JPH0799302B2 - Ice grain production equipment - Google Patents

Ice grain production equipment

Info

Publication number
JPH0799302B2
JPH0799302B2 JP30734692A JP30734692A JPH0799302B2 JP H0799302 B2 JPH0799302 B2 JP H0799302B2 JP 30734692 A JP30734692 A JP 30734692A JP 30734692 A JP30734692 A JP 30734692A JP H0799302 B2 JPH0799302 B2 JP H0799302B2
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
ice
frozen
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30734692A
Other languages
Japanese (ja)
Other versions
JPH06147705A (en
Inventor
克高 岡森
鉄也 菅野
正美 高稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP30734692A priority Critical patent/JPH0799302B2/en
Publication of JPH06147705A publication Critical patent/JPH06147705A/en
Publication of JPH0799302B2 publication Critical patent/JPH0799302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷粒製造装置に関し、
詳しくは、ショットブラスト等に利用される氷粒や、食
品,薬品等の液状物を粒状に凍結させる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice grain producing apparatus,
More specifically, the present invention relates to an apparatus for freezing granular ice particles used for shot blasting or the like and liquid materials such as foods and chemicals into particles.

【0002】[0002]

【従来の技術】液状物を液体冷媒中に滴下して球状の氷
粒を得る装置としては、例えば特公昭61−25351
号公報に示されるように、液体冷媒槽内から冷媒槽外へ
わたってスクリューコンベアを斜めに配設し、該スクリ
ューコンベアの速度を調節しながら液体冷媒槽より球状
凍結物を取出す装置等が知られている。この装置では、
例えば液体窒素等が貯留された液体冷媒槽内に滴下され
た液状物は、液体冷媒に接触して凍結し、スクリューコ
ンベアによって液体冷媒槽から取出される。
2. Description of the Related Art A device for obtaining spherical ice particles by dropping a liquid substance into a liquid refrigerant is, for example, Japanese Patent Publication No. 61-25351.
As shown in Japanese Patent Publication, there is known a device in which a screw conveyor is obliquely arranged from the inside of the liquid refrigerant tank to the outside of the refrigerant tank, and a spherical frozen product is taken out from the liquid refrigerant tank while adjusting the speed of the screw conveyor. Has been. With this device,
For example, the liquid substance dropped in the liquid refrigerant tank in which liquid nitrogen or the like is stored comes into contact with the liquid refrigerant to be frozen, and is taken out from the liquid refrigerant tank by the screw conveyor.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の装置で
は、液状物を静止した冷媒液面上に滴下するので、液状
物が冷媒の液面上に浮遊しつつ凍結する間に氷粒同士が
付着してしまうことがあった。また、滴下される液状物
の体積が大きい場合には、完全な球状の氷粒ではなく、
半球状の氷粒になってしまうという不都合もあった。
However, in the above-mentioned apparatus, since the liquid material is dripped on the stationary liquid surface of the refrigerant, the ice particles are frozen while the liquid material floats on the liquid surface of the refrigerant and is frozen. There were times when they got attached. Also, when the volume of the dropped liquid is large, it is not a perfect spherical ice particle,
There was also the inconvenience that it became hemispherical ice particles.

【0004】一方、食品,薬品等を凍結させる場合に
は、衛生面等から装置、特に被凍結液を供給する部分を
常に清潔に保つ必要があることから、これらの部分を簡
単に清掃できる構造であることが望まれている。
On the other hand, when freezing foods, chemicals, etc., it is necessary to keep the apparatus, especially the portion to which the liquid to be frozen is supplied, clean from the viewpoint of hygiene, etc., so that these portions can be easily cleaned. Is desired.

【0005】そこで本発明は、略均一な球状氷粒を連続
的に製造することができ、簡単な構成で、液状物供給部
の清掃も容易な氷粒製造装置を提供することを目的とし
ている。
[0005] Therefore, an object of the present invention is to provide an ice grain production apparatus capable of continuously producing substantially uniform spherical ice grains, having a simple structure, and easily cleaning a liquid material supply portion. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め本発明の氷粒製造装置は、液体冷媒中に液状物を滴下
して凍結させる氷粒の製造装置において、前記液体冷媒
の流路を形成し、該液体流路の上流部に、前記液状物を
流下させて液体冷媒に投入する手段を設けるとともに、
前記液体冷媒の流れの下流部に、生成した氷粒と液体冷
媒とを分離する分離部を設けたことを特徴とするもので
あり、前記液状物の投入手段としては、先端から液状物
を流下させる樋形流路,底面に液状物流下用の小通孔を
設けた液溜,底面が液状物が通過可能な多孔質体で形成
された液溜を用いることができる。さらに、流下する液
状物を衝突させて粒状に飛散させる衝突部や、液状物を
粒状にして液体冷媒中に投入する回転体を用いても液状
物を粒状にして液体冷媒中に投入することができる。
In order to achieve the above object, an ice grain producing apparatus of the present invention is an ice grain producing apparatus for dropping a liquid substance into a liquid refrigerant to freeze it. And a means for causing the liquid material to flow down and charging the liquid refrigerant in the upstream portion of the liquid flow path,
In the downstream portion of the flow of the liquid refrigerant, a separating portion for separating the generated ice particles and the liquid refrigerant is provided, and as the liquid material charging means, the liquid material flows down from the tip. It is possible to use a gutter-shaped flow path, a liquid reservoir having a small through hole for liquid flow in the bottom, and a liquid reservoir having a bottom made of a porous material through which a liquid substance can pass. Furthermore, even if a collision part that collides the flowing liquid material and scatters it into particles, or a rotating body that granulates the liquid material into the liquid refrigerant, it is possible to granulate the liquid material into the liquid refrigerant. it can.

【0007】[0007]

【作 用】液体冷媒の流れの上流部に、粒状となって投
入された液状物は、滴下されると同時に、該液体冷媒の
流れによって回転しながら凍結して球状の氷粒になる。
この氷粒を、流路の下流部で液体冷媒から分離すること
により、所望の氷粒が得られる。また、樋形流路等は、
清掃が容易で、常に清浄な状態に保つことができる。
[Operation] At the same time as the liquid material, which has been charged in the form of particles in the upstream portion of the flow of the liquid refrigerant, is dropped, at the same time it is rotated by the flow of the liquid refrigerant to freeze and become spherical ice particles.
By separating the ice particles from the liquid refrigerant in the downstream portion of the flow path, desired ice particles can be obtained. In addition, gutter-shaped channels, etc.
It is easy to clean and can always be kept clean.

【0008】[0008]

【実施例】以下、本発明の氷粒製造装置を、図面に示す
実施例に基づいて、さらに詳細に説明する。まず、図1
は、本発明の氷粒製造装置の一実施例を示すもので、こ
の氷粒製造装置1は、液体冷媒供給口2から供給される
液体冷媒C、例えば液体窒素の流路を形成する樋状の冷
媒流路3と、該冷媒流路3の終端に設けられた分離部4
と、生成した氷粒Bを入れる氷粒容器5と、液体冷媒C
を循環使用するための冷媒循環手段6と、冷媒流路3の
上流部に設けられた液状物投入手段10とから構成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ice grain producing apparatus of the present invention will be described below in more detail with reference to the embodiments shown in the drawings. First, Fig. 1
Shows an embodiment of the ice grain manufacturing apparatus of the present invention. This ice grain manufacturing apparatus 1 is a gutter-shaped forming a flow path of a liquid refrigerant C, for example, liquid nitrogen supplied from a liquid refrigerant supply port 2. Of the cooling medium flow path 3 and a separating section 4 provided at the end of the cooling medium flow path 3
An ice particle container 5 containing the generated ice particles B, and a liquid refrigerant C
It is composed of a refrigerant circulating means 6 for circulating and using the liquid and a liquid material charging means 10 provided in an upstream portion of the refrigerant flow path 3.

【0009】上記冷媒流路3は、冷媒供給口2から供給
する液体冷媒Cの量との関連で、液状物投入手段10か
ら投入される液状物(被凍結液)Aと液体冷媒Cとを十
分に接触させることができる液深を有するとともに、被
凍結液Aを確実に凍結することができる流路長さに形成
されている。
The refrigerant flow path 3 stores the liquid material (freeze liquid) A and the liquid refrigerant C introduced from the liquid material introduction means 10 in relation to the amount of the liquid refrigerant C supplied from the refrigerant supply port 2. It has a liquid depth that allows sufficient contact, and is formed with a flow path length that can reliably freeze the liquid A to be frozen.

【0010】また、前記冷媒循環手段6は、分離部4の
下方に設けられた液回収容器61と、液ポンプ62とを
有するもので、液回収容器61内に流下した液体冷媒
は、管63から液ポンプ62に吸引され、管64を経て
前記液体冷媒供給口2に循環する。なお、この循環経路
のいずれか一つには、使用する液体冷媒を補給する冷媒
補給経路が設けられている。また、上記液体冷媒Cとし
ては、被凍結液Aを急速に凍結できるものであればよ
く、液体窒素や液体空気等の各種低温液化ガスを用いる
ことができ、食品関係の氷粒を製造する際には、食品衛
生上無害のものを用いればよい。
The refrigerant circulating means 6 has a liquid recovery container 61 provided below the separating part 4 and a liquid pump 62. The liquid refrigerant flowing down into the liquid recovery container 61 is pipe 63. Is sucked by the liquid pump 62 and circulates through the pipe 64 to the liquid refrigerant supply port 2. A refrigerant supply path for supplying the liquid refrigerant to be used is provided in any one of the circulation paths. Further, as the liquid refrigerant C, any liquid that can rapidly freeze the liquid A to be frozen may be used, and various low temperature liquefied gases such as liquid nitrogen and liquid air can be used. For this purpose, those harmless to food hygiene may be used.

【0011】上記分離部4は、多数の細い棒を液の流れ
方向に略平行に配列したもので、各棒の間隙は、生成す
る氷粒Bの大きさよりも狭く設定されており、各棒の先
端部下方に前記氷粒容器5が設けられ、各棒の下方に前
記液回収容器61が配設されている。
The separating section 4 is formed by arranging a large number of thin rods substantially parallel to the flow direction of the liquid, and the gap between the rods is set to be narrower than the size of the ice particles B to be generated. The ice grain container 5 is provided below the tip of the above, and the liquid recovery container 61 is provided below each rod.

【0012】そして、前記液状物投入手段10は、被凍
結液Aを液体冷媒中に流下させる複数の樋形流路11
と、該複数の樋形流路11に均等に被凍結液Aを分配す
るための縦方向のスリット12を備えた液溜13とによ
り構成されている。また、液溜13に被凍結液Aを供給
する管14には、液溜内の液位を検出する液面調節計
(LIC)15により制御される流量制御弁16が設け
られており、液溜13内の液位を、所望の高さに保つこ
とができるように形成されている。
The liquid material charging means 10 has a plurality of trough-shaped flow paths 11 for allowing the liquid to be frozen A to flow into the liquid refrigerant.
And a liquid reservoir 13 having a vertical slit 12 for evenly distributing the frozen liquid A to the plurality of gutter-shaped channels 11. The pipe 14 for supplying the liquid to be frozen A to the liquid reservoir 13 is provided with a flow control valve 16 controlled by a liquid level controller (LIC) 15 for detecting the liquid level in the liquid reservoir. It is formed so that the liquid level in the reservoir 13 can be maintained at a desired height.

【0013】上記管14から所定の流量で液溜13に供
給された被凍結液Aは、スリット12の抵抗により、各
樋形流路11に略均等に分配されて、その先端から冷媒
流路3を流れる液体冷媒Cの上流部に流下する。このと
き、被凍結液Aの粘度や樋形流路11先端から液体冷媒
までの高さなどに応じて、樋形流路11の被凍結液Aの
流量を調節することにより、被凍結液Aを粒状にして液
体冷媒C中に投入することができる。すなわち、液溜1
3内の液高さを適宜に設定することにより、被凍結液A
を粒状にして液体冷媒C中に投入することができる。
The frozen liquid A supplied from the pipe 14 to the liquid reservoir 13 at a predetermined flow rate is substantially evenly distributed to the gutter-shaped flow passages 11 by the resistance of the slits 12, and the refrigerant flow passage from the tip thereof. The liquid refrigerant C flowing in 3 flows down. At this time, the flow rate of the frozen liquid A in the trough-shaped channel 11 is adjusted according to the viscosity of the frozen liquid A and the height from the tip of the trough-shaped channel 11 to the liquid refrigerant. Can be granulated and charged into the liquid refrigerant C. That is, the liquid reservoir 1
By setting the liquid height in 3 appropriately, the liquid to be frozen A
Can be granulated and charged into the liquid refrigerant C.

【0014】液体冷媒C中に滴下された被凍結液Aは、
低温の液体冷媒Cに接触して急冷され、冷却されながら
一旦液中に沈み、ある程度冷却されると液面に浮上し、
液体冷媒Cの流れに伴って下流に流される。このとき被
凍結液Aは、液体冷媒Cの流れによって回転しながら凍
結するので、略完全な球状の氷粒Bとなる。このように
して形成された氷粒Bは、液体冷媒Cの流れに乗って冷
媒流路3終端の分離部4に至り、ここで液体冷媒Cは、
細い棒の間から液回収容器61内に流下して前記冷媒循
環手段6により循環使用され、生成した氷粒Bは、細い
棒の上を滑って氷粒容器5内に落下し、適宜な手段で回
収される。
The liquid to be frozen A dropped in the liquid refrigerant C is
When it comes into contact with the low-temperature liquid refrigerant C, it is rapidly cooled, and once it is cooled, it submerges in the liquid, and when cooled to some extent, it floats on the liquid surface,
It is made to flow downstream with the flow of the liquid refrigerant C. At this time, the liquid to be frozen A freezes while being rotated by the flow of the liquid refrigerant C, so that it becomes substantially perfect spherical ice particles B. The ice particles B thus formed ride on the flow of the liquid refrigerant C and reach the separation section 4 at the end of the refrigerant flow path 3, where the liquid refrigerant C is
From the space between the thin rods, it flows down into the liquid recovery container 61 and is circulated and used by the refrigerant circulating means 6, and the produced ice particles B slide on the thin rods and fall into the ice particle container 5, where appropriate means. Will be collected at.

【0015】このように、液状物投入手段10を簡単な
構造の樋形流路11と液溜13とで形成することによ
り、この部分の洗浄を極めて容易に行うことが可能にな
り、これらを常に清潔に保つことができ、異なる液状物
を粒状に凍結させる場合でも、容易に対処することがで
きる。
As described above, by forming the liquid material charging means 10 with the trough-shaped channel 11 and the liquid reservoir 13 having a simple structure, it becomes possible to extremely easily clean this portion. It can be kept clean at all times and can be easily dealt with even when different liquids are frozen into granules.

【0016】次に、上記実施例装置でコーヒーの氷粒を
製造し、氷粒の状態を観察した結果を説明する。常法に
より製造したコーヒー飲料を4〜5℃に冷却し、これを
前記液状物投入手段10から液体窒素の流れの中に1分
間に約170滴の割合で滴下し、凍結搬送時間10〜2
0秒で分離部4から回収した。得られた氷粒の粒径は、
3〜6mmとなり、個数の90%以上が粒径5±1mm
の略完全な球体となった。また、氷粒同士の固着率,氷
粒のひび割れは、共に5%以下であった。
Next, the result of observing the state of ice particles produced by producing ice particles of coffee by the above-mentioned apparatus will be described. A coffee beverage produced by a conventional method is cooled to 4 to 5 ° C., and this is dripped from the liquid material charging means 10 into the flow of liquid nitrogen at a rate of about 170 drops per minute, and a freezing transfer time of 10 to 2 is achieved.
It was recovered from the separation unit 4 in 0 seconds. The particle size of the obtained ice particles is
3 to 6 mm, 90% or more of the number of particles is 5 ± 1 mm
Became a nearly perfect sphere. Further, the sticking ratio of ice particles and the cracking of ice particles were both 5% or less.

【0017】このように、上記実施例装置は、流下する
液体冷媒中に被凍結液を滴下させて氷粒を製造するの
で、氷粒同士が固着することがなく、また、被凍結液が
回転しながら凍結するので、均一で略完全な球状の氷粒
を得ることができる。
As described above, in the apparatus of the above embodiment, the frozen liquid is dripped into the flowing liquid refrigerant to produce the ice particles, so that the ice particles do not stick to each other and the frozen liquid rotates. Since it freezes while it is frozen, it is possible to obtain uniform and almost perfect spherical ice particles.

【0018】図2以下は、本発明の他の実施例を示すも
ので、氷粒製造装置における前記液状物投入手段の各種
構成例を示すものである。まず、図2は、樋形流路11
と液溜13との間に、ゴム等により形成された可撓性の
接続流路101を設けたものである。このように可撓性
の接続流路101を介して樋形流路11を設けることに
より、該樋形流路11の傾斜角度を変えて、流下する被
凍結液Aの流速を、液体冷媒Cに粒状に滴下するように
調節することができ、粘性の異なる被凍結液を凍結させ
る際にも容易に対応することができる。
FIG. 2 and subsequent figures show another embodiment of the present invention, showing various structural examples of the liquid material charging means in the ice grain manufacturing apparatus. First, FIG. 2 shows a gutter-shaped channel 11.
A flexible connection channel 101 made of rubber or the like is provided between the liquid reservoir 13 and the liquid reservoir 13. By providing the trough-shaped channel 11 via the flexible connection channel 101 in this manner, the inclination angle of the trough-shaped channel 11 is changed, and the flow velocity of the frozen liquid A flowing down is changed to the liquid refrigerant C. It can be adjusted so as to be dripped in a granular form, and it is possible to easily cope with freeze of liquids to be frozen having different viscosities.

【0019】また、接続流路101を設けることによ
り、樋形流路11を液体冷媒Cの流れ方向と直角の方向
に水平振動させることができるので、数少ない樋形流路
11で幅広の冷媒流路3に満遍なく被凍結液Aを滴下す
ることも可能になる。さらに、樋形流路11に適当な振
動、特に、被凍結液Aの流れ方向と同一の方向に振動を
与えることにより、粘性の高い被凍結物を凍結処理する
際にも容易に液滴を形成することができる。
Further, since the gutter-shaped flow passage 11 can be horizontally vibrated in the direction perpendicular to the flow direction of the liquid refrigerant C by providing the connection flow passage 101, there are few gutter-shaped flow passages 11 having a wide refrigerant flow. It is also possible to drop the liquid to be frozen A uniformly on the passage 3. Furthermore, by applying appropriate vibration to the gutter-shaped flow path 11, particularly in the same direction as the flow direction of the liquid to be frozen A, droplets can be easily generated even when freezing a highly viscous material to be frozen. Can be formed.

【0020】一方、複数の樋形流路11に、所定量の被
凍結液Aを均等に流下させる手段としては、前記スリッ
ト12以外にも、液溜13の出口部に適当な形状の堰1
02を設けたりしてもよく、図3に示すように液溜13
の底部に適当な通孔103を設けて、該通孔103から
樋形流路11に被凍結液Aを流下させるようにしてもよ
く、他の適当な液量調節手段を組み合わせてもよい。
On the other hand, as means for causing a predetermined amount of the liquid to be frozen A to flow down uniformly into the plurality of trough-shaped channels 11, besides the slit 12, the weir 1 having an appropriate shape at the outlet of the liquid reservoir 13 is used.
02 may be provided, and as shown in FIG.
An appropriate through-hole 103 may be provided at the bottom of the container to allow the liquid to be frozen A to flow down from the through-hole 103 into the trough-shaped channel 11, or other suitable liquid amount adjusting means may be combined.

【0021】また、図4に示すように、冷媒流路3に対
し樋形流路11の高さを高くすることにより、樋形流路
11から被凍結液Aを連続して流下させたときでも、冷
媒流路3を流れる液体冷媒Cの近くで粒状に分離するよ
うにできる。すなわち、略均一で略完全な球状の氷粒を
製造する場合、図2に示すように低い位置から被凍結液
Aを流下させるときには、樋形流路11の先端を離れる
ときに液滴状にしておく必要があるが、高い位置から流
下させる場合には、連続的に被凍結液Aを流下させるこ
とが可能になり、生産性の向上が図れる。なお、氷粒の
形状や大きさにそれほどこだわらない場合には、被凍結
液Aを連続的に液体冷媒C中に流下させてもよい。
Further, as shown in FIG. 4, when the height of the trough-shaped channel 11 is made higher than that of the refrigerant channel 3, the frozen liquid A is continuously flown down from the trough-shaped channel 11. However, the particles can be separated into particles in the vicinity of the liquid refrigerant C flowing through the refrigerant channel 3. That is, in the case of producing substantially uniform and almost perfect spherical ice particles, when the liquid to be frozen A is made to flow from a lower position as shown in FIG. 2, it is made into a droplet shape when leaving the tip of the gutter-shaped channel 11. Although it is necessary to keep it in advance, when the liquid A to be frozen is allowed to flow down from a high position, the liquid A to be frozen can be continuously flowed down, and the productivity can be improved. If the shape and size of the ice particles are not so particular, the liquid to be frozen A may be continuously flown into the liquid refrigerant C.

【0022】図5は、冷媒流路3と樋形流路11とを、
それぞれ複数のV字状流路として1対1に対応させたも
のである。このように形成することにより、隣接する樋
形流路11から落下した被凍結液Aが液体冷媒Cの流れ
の中で凍結する際に、液体冷媒Cの流れと直角な方向で
の生成した氷粒同士が固着することを防止することがで
きるとともに、液体冷媒Cの使用量の低減も図れれる。
なお、両流路の底部形状は、上記V字状が最も好ましい
が、平底や丸底に形成することもでき、上流側と下流側
とで流路断面を変えるようにしてもよい。
FIG. 5 shows the refrigerant flow path 3 and the gutter-shaped flow path 11,
Each of the plurality of V-shaped flow paths has a one-to-one correspondence. By forming in this way, when the frozen liquid A that has fallen from the adjacent gutter-shaped channel 11 freezes in the flow of the liquid refrigerant C, the ice generated in the direction perpendicular to the flow of the liquid refrigerant C is formed. The particles can be prevented from sticking to each other, and the amount of the liquid refrigerant C used can be reduced.
The bottom shapes of both flow paths are most preferably the above V-shape, but they may be flat bottoms or round bottoms, and the flow path cross sections may be different between the upstream side and the downstream side.

【0023】図6は、液状物投入手段として、液溜13
の底面に液状物流下用の小通孔104を複数個設け、該
小通孔104から被凍結液Aを直接液体冷媒Cの流れの
中に滴下するようにしたものである。また、図7は、上
記小通孔104の近傍を凹部105として下方に突出さ
せ、液溜13の底面裏側に生じる液滴の切れをよくした
ものである。
FIG. 6 shows a liquid reservoir 13 as a liquid material charging means.
A plurality of small through holes 104 for lowering the liquid flow are provided on the bottom surface of the liquid, and the liquid to be frozen A is dropped directly into the flow of the liquid refrigerant C from the small through holes 104. Further, in FIG. 7, the vicinity of the small through hole 104 is projected downward as a recess 105 to improve the breakage of liquid droplets generated on the back side of the bottom surface of the liquid reservoir 13.

【0024】図8は、液溜13の底部に被凍結液Aが通
過可能な多孔質体、例えば金網,布,連続気泡を有する
発泡体等からなる液通過部106を設けたものであり、
液溜13内の被凍結液Aは,多孔質体を適度な速さで通
過して冷媒流路3の液体冷媒Cの流れの中に滴下する。
このとき、液通過部106の最下端に突起107を設け
ておくことにより、液滴の形成や落下を、より確実に行
うことができる。
In FIG. 8, a liquid passage portion 106 made of a porous material through which the liquid to be frozen A can pass, for example, wire mesh, cloth, foam having open cells, etc. is provided at the bottom of the liquid reservoir 13.
The liquid to be frozen A in the liquid reservoir 13 passes through the porous body at an appropriate speed and drops into the flow of the liquid refrigerant C in the refrigerant channel 3.
At this time, by providing the protrusion 107 at the lowermost end of the liquid passage portion 106, it is possible to more reliably form and drop the droplet.

【0025】また、図9は、液溜13の底部全体あるい
は液溜13全体を通過可能な上記同様の多孔質体108
で形成したもので、液溜13の底面全体から滲出した被
凍結液Aが所定の位置で滴下するように、底面には所定
の凹凸を形成している。なお、この場合も、前記同様の
突起107を設けておくことができる。
Further, FIG. 9 shows a porous body 108 similar to the above, which can pass through the entire bottom of the liquid reservoir 13 or the entire liquid reservoir 13.
The bottom surface of the liquid reservoir 13 is formed with predetermined irregularities so that the liquid A to be frozen that has exuded from the entire bottom surface of the liquid reservoir 13 drops at a predetermined position. In this case as well, the same protrusion 107 as described above can be provided.

【0026】図10,図11は、冷媒流路3の上流部
に、流下する被凍結液Aを衝突させて粒状に飛散させる
衝突部110を設けたものである。このように衝突部1
10を設けることにより、連続的に流下する被凍結液A
を衝突の際の衝撃で細かな粒ににして液体冷媒C中に飛
散させることができる。この衝突部110は、図10に
示すように、冷媒流路3に直接設置してもよく、図11
に示すように、適当な支持部材111により液体冷媒C
の上方に設置してもよい。また、衝突部110の材質と
しては、低温冷媒温度近くでも安定した物質、例えば石
材等を用いることが好ましい。
In FIGS. 10 and 11, a collision part 110 is provided in the upstream part of the refrigerant flow path 3 to collide the freezing liquid A flowing down and scatter it into particles. In this way, the collision unit 1
The liquid to be frozen A that flows down continuously by providing 10
Can be made into fine particles by the impact at the time of collision and scattered into the liquid refrigerant C. As shown in FIG. 10, the collision unit 110 may be directly installed in the coolant channel 3, and
As shown in FIG.
It may be installed above. Further, as the material of the collision part 110, it is preferable to use a material that is stable even near the low temperature of the refrigerant, such as stone material.

【0027】図12及び図13は、被凍結液Aを強制的
に液滴にして冷媒流路3の液体冷媒Cの流れの中に投入
する機構を示すものである。この液滴投入機構120
は、偏平な円筒状ケース121内で回転する回転体であ
る羽根車122に、管123から被凍結液Aを連続的に
供給し、羽根車122の各羽根で被凍結液Aを所定量に
切断するとともに、遠心力で下方に配置した液体冷媒C
中に投入するものである。
12 and 13 show a mechanism for forcibly forming the liquid to be frozen A into liquid drops into the flow of the liquid refrigerant C in the refrigerant channel 3. This droplet charging mechanism 120
Supplies the liquid to be frozen A continuously from the pipe 123 to the impeller 122, which is a rotating body that rotates in the flat cylindrical case 121, and the amount of the liquid to be frozen A is adjusted to a predetermined amount by each blade of the impeller 122. Liquid refrigerant C that is cut and placed below by centrifugal force
It is what is thrown in.

【0028】上記羽根車122を回転させる手段124
としては、電動モーター,油圧あるいは水圧モーター,
エアモーター等を使用することができる。また、円筒状
ケース121の中心部に、冷媒流路3で気化した冷媒蒸
気、例えば窒素ガスをフード125から管126で導入
することにより、羽根車122部分に中心から外周に向
かうガス流れを形成することができ、中心部が負圧にな
って被凍結液Aが羽根車122の中心部に付着すること
を防止できるとともに、被凍結液Aの投入もスムーズに
行うことができる。
Means 124 for rotating the impeller 122
Electric motor, hydraulic or hydraulic motor,
An air motor or the like can be used. Further, by introducing a refrigerant vapor vaporized in the refrigerant flow path 3, for example, nitrogen gas from the hood 125 through the pipe 126 into the central portion of the cylindrical case 121, a gas flow from the center to the outer periphery is formed in the impeller 122 portion. It is possible to prevent the frozen liquid A from adhering to the central portion of the impeller 122 due to a negative pressure in the central portion, and the frozen liquid A can be charged smoothly.

【0029】この場合の被凍結液Aの投入量は、管12
3からの供給液量,羽根車122の羽根間隔及び回転数
により調節することができ、冷媒流路3を流れる液体冷
媒の流速等に応じて任意に調節することが可能である。
In this case, the amount of the liquid A to be frozen is set to the tube 12
It is possible to adjust the amount of liquid supplied from No. 3, the blade interval of the impeller 122, and the number of rotations, and it is possible to arbitrarily adjust the amount according to the flow velocity of the liquid refrigerant flowing through the refrigerant passage 3.

【0030】なお、回転体として単なる円盤状のものを
用いても、ケースの形状や液の供給位置,回転数等を適
当に設定することにより、被凍結液Aを粒状にして所望
の方向に飛ばすことが可能であり、スプロケット状の回
転体を用いることもできる。
Even if a simple disk-shaped body is used as the rotating body, the liquid to be frozen A is granulated in a desired direction by appropriately setting the shape of the case, the liquid supply position, the number of rotations, and the like. It can be skipped, and a sprocket-shaped rotating body can also be used.

【0031】[0031]

【発明の効果】以上のように、本発明の氷粒製造装置
は、凍結させる液状物を、樋形流路のような簡単な構造
の液状物投入手段から、流れる液体冷媒中に滴下して凍
結させるので、装置全体を簡単な構成で形成することが
可能となり、装置コストの低減が図れ、さらに、液体冷
媒の流れの中で凍結させるので、略均一な球状の氷粒を
製造することができるとともに、生成した氷粒同士の固
着も防止でき、効率良く氷粒を製造することができる。
As described above, in the ice particle producing apparatus of the present invention, the liquid material to be frozen is dripped into the flowing liquid refrigerant from the liquid material charging means having a simple structure such as a gutter-shaped channel. Since it is frozen, it is possible to form the entire device with a simple configuration, the cost of the device can be reduced, and since it is frozen in the flow of the liquid refrigerant, it is possible to produce substantially uniform spherical ice particles. In addition, it is possible to prevent the generated ice particles from sticking to each other and efficiently produce the ice particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す氷粒製造装置の斜視
図である。
FIG. 1 is a perspective view of an ice grain manufacturing apparatus showing an embodiment of the present invention.

【図2】 液状物投入手段の変形例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a modified example of the liquid material charging means.

【図3】 樋形流路への液状物供給手段の他の例を示す
断面図である。
FIG. 3 is a cross-sectional view showing another example of liquid material supply means to the gutter-shaped channel.

【図4】 樋形流路の位置を高くした場合の説明図であ
る。
FIG. 4 is an explanatory diagram when the position of the gutter-shaped channel is raised.

【図5】 樋形流路と冷媒流路の関係を示す概略断面図
である。
FIG. 5 is a schematic cross-sectional view showing the relationship between a gutter-shaped channel and a refrigerant channel.

【図6】 底面に小通孔を設けた液溜の一例を示す要部
の斜視図である。
FIG. 6 is a perspective view of a main part showing an example of a liquid reservoir in which a small through hole is provided on the bottom surface.

【図7】 同じく変形例を示す断面図である。FIG. 7 is a sectional view showing a modification likewise.

【図8】 同じく他の変形例を示す断面図である。FIG. 8 is a sectional view showing another modification of the same.

【図9】 底面が多孔質体で形成された液溜の一例を示
す断面図である。
FIG. 9 is a cross-sectional view showing an example of a liquid reservoir whose bottom surface is formed of a porous body.

【図10】 液状物の衝突部を設けた一例を示す断面図
である。
FIG. 10 is a cross-sectional view showing an example in which a liquid material collision unit is provided.

【図11】 同じく他の変形例を示す断面図である。FIG. 11 is a sectional view showing another modification of the same.

【図12】 回転体を用いた一例を示す断面正面図であ
る。
FIG. 12 is a sectional front view showing an example using a rotating body.

【図13】 同じく断面側面図である。FIG. 13 is a sectional side view of the same.

【符号の説明】[Explanation of symbols]

1…氷粒製造装置、2…冷媒供給口、3…冷媒流路、4
…分離部、5…氷粒容器、6…冷媒循環手段、10…液
状物投入手段、11…樋形流路、12…スリット、13
…液溜、101…可撓性の接続流路、104…小通孔、
106…液通過部、108…多孔質体、110…衝突
部、122…羽根車、A…液状物、B…氷粒、C…液体
冷媒
DESCRIPTION OF SYMBOLS 1 ... Ice grain manufacturing apparatus, 2 ... Refrigerant supply port, 3 ... Refrigerant flow path, 4
... Separation part, 5 ... Ice grain container, 6 ... Refrigerant circulation means, 10 ... Liquid material charging means, 11 ... Trough flow path, 12 ... Slit, 13
... liquid reservoir, 101 ... flexible connecting flow path, 104 ... small through hole,
106 ... Liquid passing part, 108 ... Porous body, 110 ... Collision part, 122 ... Impeller, A ... Liquid matter, B ... Ice particles, C ... Liquid refrigerant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液体冷媒中に液状物を滴下して凍結させ
る氷粒の製造装置において、前記液体冷媒の流路を形成
し、該液体流路の上流部に、先端から前記液状物を流下
させる樋形流路を設けるとともに、前記液体冷媒の流れ
の下流部に、生成した氷粒と液体冷媒とを分離する分離
部を設けたことを特徴とする氷粒製造装置。
1. An apparatus for producing ice particles in which a liquid material is dripped into a liquid refrigerant to freeze the liquid material, a flow path of the liquid refrigerant is formed, and the liquid material flows down from an end to an upstream portion of the liquid flow path. An ice grain manufacturing apparatus, characterized in that a gutter-shaped flow path is provided, and a separation unit that separates the generated ice grains and the liquid coolant is provided downstream of the flow of the liquid coolant.
【請求項2】 前記樋形流路に代えて、底面に液状物流
下用の小通孔を設けた液溜を設けたことを特徴とする請
求項1記載の氷粒製造装置。
2. The ice grain manufacturing apparatus according to claim 1, wherein instead of the gutter-shaped flow path, a liquid reservoir having a small through hole for liquid flow distribution is provided on the bottom surface.
【請求項3】 前記樋形流路に代えて、底面が液状物が
通過可能な多孔質体で形成された液溜を設けたことを特
徴とする請求項1記載の氷粒製造装置。
3. The ice grain manufacturing apparatus according to claim 1, wherein a liquid reservoir having a bottom surface formed of a porous body through which a liquid material can pass is provided in place of the gutter-shaped channel.
【請求項4】 液体冷媒中に液状物を滴下して凍結させ
る氷粒の製造装置において、前記液体冷媒の流路を形成
し、該液体流路の上流部に、流下する液状物を衝突させ
て粒状に飛散させる衝突部を設けるとともに、前記液体
冷媒の流れの下流部に、生成した氷粒と液体冷媒とを分
離する分離部を設けたことを特徴とする氷粒製造装置。
4. A device for producing ice particles in which a liquid material is dripped and frozen in a liquid refrigerant, wherein a flow path of the liquid refrigerant is formed, and the flowing liquid material is made to collide with an upstream portion of the liquid flow path. An ice particle manufacturing apparatus, characterized in that a collision part for scattering the particles in a granular form is provided, and a separating part for separating the generated ice particles and the liquid refrigerant is provided in a downstream part of the flow of the liquid refrigerant.
【請求項5】 液体冷媒中に液状物を滴下して凍結させ
る氷粒の製造装置において、前記液体冷媒の流路を形成
し、該液体流路の上流部に、液状物を粒状にして液体冷
媒中に投入する回転体を設けるとともに、前記液体冷媒
の流れの下流部に、生成した氷粒と液体冷媒とを分離す
る分離部を設けたことを特徴とする氷粒製造装置。
5. An apparatus for producing ice particles in which a liquid material is dripped and frozen in a liquid refrigerant, wherein a flow path for the liquid refrigerant is formed, and the liquid material is granulated at the upstream portion of the liquid flow path. An ice grain manufacturing apparatus, characterized in that a rotating body to be put into the coolant is provided, and a separating section for separating the produced ice grains and the liquid coolant is provided at a downstream portion of the flow of the liquid coolant.
JP30734692A 1992-11-17 1992-11-17 Ice grain production equipment Expired - Fee Related JPH0799302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30734692A JPH0799302B2 (en) 1992-11-17 1992-11-17 Ice grain production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30734692A JPH0799302B2 (en) 1992-11-17 1992-11-17 Ice grain production equipment

Publications (2)

Publication Number Publication Date
JPH06147705A JPH06147705A (en) 1994-05-27
JPH0799302B2 true JPH0799302B2 (en) 1995-10-25

Family

ID=17968011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30734692A Expired - Fee Related JPH0799302B2 (en) 1992-11-17 1992-11-17 Ice grain production equipment

Country Status (1)

Country Link
JP (1) JPH0799302B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540046B2 (en) * 2004-08-09 2010-09-08 財団法人電力中央研究所 Static water refrigerant heat pump ice making system
CN103743176A (en) * 2013-12-09 2014-04-23 常熟市雪科电器有限公司 Ice-making machine
JP6598429B2 (en) * 2014-01-16 2019-10-30 江崎グリコ株式会社 Ice grain group for cold liquid food with ice and method for producing the same, container with ice grain group, and cold liquid food with ice
JP6364696B2 (en) * 2014-09-30 2018-08-01 江崎グリコ株式会社 Ice grain production method and ice grain production apparatus
JP6461631B2 (en) * 2015-02-06 2019-01-30 江崎グリコ株式会社 Ice grain group for cold drink with fine ice and method for producing the same, container with ice grain group, cold drink with fine ice and method for preparing the same
JP6603534B2 (en) * 2015-10-07 2019-11-06 大陽日酸株式会社 Low temperature liquefied gas rectifier
JP7266268B2 (en) * 2018-01-30 2023-04-28 江藤酸素株式会社 Method for producing bulk gas-containing ice

Also Published As

Publication number Publication date
JPH06147705A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
US4848094A (en) Droplet freezing method and apparatus
US7955566B2 (en) Fluid bed granulator
US6494049B1 (en) Control system for cryogenic processor for liquid feed preparation of free-flowing frozen product
CN1429329A (en) Cryogenic processor for liquid feed preparation of free-flowing frozen product
GB2063759A (en) Granulation process and apparatus therefor
JPH0799302B2 (en) Ice grain production equipment
JPH0829032A (en) Ice producing device
JP2005503767A (en) Method and apparatus for manufacturing popcorn frozen products
CA2562722A1 (en) Method and apparatus for cooling product
JP4625223B2 (en) Method and apparatus for processing solutions, melts, suspensions, emulsions, slurries, or solids into granules
CN1050485A (en) Agglomeration process and device thereof
CA2907404A1 (en) Nucleator for generating ice crystals for seeding water droplets in snow-making systems
JPH0314764B2 (en)
JPH07328409A (en) Method and device for granulating substance capable of formation into granule and/or tablet
US7550696B2 (en) Thawing method and apparatus for articles to be thawed
US5862678A (en) Method and device for producing and separating solid particles
WO2001068230A1 (en) Pellet-freezing device
US6626737B1 (en) Machine to produce and propel sublimable solid particles
JP2009097793A (en) Method for manufacturing spherical ice particles by air releasing method and device for manufacturing the same
JPH0560898B2 (en)
JPH09310943A (en) Method and device for solidifying liquid material in granular form
JPH02290233A (en) Manufacturing device for granular gel
JP2811620B2 (en) Method and apparatus for producing resin granules
JP2009115422A (en) Method and apparatus for manufacturing spherical ice grain by aerial release method
JPH11151434A (en) Wet granulating method and device therefor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20091025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20111025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20121025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees