8b ′ are far from each other, the cross-sectional area where the magnetic flux flows through the magnetic leakage portion 21 is small, and the taper portion is formed on the lower surface of the outer peripheral portion of the movable plate 6 ′. Since 22 is formed, the magnetic resistance is relatively large. Therefore, the leakage magnetic flux flowing through the magnetic path B is small, and the reduction amount of the magnetic flux flowing through the magnetic path A that contributes to the attractive force is small.

【0026】しかし、図7の(b)に示すように、可動
板6’がヨーク8b’に近づくと、磁気漏洩部21に磁
束が流れる断面積が大きくなり、かつ可動板6’のテー
パ部22は磁気漏洩部21に接近する。このため、磁路
Bを流れる漏洩磁束が多くなり、吸引力に寄与する磁路
Aを流れる磁束の減少分が大きくなる。したがって、可
動板6’からヨーク8b’の上面に向かって垂直に流れ
る磁束の磁束強度は、従来のアクチュエータのように急
激に増加することはなく、このため、吸引力も増加しな
い。
However, as shown in FIG. 7B, when the movable plate 6'approaches the yoke 8b ', the cross-sectional area in which the magnetic flux flows through the magnetic leakage portion 21 increases and the movable plate 6'is tapered. 22 approaches the magnetic leakage part 21. Therefore, the amount of leakage magnetic flux flowing through the magnetic path B increases, and the amount of decrease in the magnetic flux flowing through the magnetic path A that contributes to the attractive force increases. Therefore, the magnetic flux strength of the magnetic flux flowing vertically from the movable plate 6'to the upper surface of the yoke 8b 'does not sharply increase as in the conventional actuator, and therefore the attractive force also does not increase.

【0027】以上のように、本実施例においても、前実
施例と同様に、空隙長の大小の吸引力変化への影響が小
さくなるため、電流の正負による可動板振動振幅の差が
小さくなる。そして、可動板の変位に対応して可動板の
外周部と磁気漏洩部との対向面積だけでなく対向距離も
変化するので、アクチュエータの吸引力の変化をより一
層精密に制御することができ、より高度にエンジンの振
動低減効果を得ることができる。
As described above, also in this embodiment, as in the previous embodiment, since the influence of the size of the gap length on the change in the suction force is small, the difference in the vibration amplitude of the movable plate due to the positive / negative of the current is small. . Then, since not only the facing area between the outer peripheral portion of the movable plate and the magnetic leakage portion but also the facing distance changes in accordance with the displacement of the movable plate, it is possible to more precisely control the change in the attraction force of the actuator. The vibration reduction effect of the engine can be obtained to a higher degree.

【0028】[0028]

【発明の効果】以上のとおり、本発明は、ヨーク上面の
円周部に磁気漏洩部を設け、可動板がヨーク上面に近づ
いて空隙長が小さくなったときに、磁束の一部を磁気漏
洩部に漏らすことによって空隙部に働く有効磁束を減少
させ、吸引力が急激に大きくならないようにしたので、
空隙長変化の吸引力変化への影響が小さくなり、電流の
正負による可動板振動振幅の差が小さくなる。したがっ
て、常に十分なエンジンの振動低減効果を得ることがで
き、また、制御系が発散してしまう不具合も防止するこ
とができる。
As described above, according to the present invention, the magnetic leakage portion is provided in the circumferential portion of the upper surface of the yoke, and when the movable plate approaches the upper surface of the yoke and the air gap length becomes small, a part of the magnetic flux is magnetically leaked. The effective magnetic flux acting on the void is reduced by leaking to the part, so that the attractive force does not suddenly increase,
The influence of the change in the air gap length on the change in the attraction force is reduced, and the difference in the vibration amplitude of the movable plate due to the positive / negative of the current is reduced. Therefore, it is possible to always obtain a sufficient engine vibration reduction effect, and it is also possible to prevent the problem that the control system diverges.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の構造を示す断面図であ
る。
FIG. 1 is a sectional view showing a structure of a first embodiment of the present invention.

【図2】実施例の制御装置を示すブロック図である。FIG. 2 is a block diagram showing a control device of an embodiment.

【図3】実施例における磁束の流れを示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a flow of magnetic flux in the example.

【図4】実施例における磁気漏洩部への磁束の漏れの状
態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state of leakage of magnetic flux to a magnetic leakage portion in the example.

【図5】アクチュエータの動作を説明する図である。FIG. 5 is a diagram for explaining the operation of the actuator.

【図6】第2の実施例の要部を示す図である。FIG. 6 is a diagram showing a main part of a second embodiment.

【図7】第2の実施例における磁気漏洩部への磁束の漏
れの状態を示す説明図である。
FIG. 7 is an explanatory diagram showing a state of magnetic flux leakage to a magnetic leakage portion in the second embodiment.

【図8】従来例を示す図である。FIG. 8 is a diagram showing a conventional example.

【図9】従来例における磁束の流れを示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a flow of magnetic flux in a conventional example.

【図10】従来例のアクチュエータの動作を説明する図
である。
FIG. 10 is a diagram illustrating the operation of a conventional actuator.

【符号の説明】[Explanation of symbols]

1 流体室 1A 調圧室 2 弾性体 3 オリフィス 4 ダイヤフラム 5 可動板支持ばね 6、6’ 可動板 7 アクチュエータ 8 電磁石 8a コイル 8b、8b’ ヨーク 9 外壁 10 永久磁石 11、21 磁気漏洩部 12 スペーサ 13 クランク角センサ 14 加速度センサ 15 A/D変換器 16 CPU 17 D/A変換器 18 電流制御装置 22 テーパ部 1 Fluid Chamber 1A Pressure Control Chamber 2 Elastic Body 3 Orifice 4 Diaphragm 5 Movable Plate Support Spring 6, 6 ′ Movable Plate 7 Actuator 8 Electromagnet 8a Coil 8b, 8b ′ Yoke 9 Outer Wall 10 Permanent Magnet 11, 21 Magnetic Leakage Part 12 Spacer 13 Crank angle sensor 14 Acceleration sensor 15 A / D converter 16 CPU 17 D / A converter 18 Current controller 22 Tapered part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性体により形成され流体室の一部に弾
性部材で支持された可動板と、該可動板と所定の距離を
もって対向し、永久磁石および該永久磁石の磁束を増減
する電磁石を備えたアクチュエータとを有する制御型エ
ンジンマウントにおいて、前記電磁石のヨークの円周部
に可動板の外周部に対向させて突起状の磁気漏洩部を設
け、前記可動板の変位に対応して可動板の外周部と磁気
漏洩部との対向面積が変化するように構成されたことを
特徴とする振動吸収装置。
1. A movable plate formed of a magnetic material and supported by an elastic member in a part of a fluid chamber, and a permanent magnet and an electromagnet that increases and decreases the magnetic flux of the permanent magnet, facing the movable plate with a predetermined distance. In a control type engine mount having an actuator provided with the actuator, a magnetic leakage portion having a protruding shape is provided in a circumferential portion of a yoke of the electromagnet so as to face an outer peripheral portion of the movable plate, and the movable plate responds to displacement of the movable plate. A vibration absorbing device, characterized in that the facing area between the outer peripheral portion and the magnetic leakage portion changes.
【請求項2】 前記可動板とアクチュエータとの対向面
間には該対向面間の空隙長を制限するスペーサが設けら
れ、前記磁気漏洩部と可動板の外周部との対向距離が前
記スペーサで制限された空隙長より小さく設定されてい
ることを特徴とする請求項1記載の振動吸収装置。
2. A spacer is provided between the facing surfaces of the movable plate and the actuator, the spacer limiting the gap length between the facing surfaces, and the facing distance between the magnetic leakage portion and the outer peripheral portion of the movable plate is the spacer. The vibration absorbing device according to claim 1, wherein the vibration absorbing device is set to be smaller than the limited gap length.
【請求項3】 前記磁気漏洩部は、電磁石のヨークを軸
方向に切断した断面において前記軸方向と平行の辺を有
する3角形状をなしていることを特徴とする請求項2記
載の振動吸収装置。
3. The vibration absorber according to claim 2, wherein the magnetic leakage portion has a triangular shape having a side parallel to the axial direction in a cross section obtained by cutting the yoke of the electromagnet in the axial direction. apparatus.
【請求項4】 前記磁気漏洩部は、電磁石のヨークを軸
方向に切断した断面において前記軸方向と平行の辺を有
する矩形をなし、前記可動板は磁気漏洩部と対向する外
周部の下面にテーパ部を備え、前記可動板の変位に対応
して可動板の外周部と磁気漏洩部との対向距離が変化す
るように構成されたことを特徴とする請求項2記載の振
動吸収装置。
4. The magnetic leakage portion has a rectangular shape having a side parallel to the axial direction in a cross section obtained by cutting the yoke of the electromagnet in the axial direction, and the movable plate is provided on a lower surface of an outer peripheral portion facing the magnetic leakage portion. The vibration absorbing device according to claim 2, further comprising a taper portion, wherein the facing distance between the outer peripheral portion of the movable plate and the magnetic leakage portion changes in accordance with the displacement of the movable plate.
JP24690494A 1994-09-14 1994-09-14 Vibration dissipation device Withdrawn JPH0886328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24690494A JPH0886328A (en) 1994-09-14 1994-09-14 Vibration dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24690494A JPH0886328A (en) 1994-09-14 1994-09-14 Vibration dissipation device

Publications (1)

Publication Number Publication Date
JPH0886328A true JPH0886328A (en) 1996-04-02

Family

ID=17155482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24690494A Withdrawn JPH0886328A (en) 1994-09-14 1994-09-14 Vibration dissipation device

Country Status (1)

Country Link
JP (1) JPH0886328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054186A1 (en) * 1999-05-17 2000-11-22 Hutchinson Active hydraulic damping support and active damping system including the same
FR2798710A1 (en) * 1999-09-17 2001-03-23 Tokai Rubber Ind Ltd ACTIVE ELASTIC ASSEMBLY WITH FLUID FILLING

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054186A1 (en) * 1999-05-17 2000-11-22 Hutchinson Active hydraulic damping support and active damping system including the same
FR2793859A1 (en) * 1999-05-17 2000-11-24 Hutchinson ACTIVE HYDRAULIC ANTIVIBRATORY SUPPORT, AND ACTIVE ANTIVIBRATORY SYSTEM COMPRISING SUCH A SUPPORT
US6364294B1 (en) 1999-05-17 2002-04-02 Hutchinson Active hydraulic anti-vibration support and an active anti-vibration system incorporating said support
FR2798710A1 (en) * 1999-09-17 2001-03-23 Tokai Rubber Ind Ltd ACTIVE ELASTIC ASSEMBLY WITH FLUID FILLING

Similar Documents

Publication Publication Date Title
US7537202B2 (en) Active vibration damping device
US8672105B2 (en) Damping control device filled with magnetorheological fluid and engine mount having the same
US7276823B2 (en) Active vibration damping device
US6364294B1 (en) Active hydraulic anti-vibration support and an active anti-vibration system incorporating said support
JPH1038020A (en) Vibration damping device
US5333846A (en) Elastic mount having fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet, and method of manufacturing the elastic mount
JP2003065384A (en) Vibration absorbing device and liquid sealing type vibration absorbing device
JP2584569Y2 (en) Liquid-enclosed power unit mount
JP3658874B2 (en) Vibration absorber
US5261649A (en) Elastic mount having main fluid chamber communicating with auxiliary fluid chamber partially defined by oscillating plate actuated by moving coil in annular gap between two yokes connected to permanent magnet
US5277409A (en) Elastic mount having fluid chamber partially defined by elastically supported oscillating plate
JPH0886328A (en) Vibration dissipation device
JP2638408B2 (en) Rubber mount
JPH0674294A (en) Active dynamic vibration absorber
JPH05231469A (en) Vibrationproofing supporting device
JPH0821482A (en) Vibration insulating device
JP2510914B2 (en) Fluid-filled mounting device
JPH028528A (en) Vibration damper device
JP2001059540A (en) Active mount
JPH04231747A (en) Hydraulic damping type engine mount
JP3198608B2 (en) Fluid-filled mounting device
JP2002206591A (en) Liquid sealing type vibration control device
JPH07119790A (en) Vibration absorbing device
JP2004232708A (en) Liquid sealed vibration control device
JPH01203730A (en) Damper gear

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120