JPH0791767B2 - Non-woven fabric binder with excellent solvent resistance - Google Patents

Non-woven fabric binder with excellent solvent resistance

Info

Publication number
JPH0791767B2
JPH0791767B2 JP62001511A JP151187A JPH0791767B2 JP H0791767 B2 JPH0791767 B2 JP H0791767B2 JP 62001511 A JP62001511 A JP 62001511A JP 151187 A JP151187 A JP 151187A JP H0791767 B2 JPH0791767 B2 JP H0791767B2
Authority
JP
Japan
Prior art keywords
latex
weight
solvent resistance
woven fabric
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62001511A
Other languages
Japanese (ja)
Other versions
JPS63175151A (en
Inventor
義正 田中
俊介 渡辺
昭雄 翠川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP62001511A priority Critical patent/JPH0791767B2/en
Publication of JPS63175151A publication Critical patent/JPS63175151A/en
Publication of JPH0791767B2 publication Critical patent/JPH0791767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改良された不織布用結合剤に関し、特に耐溶剤
性に優れた不織布を得ることのできる不織布用結合剤に
関する。
TECHNICAL FIELD The present invention relates to an improved non-woven fabric binder, and more particularly to a non-woven fabric binder with which a non-woven fabric having excellent solvent resistance can be obtained.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

乾式不織布の繊維の結合方式にはバインダ(結合剤)に
よるもの、繊維を熱融着させるものおよび機械的に繊維
を絡み合わせるものがあり、このうちバインダによる結
合方式が、多様な機能を不織布に与えることができるた
め、最も広く採用されている。使用されるバインダは殆
どがラテツクスあるいはエマルジヨンと呼ばれているポ
リマー粒子の水中分散体を主成分としており、ポリマー
の種類としてはアクリル系、酢ビ系共重合体、SBR系、N
BR系などが使用されている。
There are two types of fiber bonding methods for dry non-woven fabrics: one using a binder (bonding agent), one that heat-bonds the fibers, and one that mechanically entangles the fibers. Of these, the binder bonding method provides various functions to the non-woven fabric. Most widely adopted because it can be given. Most of the binders used are mainly dispersions of polymer particles in water called latex or emulsion, and the types of polymers are acrylic type, vinyl acetate type copolymer, SBR type, N type.
BR series are used.

不織布に要求される最も重要な性能の1つに耐溶剤性が
あり、これにはラテツクスの性能が極めて大きな影響を
与える。
One of the most important performances required of non-woven fabrics is solvent resistance, and the performance of the latex has a great influence on this.

例えば衣料芯地用不織布において、ラテツクスの耐溶剤
性が十分でなければドライクリーニングに耐えることが
できない。また、一般の工業資材用や雑貨用として使用
される不織布に於ても、夫々の用途に於て要求される耐
溶剤性は、ラテツクスの性能によつて大きく左右され
る。
For example, a nonwoven fabric for clothing interlining cannot withstand dry cleaning unless the latex has sufficient solvent resistance. Also, in non-woven fabrics used for general industrial materials and miscellaneous goods, the solvent resistance required for each application is greatly influenced by the performance of the latex.

この耐溶剤性を向上させるための一つの方法としてバイ
ンダとして使用されるラテツクスには架橋反応性を有す
るN−メチロール(メタ)アクリルアミド等の官能性単
量体を共重合したり、水溶性トリメチロールメラミン樹
脂等の多官能性熱硬化型樹脂を加工時に併用して、不織
布の熱処理工程において、ラテツクスのポリマー中に架
橋構造を形成させる等の方法がある。
As one method for improving the solvent resistance, latex used as a binder is copolymerized with a functional monomer such as N-methylol (meth) acrylamide having cross-linking reactivity, or water-soluble trimethylol. There is a method in which a polyfunctional thermosetting resin such as a melamine resin is used together during processing to form a crosslinked structure in the polymer of the latex in the heat treatment step of the nonwoven fabric.

しかし、これらの方法は、ラテツクスの化学的安定性を
低下させる要因となるため、多量の架橋成分の導入は不
可能である上、十分な効果を得るためには高温で長時間
の熱処理を要することから生産性を考慮しなければなら
ない実際の不織布製造工程では、満足し得る効果が得ら
れていない。
However, since these methods are factors that reduce the chemical stability of the latex, it is impossible to introduce a large amount of the crosslinking component, and further, heat treatment at high temperature for a long time is required to obtain a sufficient effect. Therefore, a satisfactory effect has not been obtained in the actual nonwoven fabric manufacturing process in which productivity must be taken into consideration.

このため、実用上、高度の耐溶剤性を必要とする場合に
はNBR(アクリロニトリル−ブタジエンラバー)ラテツ
クスが使用される。この理由は、NBRには他のラテツク
スに比べてモノマーとしてアクリロニトリルが比較的多
量に使用されているため共重合体中のニトリル基(−C
≡N)含有率が多く、この高いニトリル基含有率が、皮
膜に油、有機溶剤に対して高い抵抗性、即ち耐溶剤性を
与えるからである。
For this reason, NBR (acrylonitrile-butadiene rubber) latex is used when practically high solvent resistance is required. The reason for this is that NBR uses a relatively large amount of acrylonitrile as a monomer as compared with other latexes, and therefore the nitrile group (-C
This is because the ≡N) content is high, and this high nitrile group content gives the film high resistance to oil and organic solvents, that is, solvent resistance.

ところが、より高い耐溶剤性を求めてNBRラテツクス中
のアクリロニトリルの比率を高めた場合、製造時の乳化
重合反応が進行せず不安定となり、得られたNBRラテツ
クスも機械的な安定性に劣るため不織布の含浸工程に耐
えることが出来なくなる欠点があつた。
However, when the ratio of acrylonitrile in NBR lattex is increased for higher solvent resistance, the emulsion polymerization reaction during production becomes unstable without proceeding, and the resulting NBR lattex is also poor in mechanical stability. There was a drawback that it could not withstand the impregnation process of the non-woven fabric.

このため、近年、不織布の用途、多様化及び要求性能の
高度化により従来のNBRよりさらに耐溶剤性に優れたバ
インダが求められているにもかかわらず、上記の理由に
より市場の要求は満足されていなかつた。
For this reason, in recent years, due to the use, diversification, and sophistication of required performance of non-woven fabrics, there is a demand for a binder having more excellent solvent resistance than conventional NBR, but the market demand is satisfied due to the above reasons. I never happened.

本発明は以上のような従来の事情を考慮してなされたも
ので、従来の不織布用結合剤としてのNBRラテツクスの
耐溶剤性及び機械的安定性が不充分であることを改良し
ようとするものである。
The present invention has been made in consideration of the above conventional circumstances, and is intended to improve the solvent resistance and mechanical stability of NBR latex as a conventional binder for nonwoven fabrics is insufficient. Is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、従来のNBRラテツクスより耐溶剤性及び
機械的安定性に優れた不織布用結合剤としてのラテツク
スを開発するため、いかに多くのニトル基をポリマー分
子中に導入するかを検討していたところ、高度な耐溶剤
性を得るためにはトルエンに対するラテツクス皮膜の重
量膨潤率が200%以下でなければならないこと及びこの
条件を満たすためには、ポリマー分子中に17重量%以上
のニトリル基を含有する単量体組成のラテツクスでなけ
ればならないことを見い出した。そして、更に鋭意研究
した結果、驚くべきことにニトリル基を導入するため単
量体としてその一部或いは全部をメタクリロニトリルと
することによつて重合安定性が著しく向上し、又、得ら
れたラテツクスも機械的安定性に極めて優れており、加
工した不織布は従来のNBRラテツクスでは到底得られな
かつた極めて高度な耐溶剤性を有することを見い出し、
本発明を完成するに到つたものである。
In order to develop a latex as a binder for a non-woven fabric which is more excellent in solvent resistance and mechanical stability than the conventional NBR latex, the present inventors examined how many nitrogen groups are introduced into a polymer molecule. However, in order to obtain a high degree of solvent resistance, the weight swelling ratio of the latex film to toluene must be 200% or less, and in order to satisfy this condition, 17% by weight or more of nitrile in the polymer molecule is required. It has been found that it must be a latex of monomer composition containing groups. As a result of further diligent research, surprisingly, the polymerization stability was remarkably improved by using methacrylonitrile as a monomer to introduce a nitrile group. The latex also has extremely excellent mechanical stability, and it was found that the processed non-woven fabric has extremely high solvent resistance that could not be obtained with conventional NBR latex.
The present invention has been completed.

即ち、本発明はブタジエン35〜60重量%、メタクリロニ
トリル5〜60重量%、エチレン性不飽和カルボン酸1〜
8重量%及びこれらの単量体と共重合可能なその他のエ
チレン性単量体0〜59重量%なる単量体混合物を乳化重
合し、且つポリマー中に占めるニトリル基(−C≡N)
の割合を17重量%以上としたラテツクスを用いる耐溶剤
性に優れる不織布用結合剤を提供するものである。
That is, the present invention comprises butadiene 35 to 60% by weight, methacrylonitrile 5 to 60% by weight, ethylenically unsaturated carboxylic acid 1 to
Emulsion polymerization of a monomer mixture consisting of 8% by weight and 0 to 59% by weight of other ethylenic monomer copolymerizable with these monomers, and a nitrile group (-C≡N) occupied in the polymer
The present invention provides a binder for non-woven fabric, which has a solvent resistance of 17% by weight or more and is excellent in solvent resistance.

本発明で使用するブタジエンは、ラテツクスの皮膜に可
撓性を与えると共に不織布加工の乾燥工程において、通
常の乾燥温度での結合剤の成膜を容易にするために必要
な単量体で、全単量体に対して35〜60重量%使用され
る。ブタジエンの使用量が35重量%未満では、得られた
ラテツクスの皮膜はもろくなり、また常温では皮膜の形
成が不十分となるため、不織布の含浸工程において、粉
末状の乾燥物が生成し、含浸作業に支障をきたす。ま
た、ブタジエンの使用量が60重量%を越えると、得られ
たラテツクスの皮膜は耐溶剤性に劣り、本発明の目的を
達成することが出来ない。本発明で使用するメタクリロ
ニトリルはラテツクスの皮膜に耐溶剤性を与えると共
に、皮膜の凝集力を高めるために必要な単量体で、本発
明の目的とする高度の耐溶剤性を得るための必須の単量
体であり、その使用量は全単量体に対して5〜60重量%
である。
The butadiene used in the present invention is a monomer necessary for imparting flexibility to the latex film and facilitating the film formation of the binder at a normal drying temperature in the drying step of the nonwoven fabric processing. It is used in an amount of 35 to 60% by weight based on the monomer. If the amount of butadiene used is less than 35% by weight, the resulting latex film becomes brittle and the film formation is inadequate at room temperature. It interferes with work. On the other hand, if the amount of butadiene used exceeds 60% by weight, the resulting latex film has poor solvent resistance and the object of the present invention cannot be achieved. Methacrylonitrile used in the present invention is a monomer necessary for increasing the cohesive force of the coating as well as imparting solvent resistance to the coating of the latex, in order to obtain a high degree of solvent resistance targeted by the present invention. It is an essential monomer, and its usage is 5-60% by weight based on the total monomers.
Is.

メタクリロニトリルの使用量が5重量%未満では、たと
えアクリロニトリルを併用してポリマー中のニトリル含
有量を17重量%以上としても乳化重合時の反応が進行し
難く、重合安定性に劣り、又不織布の含浸作業時におい
ての機械的安定性に劣り、耐溶剤性も悪い。又、その使
用量が60重量%を越えると、常温におけるラテツクスの
皮膜形成性が低下する結果、前述の如く、不織布の含浸
工程での作業性が低下する。
When the amount of methacrylonitrile used is less than 5% by weight, even if acrylonitrile is used together and the nitrile content in the polymer is 17% by weight or more, the reaction during emulsion polymerization is difficult to proceed, the polymerization stability is poor, and the nonwoven fabric is also non-woven fabric. Inferior mechanical stability during impregnation work and poor solvent resistance. On the other hand, if the amount used exceeds 60% by weight, the latex film-forming property at room temperature is deteriorated, and as a result, the workability in the impregnation step of the nonwoven fabric is deteriorated.

本発明で使用するエチレン性不飽和カルボン酸として
は、アクリル酸、メタクリル酸、クロトン酸、マレイン
酸およびの無水物、フマル酸、イタコン酸、並びに不飽
和ジカルボン酸モノアルキルエステル、例えばマレイン
酸モノメチル、フマル酸モノエチル、イタコン酸モノn
−ブチル等のエチレン性不飽和カルボン酸等が挙げら
れ、全単量体に対して1〜8重量%使用することが出来
る。
Examples of the ethylenically unsaturated carboxylic acid used in the present invention include acrylic acid, methacrylic acid, crotonic acid, anhydrides of maleic acid and fumaric acid, itaconic acid, and unsaturated dicarboxylic acid monoalkyl esters such as monomethyl maleate. Monoethyl fumarate, mono-itaconate n
Examples thereof include ethylenically unsaturated carboxylic acid such as butyl, which can be used in an amount of 1 to 8% by weight based on all monomers.

エチレン性不飽和カルボン酸は、ラテツクス皮膜の繊維
に対する接着性の向上、及びラテツクスの機械的安定性
を向上させる為に必要な単量体成分であり、その使用量
が全単量体に対して1重量%未満では、これらの効果が
得られない。また、その使用量が8重量%を越えると、
ラテツクスが高粘度となり、不織布への均一な含浸が不
可能となる。
The ethylenically unsaturated carboxylic acid is a monomer component necessary for improving the adhesiveness of the latex film to the fiber and improving the mechanical stability of the latex, and the amount thereof used is based on all the monomers. If it is less than 1% by weight, these effects cannot be obtained. If the amount used exceeds 8% by weight,
The latex has a high viscosity, making it impossible to uniformly impregnate the nonwoven fabric.

本発明で使用するブタジエン、メタクリロニトリル、エ
チレン性不飽和カルボン酸と共重合可能なその他のエチ
レン性不飽和単量体としては、アクリロニトリルのほか
アクリル酸メチル、メタクリル酸メチル、アクリル酸エ
チル、メタクリル酸エチル、アクリル酸プロピル、メタ
クリル酸プロピル、アクリル酸ブチル、メタクリル酸ブ
チル、アクリル酸ペンチル、メタクリル酸ペンチル、ア
クリル酸ヘキシル、メタクリル酸ヘキシル、アクリル酸
ヘプチル、メタクリル酸ヘプチル、アクリル酸オクチ
ル、メタクリル酸オクチル、アクリル酸オクタデシル、
メタクリル酸オクタデシル等で例示されるアクリル酸ア
クリルエステルおよびメタクリル酸アルキルエステル;
スチレン、α−メチルスチレン、ビニルトルエン、クロ
ルスチレン、2,4−ジブロムスチレン等で例示されるエ
チレン性不飽和芳香族単量体;酢酸ビニル、プロピオン
酸ビニル等の如きビニルエステル;塩化ビニリデン、臭
化ビニリデン等の如きビニリデンハライド;アクリル酸
−2−ヒドロキシエチル、アクル酸−2−ヒドロキシプ
ロピル、メタクリル酸−2−ヒドロキシエチル等の如き
エチレン性不飽和カルボン酸のヒドロキシアルキルエス
テル;アクリル酸グリシジル、メタクリル酸グリシジル
等の如きエチレン性不飽和カルボン酸のグリシジルエス
テルおよびアクリルアミド、メタクリルアミド、N−メ
チロールアクリルアミド、N−メチロールメタクリルア
ミド、N−ブトキシメチルアクリルアミド、ジアセトン
アクリルアミド等のラジカル重合可能な単量体が挙げら
れる。
Examples of other ethylenically unsaturated monomers copolymerizable with butadiene, methacrylonitrile, and ethylenically unsaturated carboxylic acid used in the present invention include acrylonitrile, methyl acrylate, methyl methacrylate, ethyl acrylate, and methacryl Ethyl acrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, hexyl acrylate, hexyl methacrylate, heptyl acrylate, heptyl methacrylate, octyl acrylate, octyl methacrylate , Octadecyl acrylate,
Acrylic acid acrylic ester and methacrylic acid alkyl ester exemplified by octadecyl methacrylate and the like;
Ethylenically unsaturated aromatic monomers exemplified by styrene, α-methylstyrene, vinyltoluene, chlorostyrene, 2,4-dibromostyrene and the like; vinyl esters such as vinyl acetate and vinyl propionate; vinylidene chloride, Vinylidene halides such as vinylidene bromide; hydroxyalkyl esters of ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate and the like; glycidyl acrylate, Glycidyl esters of ethylenically unsaturated carboxylic acids such as glycidyl methacrylate and acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N-butoxymethyl acrylamide, diacetone acrylamide, etc. Radical polymerizable monomer.

本発明のラテツクスは、前記したブタジエン35〜60重量
%、メタクリロニトリル5〜60重量%、エチレン性不飽
和カルボン酸1〜8重量%及びこれら単量体と共重合可
能なその他のエチレン性不飽和単量体0〜59重量%より
なる単量体組成から得られるが、メタクリロニトリルの
使用比率が少ない場合はその他のエチレン性不飽和単量
体としてアクリロニトリルの如きニトリル基含有単量体
を使用してラテツクスのポリマー中に占めるニトリル基
の含有率を17重量%以上とする必要がある。
The latex of the present invention comprises 35 to 60% by weight of butadiene, 5 to 60% by weight of methacrylonitrile, 1 to 8% by weight of ethylenically unsaturated carboxylic acid, and other ethylenic monomers copolymerizable with these monomers. It is obtained from a monomer composition consisting of 0 to 59% by weight of a saturated monomer, but when the proportion of methacrylonitrile used is small, a nitrile group-containing monomer such as acrylonitrile is used as another ethylenically unsaturated monomer. It is necessary to use the nitrile group content in the polymer of Latex to be 17% by weight or more.

本発明のラテツクスは水性媒体中にて、上記単量体混合
物を通常の乳化重合法により重合して調製される。例え
ばアニオン性又はノニオン性乳化剤の存在下で単量体混
合物を水中に乳化分散させ、フリーラジカル発生触媒、
例えばKPS(K2S2O3)、APS((NH4))2S2O8)、過酸化
水素水等の水性触媒、t−ブチルハイドロパーオキサイ
ド、クメンハイドロパーオキサイド等の油性触媒により
好ましくは40℃〜90℃で乳化重合を行えばよい。
The latex of the present invention is prepared by polymerizing the above-mentioned monomer mixture by an ordinary emulsion polymerization method in an aqueous medium. For example, by emulsifying and dispersing a monomer mixture in water in the presence of an anionic or nonionic emulsifier, a free radical generating catalyst,
For example, with KPS (K 2 S 2 O 3 ), APS ((NH 4 )) 2 S 2 O 8 ), an aqueous catalyst such as hydrogen peroxide solution, an oil catalyst such as t-butyl hydroperoxide, cumene hydroperoxide, etc. Emulsion polymerization may be preferably carried out at 40 ° C to 90 ° C.

また、本発明において乳化重合に通常用いられる添加
剤、例えば連鎖移動剤、重合安定化や緩衝効果を目的と
したエチレンジアミン四酢酸等を必要に応じて使用する
ことは何ら差しつかえない。
In the present invention, additives usually used for emulsion polymerization, such as a chain transfer agent, ethylenediaminetetraacetic acid for the purpose of stabilizing polymerization and buffering effect, may be optionally used.

本発明のラテツクスは、例えばストリツピング等の方法
によつて、必要とされる固形分含量に濃縮される。
The latex of the present invention is concentrated to a required solid content by a method such as stripping.

得られたラテツクスは、pH3〜7、粘度30〜1000cps程度
のもので、より好ましくは安定性を向上させるためアル
カリ溶液でpH8〜10に調整される。
The obtained latex has a pH of 3 to 7 and a viscosity of about 30 to 1000 cps, and more preferably is adjusted to pH 8 to 10 with an alkaline solution in order to improve stability.

〔発明の効果〕〔The invention's effect〕

こうして得られた本発明のラテツクスをバインダとして
用いて不織布加工した場合には、その不織布は極めて耐
溶剤性に優れ、また非常に柔軟なものから硬いものまで
用途に応じた広い範囲の風合を有する不織布が得られる
ので衣料用、資材用不織布として最適である。また含浸
性、スプレー性等安定性も良好である。
When the thus obtained latex of the present invention is used as a binder to fabricate a non-woven fabric, the non-woven fabric is extremely excellent in solvent resistance, and has a wide range of textures from very flexible to hard depending on the application. Since it has a non-woven fabric, it is most suitable as a non-woven fabric for clothing and materials. Further, the stability such as impregnation property and spray property is also good.

次に実施例によつて本発明を具体的に説明する。なお、
文中に表示した部数及び%はそれぞれ重量部、重量%を
示す。
Next, the present invention will be specifically described with reference to examples. In addition,
The numbers of parts and% shown in the text represent parts by weight and% by weight, respectively.

また、実施例中におけるラテツクスの凝集物生成率、機
械的安定性は下記方法で測定した。
In addition, the rate of aggregate formation of latex and mechanical stability in the examples were measured by the following methods.

〔測定方法〕〔Measuring method〕

(1) 凝集物生成率(%) 重合反応終了後のラテツクス100gを200メツシユの布
で過し、120℃、1時間乾燥後の残の重量をラテツ
クスの固型分重量で除した値を百分率で表わした。
(1) Aggregate formation rate (%) 100 g of latex after completion of polymerization reaction was passed through a cloth of 200 mesh and dried at 120 ° C for 1 hour, and the remaining weight was divided by the solid content of the latex to give a percentage. Expressed as

(2) 機械的安定性 マーロン式機械的安定性試験機を用いて50gのラテツク
スを荷重10kg、回転数3000rpmで10分間回転摩擦し、生
成した凝集物を120℃、1時間乾燥させた後の重量をラ
テツクスの固型分重量で除した値を百分率で表わした。
(2) Mechanical stability Using a Marlon type mechanical stability tester, 50 g of latex was rubbed for 10 minutes at a load of 10 kg and a rotation speed of 3000 rpm for 10 minutes, and the resulting aggregate was dried at 120 ° C. for 1 hour. The value obtained by dividing the weight by the weight of the solid content of the latex was expressed as a percentage.

実施例1〜4 窒素置換した撹拌機付オートクレーブに、表−1に示す
組成の原料を仕込み、50℃で撹拌しながら重合率95%以
上になる迄乳化重合を行なつた。次いで水蒸気蒸留によ
り脱モノマーを行なつた後、25%アンモニア水を添加し
てpH8〜9に調整し、さらに必要に応じてイオン交換水
を添加して固型分39.0〜41.0%のラテツクスA、B、
C、Dを得た。乳化重合はいずれも目標とする95%以上
の重合率になる迄安定に進行し、表−1に示す結果の如
く重合中に発生する凝集物の量も非常に少ないものであ
つた。得られたラテツクスの粘度も低く、又、機械的安
定性も極めて良好であつた。
Examples 1 to 4 A nitrogen-substituted autoclave equipped with a stirrer was charged with the raw materials having the compositions shown in Table 1, and emulsion polymerization was carried out at 50 ° C. with stirring until the polymerization rate reached 95% or more. Next, after demonomerizing by steam distillation, 25% ammonia water is added to adjust the pH to 8-9, and ion-exchanged water is further added as necessary to obtain a latex A having a solid content of 39.0-41.0%, B,
C and D were obtained. The emulsion polymerization proceeded steadily until the target polymerization rate of 95% or more, and as shown in Table 1, the amount of aggregates generated during the polymerization was very small. The viscosity of the obtained latex was low, and the mechanical stability was very good.

比較例1,2 実施例1〜4と同様の方法で表−1に示す組成の原料を
仕込み、50℃で撹拌しながら重合率95%以上を目標に乳
化重合を行なつた。次いで実施例1〜4と同様の方法で
脱モノマー、pH調整、固型分調整を行なつてpH8〜9、
固型分39.0〜41.0%のラテツクスを得た。
Comparative Examples 1 and 2 In the same manner as in Examples 1 to 4, the raw materials having the compositions shown in Table 1 were charged, and emulsion polymerization was carried out with stirring at 50 ° C. while aiming at a polymerization rate of 95% or more. Then, demonomerization, pH adjustment, and solid content adjustment are performed in the same manner as in Examples 1 to 4 to obtain pH 8 to 9,
A latex with a solid content of 39.0-41.0% was obtained.

結果は表−1に示す如く、メタクリロニトリルを使用し
ていない比較例1においては重合が全く不安定で、重合
開始8時間後に重合中のポリマー粒子が凝集し、ラテツ
クスを得ることが出来なかつた。
As shown in Table 1, in Comparative Example 1 in which methacrylonitrile was not used, the polymerization was quite unstable, and the polymer particles during the polymerization were aggregated 8 hours after the initiation of the polymerization, and the latex could not be obtained. It was

また、メタクリロニトリルの使用量が少ない比較例2に
おいては重合反応が進行しにくく、20時間もの長時間反
応を継続しても重合率は93.8%と非常に低い。また重合
中に発生した凝集物の量も、本発明である実施例1〜5
に比較してはるかに多く、重合が不安定であることを示
している。さらに得られたラテツクスEは機械的安定性
が極めて悪かつた。
Further, in Comparative Example 2 in which the amount of methacrylonitrile used was small, the polymerization reaction did not easily proceed, and even if the reaction was continued for a long time of 20 hours, the polymerization rate was extremely low at 93.8%. In addition, the amount of aggregates generated during the polymerization was also determined in Examples 1 to 5 of the present invention.
It shows that the polymerization is unstable much more than the above. Further, the obtained latex E had extremely poor mechanical stability.

以上の結果から、メタクリロニトリル5%未満でしかも
ニトリル基含有量の多い単量体組成の場合は安定な乳化
重合が困難であり、得られたラテツクスも不安定である
ことがわかる。
From the above results, it is understood that stable emulsion polymerization is difficult and the obtained latex is unstable when the monomer composition has less than 5% methacrylonitrile and a large nitrile group content.

比較例3〜6 実施例1〜4と同様の方法で表−1に示す組成の原料を
仕込み、50℃で撹拌しながら重合率95%以上になる迄乳
化重合を行なつた。次いで実施例1〜4と同様の方法で
脱モノマー、pH調整、固型分調整を行なつてpH8〜9、
固型分39.0〜41.0%のラテツクスを得た。
Comparative Examples 3 to 6 Raw materials having the compositions shown in Table 1 were charged in the same manner as in Examples 1 to 4 and emulsion polymerization was carried out at 50 ° C. with stirring until the polymerization rate reached 95% or more. Then, demonomerization, pH adjustment, and solid content adjustment are performed in the same manner as in Examples 1 to 4 to obtain pH 8 to 9,
A latex with a solid content of 39.0-41.0% was obtained.

結果は表−1に示す如く、エチレン性不飽和カルボン酸
の少ない比較例3においては、ラテツクスの機械的性が
極めて悪かつた。
As shown in Table 1, in Comparative Example 3 containing less ethylenically unsaturated carboxylic acid, the mechanical properties of the latex were extremely poor.

また、エチレン性不飽和カルボン酸の多い比較例4にお
いては、ラテツクスの粘度が3,620cpsと著しく高いもの
であつた。
In Comparative Example 4 containing a large amount of ethylenically unsaturated carboxylic acid, the latex viscosity was remarkably high at 3,620 cps.

試験例 実施例1〜4で得たラテツクスA〜Dをガラス板上に流
延し、25℃で2日間乾燥して、膜厚0.3〜0.5mmの乾燥皮
膜を得た。次いで、この皮膜を熱風循環乾燥機にて140
℃、10分間熱処理した後、トルエン中に浸漬して25℃で
4日間静置して、次式に従つて重量膨潤率を算出した。
Test Example The latexes A to D obtained in Examples 1 to 4 were cast on a glass plate and dried at 25 ° C. for 2 days to obtain a dry film having a film thickness of 0.3 to 0.5 mm. Then, this film is heated with a hot air circulation dryer to 140
After heat treatment at ℃ for 10 minutes, it was immersed in toluene and left standing at 25 ℃ for 4 days, and the weight swelling ratio was calculated according to the following formula.

結果は表−2に示す如く、いずれもトルエンで膨潤はし
ているものの膨潤率200%以下の値を保持しており、ニ
トリル基含有率の高い程優れた耐溶剤性を示していた。
As a result, as shown in Table 2, all of them swelled with toluene, but the swelling rate was kept at 200% or less, and the higher the nitrile group content, the better the solvent resistance.

次に実施例1〜4で得たラテツクスA、B、C、Dをそ
れぞれ水で希釈して固型分12.5%に調整した後、目付30
g/m2のポリエステルウエブを金網にはさんでラテツクス
中に浸漬しウエブ中にラテツクスを浸透させて浸透のし
易さを観察した。含浸後の不織布をゴムロール/ステン
レスロールのマングルにてラテツクス(wet)/繊維=3
2.5/100(重量比)になるように一定条件で絞り、金
網、マングル上へのラテツクスの凝集物の生成の有無を
観察した。次に、100℃、5分乾燥後、150℃、1分ベー
キングすることによりラテツクス固型分/繊維=13/100
(重量比)の不織布を得た。次いで、不織布芯地試験方
法(JIS L−1085)に従つて3cycle迄の不織布のドライ
クリーニング強さ試験における不織布の形態変化を次の
判定基準に従つて評価した。なお 形態変化の判定基準 A級 変化なし B級 変化の目立つもの C級 変化の著しいもの 結果は表−2に示す如く、いずれもマングル絞りにおけ
るラテツクスの安定も良好で、また不織布のドライクリ
ーニング強さ試験による形態変化もなかつた。
Next, each of the latex A, B, C and D obtained in Examples 1 to 4 was diluted with water to adjust the solid content to 12.5%, and then the basis weight 30
A g / m 2 polyester web was sandwiched between wire meshes and dipped in the latex to allow the latex to penetrate into the web, and the ease of penetration was observed. The impregnated non-woven fabric is rubber roll / stainless steel roll mangle to have latex (wet) / fiber = 3
It was squeezed under a constant condition so as to be 2.5 / 100 (weight ratio), and it was observed whether or not aggregates of latex were formed on the wire mesh and the mangle. Next, after drying at 100 ℃ for 5 minutes and baking at 150 ℃ for 1 minute, the latex solids content / fiber = 13/100
A (weight ratio) nonwoven fabric was obtained. Next, according to the nonwoven fabric interlining test method (JIS L-1085), changes in the morphology of the nonwoven fabric in the dry cleaning strength test of the nonwoven fabric up to 3 cycles were evaluated according to the following criteria. Judgment criteria for morphological change Class A No change Class B Conspicuous change Class C Significant change The results are shown in Table-2, and the stability of the latex in the mangle drawing is good, and the dry cleaning strength of the non-woven fabric is good. There was no morphological change due to the test.

比較試験例 比較例2〜6で得たラテツクスE〜Iを用いて試験例と
同様の方法で熱処理皮膜のトルエンに対する重量膨潤率
を測定した。次いで、試験例と同様の方法で不織布加工
を行ないマングル絞りにおけるラテツクスの安定性及び
ドライクリーニング強さ試験における形態変化を調べ
た。
Comparative Test Examples Using the latexes E to I obtained in Comparative Examples 2 to 6, the weight swelling ratio of the heat-treated film with respect to toluene was measured by the same method as in the Test Examples. Then, a nonwoven fabric was processed in the same manner as in the test example, and the stability of the latex in the mangle drawing and the morphological change in the dry cleaning strength test were examined.

結果は表−2に示す如く、ニトリル基含有率が16.6%の
ラテツクスIの熱処理皮膜は、トルエンによる重量膨潤
率が高く、また加工した不織布のドライクリーニング強
さも劣つていた。
As shown in Table 2, the heat-treated film of Latex I having a nitrile group content of 16.6% had a high weight swelling ratio with toluene, and the dry cleaning strength of the processed nonwoven fabric was poor.

メタクリロニトリル含有量が4%のラテツクスE及びエ
チレン性不飽和カルボン酸の使用量が0.5%のラテツク
スFはマングル絞りにより、凝集物が発生し、著しく、
安定性が劣つていた。
Latex E having a methacrylonitrile content of 4% and Latex F having an ethylenically unsaturated carboxylic acid content of 0.5% produced agglomerates due to mangle drawing, and
It had poor stability.

また、エチレン性不飽和カルボン酸の使用量が10%のラ
テツクスGは、粘度が高すぎるために不織布への浸透が
不均一となり、その結果、ドライクリーニング強さにも
劣るものであつた。
In addition, since the viscosity of Latex G containing 10% of the ethylenically unsaturated carboxylic acid was too high, the permeation into the nonwoven fabric was non-uniform, resulting in poor dry cleaning strength.

ブタジエンの使用量が33%であるラテツクスHは常温
(25℃)における皮膜形成能力がなく、このためマング
ル絞りにおいてロールの端部に粉末状の乾燥物が発生
し、含浸液に落下混入して作業性が著しく劣つていた。
Latex H, which uses 33% of butadiene, does not have the ability to form a film at room temperature (25 ° C), and as a result, powdery dry matter is generated at the end of the roll in the mangle squeeze and falls into the impregnating liquid. The workability was extremely poor.

以上の結果から、本発明の特許請求範囲からはずれた単
量体組成及びニトリル基含有率のラテツクスは、耐溶剤
性不織布のバインダーとして適さないことがわかる。
From the above results, it is understood that the latices having a monomer composition and a nitrile group content which are out of the scope of the claims of the present invention are not suitable as a binder of a solvent resistant nonwoven fabric.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ブタジエン35〜60重量%、メタクリロニト
リル5〜60重量%、エチレン性不飽和カルボン酸1〜8
重量%及びこれらの単量体と共重合可能なその他のエチ
レン性不飽和単量体0〜59重量%からなる単量体混合物
を乳化重合し、且つポリマー中に占めるニトリル基(−
C≡N)の割合を17重量%以上としたラテツクスを用い
る耐溶剤性に優れる不織布用結合剤。
Claims: 1. Butadiene 35 to 60% by weight, methacrylonitrile 5 to 60% by weight, ethylenically unsaturated carboxylic acid 1 to 8
% By weight, and a monomer mixture consisting of 0 to 59% by weight of other ethylenically unsaturated monomer copolymerizable with these monomers is emulsion-polymerized, and the nitrile group (-
A binder for non-woven fabric with excellent solvent resistance, which uses a latex with a ratio of C≡N) of 17% by weight or more.
JP62001511A 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance Expired - Lifetime JPH0791767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001511A JPH0791767B2 (en) 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001511A JPH0791767B2 (en) 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance

Publications (2)

Publication Number Publication Date
JPS63175151A JPS63175151A (en) 1988-07-19
JPH0791767B2 true JPH0791767B2 (en) 1995-10-04

Family

ID=11503507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001511A Expired - Lifetime JPH0791767B2 (en) 1987-01-07 1987-01-07 Non-woven fabric binder with excellent solvent resistance

Country Status (1)

Country Link
JP (1) JPH0791767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090864A (en) * 1992-11-18 1994-08-17 大湖化学公司 Flame retardant brominated styrene graft latex compositions
US5296306A (en) * 1992-11-18 1994-03-22 Great Lakes Chemical Corp. Flame retardant brominated styrene graft latex coatings
JP4641876B2 (en) * 2005-06-24 2011-03-02 旭化成ケミカルズ株式会社 Copolymer latex for nonwoven fabric binder

Also Published As

Publication number Publication date
JPS63175151A (en) 1988-07-19

Similar Documents

Publication Publication Date Title
US3787232A (en) Low temperature curing polymers used as coatings for fibrous materials
JP2918052B2 (en) Film-forming self-crosslinking aqueous plastic dispersion, method for producing the same and method for finishing textile products
US4455342A (en) Acrylic resin dispersions
CA1272543A (en) Fabric coating compositions with low formaldehyde evolution
EP0176609B1 (en) Process for preparing latexes of polymers having pendant coreactive and oxazoline groups
US5021529A (en) Formaldehyde-free, self-curing interpolymers and articles prepared therefrom
JPS6364463B2 (en)
CS268191A3 (en) Method of treating porous substrate
JPH0249337B2 (en)
CA1332544C (en) Two-stage heat resistant binders for nonwovens
US3702785A (en) Low-temperature curable articles
JP2559427B2 (en) Nonwoven fabric containing acrylate interfiber binder and method for producing the nonwoven fabric
JPH0791767B2 (en) Non-woven fabric binder with excellent solvent resistance
US20090186982A1 (en) Organosilicone copolymers
US3925293A (en) Low-temperature curable latices of vinyl and acrylic monomers
JP2864147B2 (en) Emulsion polymerization method
US3274164A (en) Polymerizable substituted-4-pentenamide monomers, polymers thereof, and methods for making and using these compositions
CN114072479B (en) Aqueous polymer formulations
US3784401A (en) Process for impregnating non-wovens with butadiene carboxyl polymer latices
US4150945A (en) Method of treating textiles with a curable composition of an acrylic copolymer
JP2576505B2 (en) Non-woven fabric binder
US3788878A (en) Impregnating nonwovens with an alkyl acrylate polymer-carboxylic polymer latex
JPH02294334A (en) Aqueous plastic dispersion
US3822143A (en) Impregnating nonwovens with latexes of a butadiene polymer and a carboxyl polymer
TW201345993A (en) Dispersible nonwoven

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term