JPH0732086A - Production of foamed plastic pattern and casting method using this pattern - Google Patents

Production of foamed plastic pattern and casting method using this pattern

Info

Publication number
JPH0732086A
JPH0732086A JP5178952A JP17895293A JPH0732086A JP H0732086 A JPH0732086 A JP H0732086A JP 5178952 A JP5178952 A JP 5178952A JP 17895293 A JP17895293 A JP 17895293A JP H0732086 A JPH0732086 A JP H0732086A
Authority
JP
Japan
Prior art keywords
foamed plastic
model
mold
plastic model
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5178952A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakamura
哲也 中村
Hideo Otomo
秀雄 大友
Hiroshi Takeda
洋志 武田
Shunichiro Yachi
俊一郎 谷地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5178952A priority Critical patent/JPH0732086A/en
Publication of JPH0732086A publication Critical patent/JPH0732086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide the foamed plastic pattern for vacuum casting which is easily produced, has smooth surfaces and is repetitively usable. CONSTITUTION:A foamed plastic member 1 is distributed and bored with many vertical holes 5 and horizontal holes 6 by needle-shaped boring tools from the front surface of the casting pattern consisting of base wood 3 and the foamed plastic member 1 adhered thereto and the base wood 3 is bored with holes penetrating thereto from the foamed plastic member 1. A cold setting resin is injected into these through-holes and double rods are inserted therein. The cold setting resin 9 is then applied on the pattern surface and is penetrated through the holes 5, 6 to form the cured resin net therein, by which the pattern is made rigid. The cores 11 of the double rod bodies 10 are pulled after curing of the resin and the vent holes for sucking a film to be brought into tight contact with the pattern surface by a vacuum casting method are formed by sheaths 13 formed in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多品種、非量産品の鋳
造製品、例えば圧延機や発電機用部品、車輌用モーター
部品等の中型、小型鋳造部品を鋳造するため用いるに好
適な発泡プラスチック模型の製作方法及びその模型を用
いた鋳造方法に関する。
INDUSTRIAL APPLICABILITY The present invention relates to a foam product suitable for casting a wide variety of non-mass-produced casting products, for example, medium-sized and small-sized casting parts such as rolling mills, generator parts, and vehicle motor parts. The present invention relates to a method for producing a plastic model and a casting method using the model.

【0002】[0002]

【従来の技術】従来、例えば水力発電機用部品のガイド
ベーンレバーを鋳鋼品で作る場合、木型模型を用いた減
圧鋳造法が一般的に用いられていた。
2. Description of the Related Art Conventionally, for example, when a guide vane lever for a hydraulic power generator part is made of cast steel, a vacuum casting method using a wooden model has been generally used.

【0003】このガイドベーンレバーは、最終製品とな
る鋳鋼品の上半分および下半分とそれぞれ同一形状の木
型模型を用いて鋳造される。木型模型を作るためには、
多数の部材取りを行い、これら部材を組み合わせて木型
模型を構成する各部品を製作し、また各部品を継ぎ合わ
せる小さな部品まで作る場合が多く、これらは全て手加
工による。その後、これらの部品を組立てて最終製品で
ある鋳鋼品の上半分および下半分それぞれと同一形状の
上部木型模型及び下部木型模型を作る。この後、減圧鋳
造法に必要な通気孔を、ドリルを用いて各木型模型の所
定の位置にあける。そして、これら木型模型を用いて減
圧鋳造法により鋳鋼品を作る。
This guide vane lever is cast using a wooden model having the same shape as the upper half and the lower half of the cast steel product as the final product. To make a wooden model,
In many cases, a large number of parts are taken, and each part that forms a wooden model is manufactured by combining these parts, and even small parts that join the parts together are often made by hand. After that, these parts are assembled to make an upper half-shaped model and a lower half-shaped model having the same shape as the upper half and the lower half of the cast steel product as the final product. After that, the vent holes necessary for the vacuum casting method are made at predetermined positions of each wooden model using a drill. Then, a cast steel product is produced by the reduced pressure casting method using these wooden models.

【0004】次に減圧鋳造法について説明する。先ず木
型模型の一方の下部木型模型を中空の定盤(減圧ボック
ス)上に取付け、次いでこの下部木型模型の上方で、フ
イルム、例えば伸び率が大きく、かつ塑性変形率の高い
プラスチックの薄いフイルムをヒーターにより加熱軟化
させて下部木型模型を包み込みように変形させ、さらに
加熱軟化したフイルムの縁部を減圧ボックス上面に密着
させる。その後、減圧ボックスを減圧することによって
下部木型模型の通気孔、減圧ボックス上面に設けた通気
穴を介してフィルムの内空間にある空気を吸引し、加熱
軟化したフイルムを下部木型模型表面に密着させる。し
かる後、フイルムが密着した下部木型模型を、四方の側
方から減圧手段を備えた枠で囲い、上方からこの枠内に
粒度調整された乾燥砂を振動を加えながら所定量充填
し、それから枠内に充填されている乾燥砂の上表面を上
記と同様にしてフイルムで覆う。そして減圧ボックスを
常圧に戻して木型模型面に密着しているフイルムの密着
を解き、それから枠の減圧手段により枠内を吸引減圧し
て乾燥砂を硬化させる。
Next, the vacuum casting method will be described. First, one lower wooden model of the wooden model is mounted on a hollow surface plate (decompression box), and then above the lower wooden model, a film, for example, a plastic with a high elongation and a high plastic deformation rate is used. The thin film is heated and softened by a heater to be deformed so as to wrap the lower wooden model, and the edge of the film softened by heating is brought into close contact with the upper surface of the vacuum box. Then, by decompressing the decompression box, the air in the inner space of the film is sucked through the ventilation holes of the lower wooden model and the ventilation holes provided on the upper surface of the decompression box, and the heat-softened film is applied to the surface of the lower wooden model. Make them adhere closely. After that, the lower wooden model that the film is in close contact with is surrounded by a frame equipped with a decompression means from four sides, and a predetermined amount of dry sand with a particle size adjusted is filled into the frame from above, and then the frame is filled. The upper surface of the dry sand filled in the frame is covered with the film in the same manner as above. Then, the decompression box is returned to normal pressure to release the adhesion of the film adhered to the surface of the wooden model, and the decompression means of the frame sucks and decompresses the inside of the frame to cure the dry sand.

【0005】その後、下部木型模型を乾燥砂から取り去
ることにより、乾燥砂内部に下部木型模型と同じでフィ
ルムで成型面が形成された下側鋳型が製作される。この
下側鋳型と、上記と同様にして作られた上側鋳型とを合
わせて、内部にガイドベーンレバーの外郭と同一形状に
形成された空間に溶湯を注入し、溶湯が凝固したら枠内
を常圧に戻す。枠内を常圧に戻すと乾燥砂は流動状態に
戻り、これを回収することにより、鋳造品としての製品
が完成する。木型模型は再度減圧鋳造法により繰返し使
用され、また回収された乾燥砂は冷却されて再使用され
る。
Thereafter, by removing the lower wooden model from the dry sand, a lower mold having a molding surface formed of a film in the dry sand is manufactured in the same manner as the lower wooden model. This lower mold and the upper mold made in the same way as above are put together, and the molten metal is injected into the space formed in the same shape as the outer contour of the guide vane lever inside. Return to pressure. When the inside of the frame is returned to normal pressure, the dry sand returns to a fluid state, and by collecting this, the product as a cast product is completed. The wooden model is repeatedly used again by the vacuum casting method, and the recovered dry sand is cooled and reused.

【0006】[0006]

【発明が解決しようとする課題】従来の減圧鋳造法には
木型模型を使用しているため、次のような種々の問題が
あった。即ち木型模型は、模型全体として構成されるい
くつかの部品を板取り加工しながら組合せなければなら
ず、これらの部品はバンド鋸、旋盤、ボール盤等の木工
用機械により加工され、さらにノミ、カンナにより手加
工されて多くの工程を要するために、模型の製作費は高
価なものとなる。又この木型模型は、前述の如く、板取
りされた部品を組合せた構造であるため、部品の組立て
合わせ面及び木目が、木型模型を乾燥砂から脱型する時
に、上記したフイルムを破損させてしまうことがある。
このために鋳型の作り直しや鋳造品の手直し加工が必要
である。また多品種、少量生産にあっては、木型製作費
が高いために製品原価のコストアップになってしまう。
Since a wooden model is used in the conventional vacuum casting method, there have been various problems as described below. In other words, a wooden model must be assembled by cutting several parts that make up the entire model, and these parts are processed by a woodworking machine such as a band saw, a lathe, and a drilling machine. The cost of manufacturing the model becomes expensive because it is manually processed by the planer and requires many steps. Further, since this wooden model has a structure in which the planed parts are combined as described above, the assembling surface and the grain of the parts damage the above-mentioned film when the wooden model is removed from the dry sand. I may let you.
For this reason, it is necessary to remake the casting mold and rework the casting product. In addition, in the case of high-mix low-volume production, the cost of producing the wood pattern is high, which increases the product cost.

【0007】一方、発泡プラスチック材は切削加工性が
よく、材料も安価であるが、素材が発泡ビーズから成
り、熟成した発泡プラスチックは気体を含んだ多孔質材
から成るので、発泡プラスチックの成型物は減圧下にお
いては容易に変形、収縮する。そのため発泡プラスチッ
ク模型を減圧鋳造法に採用するまでには至っていないな
どの問題があった。
On the other hand, the foamed plastic material has good machinability and is inexpensive, but since the material is foamed beads and the aged foamed plastic is a porous material containing gas, a molded product of the foamed plastic is formed. Easily deforms and contracts under reduced pressure. Therefore, there is a problem that the foamed plastic model has not been adopted for the vacuum casting method.

【0008】本発明は上述の点に鑑みなされたもので、
その目的とするところは、加工性が良く、表面が平滑で
かつ剛性が高い発泡プラスチック模型であって、減圧鋳
造方法による鋳造に用いることができる発泡プラスチッ
ク模型および自硬性鋳型による鋳造方法で用いることが
できる発泡プラスチック模型の各製作方法及びそれら型
を用いた鋳造方法を提供することにある。
The present invention has been made in view of the above points,
Its purpose is a foamed plastic model with good workability, smooth surface and high rigidity, which can be used for casting by vacuum casting method and use in casting method by self-hardening mold It is an object of the present invention to provide various methods for producing a foamed plastic model that can be manufactured and a casting method using those molds.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の発泡プラスチック模型の製作方法
は、発泡プラスチック素材を所定形状に切削加工し、こ
の所定形状に加工された発泡プラスチック部材の表面か
ら針状孔明け工具により貫通孔を含めて内部に通じる多
数の流通孔を分布させて明け、その発泡プラスチック部
材表面に常温硬化性の樹脂を塗布して、貫通孔および流
通孔を通して発泡プラスチック部材を構成する発泡ビー
ズ核間の隙間に樹脂を浸透させ、内部に樹脂網を形成し
て模型を製作することを特徴とする。この第1の方法に
より製作された発泡プラスチック模型は減圧鋳造法によ
る鋳造に用いられる。
In order to achieve the above object, the first method for producing a foamed plastic model of the present invention is to cut a foamed plastic material into a predetermined shape, and to foam the processed foam into the predetermined shape. Distributing a large number of through-holes, including through-holes, from the surface of the plastic member to the inside by using a needle-punching tool to open it, and then applying a room temperature curable resin to the surface of the foamed plastic member to form through-holes and through-holes The resin is infiltrated into the gaps between the cores of the foamed beads forming the foamed plastic member, and a resin net is formed inside to produce a model. The foamed plastic model produced by this first method is used for casting by vacuum casting.

【0010】また、本発明の第2の発泡プラスチック模
型の製作方法は、上記第1の方法で製作された発泡プラ
スチック模型に、さらに表面からこの模型を貫通する孔
を所定数明け、この貫通する孔に常温硬化性の樹脂を注
入し、次いで芯とこの芯を滑性被膜を介して被覆する外
被とからなる2重棒体を挿入し、樹脂の硬化後に芯を外
被から引抜いて通気孔を形成して模型を製作することを
特徴とする。
According to a second method for producing a foamed plastic model of the present invention, the foamed plastic model produced by the first method is further provided with a predetermined number of holes penetrating the model from the surface, and the model is penetrated. A room temperature curable resin is injected into the hole, and then a double rod consisting of a core and an outer covering for covering the core with a slippery coating is inserted. After the resin is hardened, the core is pulled out from the outer covering. It is characterized by forming pores to make a model.

【0011】また本発明の発泡プラスチック模型を用い
た減圧鋳造方法は、(1)上記本発明の第2の製作方法
で製作された発泡プラスチック模型を単数個または複数
個を減圧ボックス上面に載置し、(2)この発泡プラス
チック模型表面を可撓性フィルムで覆い、(3)減圧ボ
ックスを減圧させ、可撓性フィルムで囲う空間内の空気
を通気孔を通じて吸引することにより可撓性フィルムを
発泡プラスチック模型に密着させ、(4)発泡プラスチ
ック模型に通じる湯道を形成すると共に発泡プラスチッ
ク模型および湯道を側方から枠で囲い、(5)この枠内
に粒子状物体を所定量詰め込み、(6)枠上を別の可撓
性フィルムで覆い、(7)減圧ボックスを常圧に戻して
可撓性フィルムを発泡プラスチック模型への密着から解
き、(8)さらに枠内を減圧して粒子状物体の詰め込み
部を各可撓性フィルム間で維持し、(9)この維持した
状態で発泡プラスチック模型を脱型して粒子状物体の詰
め込み部表面に鋳造すべき製品の上下部のうちの一方の
成型面を形成した鋳型を製作し、(10)またこの鋳型
と同様にして鋳造すべき製品の上下部のうちの他方の成
型面を形成した別の鋳型を製作し、(11)各鋳型を合
わせ、(12)各鋳型の成型面で形成された空間に湯道
を通して溶湯を注湯し、(13)溶湯が凝固した後、枠
内を常圧に戻して粒子状物体の詰め込み部を崩壊させて
凝固してなる鋳造物を取り出すことを特徴とする。
Further, in the vacuum casting method using the foamed plastic model of the present invention, (1) one or more foamed plastic models manufactured by the second manufacturing method of the present invention are placed on the upper surface of the vacuum box. Then, (2) the surface of the foamed plastic model is covered with a flexible film, (3) the decompression box is decompressed, and the air in the space surrounded by the flexible film is sucked through the ventilation holes to form the flexible film. (4) Form a runner leading to the foamed plastic model and surround the foamed plastic model and the runner with a frame from the side. (5) Pack a certain amount of particulate matter in this frame, (6) Cover the frame with another flexible film, (7) Return the decompression box to normal pressure to release the flexible film from the close contact with the foamed plastic model, (8) Further The inside is decompressed to maintain the packed part of the particulate matter between the flexible films, and (9) The product to be cast on the surface of the packed part of the particulate matter by demolding the foamed plastic model in this state. A mold having one molding surface of the upper and lower parts is manufactured, and (10) Another mold having the other molding surface of the upper and lower parts of the product to be cast is manufactured in the same manner as this mold. Then, (11) the respective molds are combined, (12) the molten metal is poured through a runner into the space formed by the molding surfaces of the respective molds, (13) after the molten metal has solidified, the inside of the frame is returned to normal pressure. It is characterized in that the stuffed portion of the particulate matter is disintegrated and the solidified casting is taken out.

【0012】また本発明の発泡プラスチック模型を用い
た自硬性鋳型による鋳造方法は、(1)上記本発明の第
1の製作方法で製作された単数個又は複数個の発泡プラ
スチック模型を台上に載置し、(2)この発泡プラスチ
ック模型に通じる湯道を形成すると共に発泡プラスチッ
ク模型および湯道を側方から枠で囲い、(3)この枠内
に硬化剤と混練した粒子状物体を所定量詰め込み、
(4)この粒子状物体の詰め込み部が硬化した後、発泡
プラスチック模型を脱型して粒子状物体の詰め込み部表
面に鋳造すべき製品の上下部のうちの一方の成型面を形
成した鋳型を製作し、(5)この鋳型と同様にして鋳造
すべき製品の上下部のうちの他方の成型面が形成された
別の鋳型を製作し、(6)各鋳型を合わせ、(7)各鋳
型の成型面で形成された空間に湯道を通して溶湯を注湯
し、(8)溶湯が凝固した後に、粒子状物体の詰め込み
部を破壊して凝固してなる鋳造物を取り出すことを特徴
とする。
Further, the casting method using a self-hardening mold using the foamed plastic model of the present invention is as follows: (1) A single or a plurality of foamed plastic models manufactured by the first manufacturing method of the present invention are mounted on a table. Place (2) a runner leading to this foamed plastic model and surround the foamed plastic model and runner with a frame from the side, and (3) place a particulate object mixed with a curing agent in this frame. Quantitative packing,
(4) After the packing portion of the particulate matter is cured, the foamed plastic model is demolded to form a mold on the surface of the packing portion of the particulate matter in which one of the upper and lower molding surfaces of the product to be cast is formed. (5) In the same manner as this mold, another mold in which the other molding surface of the upper and lower parts of the product to be cast is formed is manufactured (6) The respective molds are combined, and (7) Each mold The molten metal is poured through the runner into the space formed by the molding surface of (8), and after the molten metal has solidified, the packed portion of the particulate matter is broken and the solidified casting is taken out. .

【0013】[0013]

【作用】本発明において用いる発泡プラスチック素材
は、多数のビーズを加熱することによってビーズ単体は
発泡膨張し、この発泡したビーズ単体(ビーズ核)が相
互に密着する素性を有するものであるが、特に内部にあ
ってビーズ間が十分融着していない例えば発泡スチロー
ルを用いる。このような発泡プラスチックから成る模型
では表面より針状穴明け工具を刺し込んで孔を明けるこ
とによって、孔の周辺の組織、隣合うビーズ核が離れて
隙間をつくり、樹脂の浸透性をよくして強固な発泡プラ
スチック模型を製作することができる。
The foamed plastic material used in the present invention has such a property that the beads alone expand and expand by heating a large number of beads, and the expanded beads alone (bead core) adhere to each other. For example, Styrofoam, which is inside and the beads are not sufficiently fused, is used. In such a model made of foamed plastic, a needle-like hole punching tool is pierced from the surface to make a hole, and the tissue around the hole and adjacent bead nuclei separate from each other to form a gap, improving the resin permeability. It is possible to produce a strong and solid foam plastic model.

【0014】本発明では前記の如く発泡プラスチック模
型の製作方法により模型の常温硬化性樹脂の含浸による
合成力、及び耐久性が生じると共に模型表面は常温硬化
性樹脂によって一面化されるために減圧鋳造方法ではフ
ィルムの破損はなく、従って鋳型の作り直しや鋳造品の
手直し加工を必要としない。また熟成した発泡プラスチ
ック材料は見掛けの比重が小さく木材と比べると軽く、
軟質で加工性もよく、短時間で模型の製作が可能であ
り、多品種、少量生産の模型製作にあっては鋳造製品の
原価を安価なものにすることができる。しかもこれらは
減圧鋳造方法により鋳造物を作るだけでなく、自硬性鋳
型による鋳造方法で鋳造物を作る場合であっても同様で
ある。
According to the present invention, as described above, according to the method for producing a foamed plastic model, synthetic force and durability are generated by impregnating the model with the room temperature curable resin, and the surface of the model is flattened by the room temperature curable resin, so that vacuum casting is performed. The method does not damage the film and therefore does not require mold rework or casting rework. In addition, the aged foamed plastic material has a small apparent specific gravity and is lighter than wood,
It is soft and has good workability, and it is possible to make a model in a short time. In the case of making a model of a large number of products in a small amount, the cost of a cast product can be reduced. Moreover, these are the same not only when making a casting by a reduced pressure casting method but also when making a casting by a casting method using a self-hardening mold.

【0015】[0015]

【実施例】以下、図示した実施例に基いて本発明を詳細
に説明する。図1から図8は本発明の鋳造用発泡プラス
チック模型の製作方法の一実施例における製作工程を示
す図である。図1は製品の半分にあたる鋳造用発泡プラ
スチック模型の斜視図、図2〜図7は発泡プラスチック
模型の製作工程を説明する断面図、図8は発泡プラスチ
ック内部の断面図である。
The present invention will be described in detail below with reference to the illustrated embodiments. 1 to 8 are views showing a manufacturing process in an embodiment of a method for manufacturing a foam plastic model for casting of the present invention. FIG. 1 is a perspective view of a foam plastic model for casting, which is half of a product, FIGS. 2 to 7 are cross-sectional views illustrating a manufacturing process of the foam plastic model, and FIG. 8 is a cross-sectional view of the inside of the foam plastic.

【0016】本実施例の鋳造用発泡プラスチック模型の
製作方法は次のとおりで、ここで鋳造製品は水力発電機
用部品であるガイドベーンレバーである。ガイドベーン
レバーはおおよその寸法が150幅×150高さ×40
0長さ(mm)である。
The method of manufacturing the foamed plastic model for casting of this embodiment is as follows, wherein the cast product is a guide vane lever which is a component for a hydroelectric generator. The guide vane lever has an approximate size of 150 width x 150 height x 40.
It is 0 length (mm).

【0017】(a)まず図1の斜視図に示すように、発
泡プラスチック部材1を接着剤2で台木3に貼付けて製
品の半分にあたる鋳造用の型をつくる。台木3は製品形
状に合わせて加工されたもので、この上にある発泡プラ
スチック部材1はケガキ線を入れながら熱線カッタ−に
よって曲線部、直線部など細かい部分まで所定寸法にま
で仕上げる。
(A) First, as shown in the perspective view of FIG. 1, a foaming plastic member 1 is attached to a base material 3 with an adhesive 2 to form a casting mold corresponding to half of a product. The rootstock 3 is processed according to the shape of the product, and the foamed plastic member 1 on the rootstock 3 is finished to a predetermined dimension such as a curved portion or a straight portion with a hot wire cutter while inserting marking lines.

【0018】(b)次に図2に示すように、発泡プラス
チック部材1に対して針または硬質針金φ0.8〜1.
0mmのような孔明け工具4を刺して、多数の縦孔5や
横孔(または斜め孔)6を分布させて明ける。これら孔
5,6は樹脂の流通孔であって、発泡プラスチック部材
1表面に数ポイズの低粘度の常温硬化性樹脂を塗布した
時、その樹脂が孔5,6を通って発泡プラスチック部材
1内部に含浸する。これら多数の樹脂流通孔5,6は、
発泡プラスチック部材1を含浸した樹脂によって剛性を
高めるために台木3の部分まで到達しているものもあ
り、またこの台木3に到達していない部分では図2の如
く斜めに一定の深さにあければよい。この深さは30m
m以上である。
(B) Next, as shown in FIG. 2, a needle or a hard wire φ 0.8 to 1.
A punching tool 4 such as 0 mm is stabbed to distribute a large number of vertical holes 5 and horizontal holes (or diagonal holes) 6 for drilling. These holes 5 and 6 are resin flow holes, and when a low viscosity room temperature curable resin of several poise is applied to the surface of the foamed plastic member 1, the resin passes through the holes 5 and 6 and the inside of the foamed plastic member 1 Impregnate. These many resin flow holes 5, 6 are
Some resin reaches the base 3 in order to increase the rigidity by the resin impregnated in the foamed plastic member 1, and the part not reaching the base 3 has an obliquely constant depth as shown in FIG. I'm fine. This depth is 30m
It is m or more.

【0019】この様に発泡プラスチック部材1内に孔
5,6を明けることによって、図8に示すように、内部
で隣接する発泡ビ−ズ核16が相互に剥離して隙間を形
成し、そしてこの隙間に常温硬化性樹脂9を浸透させ、
硬化させることによって、網目状の強化された樹脂層1
7が形成され、発泡プラスチック部材1が剛体となる。
孔明け工具4によって明ける流通孔の間隔は一般に10
mmを目標として十分な剛体を得ることができるが、特
に角部の割れ、変形のある心配の部分は流通孔の分布密
度を増やすことによってより強剛性を得ることが可能で
あり、加工も短時間でできる。一般には数十本の針状体
を有する工具を使用する。またこの方法は曲面、狭隙な
部分についても容易に作業ができる特徴がある。
By thus forming the holes 5 and 6 in the foamed plastic member 1, as shown in FIG. 8, adjacent foam bead cores 16 are separated from each other to form a gap, and The room temperature curable resin 9 is permeated into this gap,
By hardening, the resin layer 1 having a reticular structure is reinforced.
7 is formed, and the foamed plastic member 1 becomes a rigid body.
The distance between the flow holes formed by the hole forming tool 4 is generally 10
Although it is possible to obtain a sufficient rigid body with a target of mm, it is possible to obtain higher rigidity by increasing the distribution density of the flow holes, especially at the corner where there is concern about cracking or deformation of the corner, and the machining is also short. You can do it in time. Generally, a tool having several tens of needles is used. In addition, this method has the feature that it can easily work on curved surfaces and narrow spaces.

【0020】図3〜図7は発泡プラスチック部材1内に
樹脂流通孔5,6を設けた後に減圧鋳造法を用いて鋳造
を行うための前加工を示す図である。 (c)図3に示す如く、発泡プラスチック部材1および
台木3を通り抜ける下孔7を明ける。この下孔7は、減
圧鋳型造型時に発泡プラスチック模型にフィルムを吸着
させるために設けるもので、ドリルまたは加熱棒によっ
て所定の位置にあける。
3 to 7 are views showing pre-processing for casting by using the reduced pressure casting method after the resin flow holes 5, 6 are provided in the foamed plastic member 1. (C) As shown in FIG. 3, a pilot hole 7 passing through the foamed plastic member 1 and the rootstock 3 is opened. This pilot hole 7 is provided for adsorbing the film to the foamed plastic model at the time of molding the reduced pressure mold, and is opened at a predetermined position by a drill or a heating rod.

【0021】(d)更に、図4に示す如く、下孔7の底
を塞ぐように台木3側にシ−ル材8を貼り、それから下
孔7内に上部より常温硬化性の樹脂9(例えば低粘度2
液混合エポキシ樹脂)を注入する。
(D) Further, as shown in FIG. 4, a seal material 8 is attached to the rootstock 3 side so as to close the bottom of the lower hole 7, and then a room temperature curable resin 9 is placed in the lower hole 7 from the top. (For example, low viscosity 2
Liquid mixed epoxy resin).

【0022】(e)その後、下孔7内に樹脂9が充分含
浸した事を確認して、図5に示す如く、芯材11とこの
芯材11を滑性被膜12を介して取り巻く管状の外被1
3とからなる二重棒体10を廻しながら下孔7に挿入
し、シール材8を突き破った状態で、外被13と発泡体
14を接着固定する。
(E) After that, it is confirmed that the resin 9 is sufficiently impregnated in the pilot hole 7, and as shown in FIG. 5, the core material 11 and the tubular material surrounding the core material 11 with the lubricous coating 12 interposed therebetween. Jacket 1
The double rod 10 composed of 3 and 3 is inserted into the lower hole 7 while being rotated, and the outer cover 13 and the foam 14 are adhesively fixed in a state where the sealing material 8 is pierced.

【0023】(f)そのあと、図6に示す如く、発泡プ
ラスチック部材1の表面から常温硬化性樹脂9を塗布
し、孔5,6を通じて発泡ビ−ズ核16間の隙間に樹脂
9を浸透させる。樹脂9の硬化後に二重棒体10から芯
材11を引き抜いて、外被13の内径部を通気孔(図7
で符号15)とする。この二重棒体10は、例えば塩化
ビニ−ル電線を使用し、芯材11の外周には滑性被膜1
2としてシリコ−ン被膜を形成させたものを使用する。
(F) Then, as shown in FIG. 6, the room temperature curable resin 9 is applied from the surface of the foamed plastic member 1 and the resin 9 permeates into the gap between the foam bead cores 16 through the holes 5 and 6. Let After the resin 9 is cured, the core material 11 is pulled out from the double rod body 10, and the inner diameter portion of the jacket 13 is vented (see FIG. 7).
15). This double rod 10 uses, for example, a vinyl chloride electric wire, and the outer periphery of the core material 11 has a lubricious coating 1.
As the material 2, a silicone film is used.

【0024】このようにして製作された発泡プラスチッ
ク模型は、図7及び図8に示す如く、表面が硬化した樹
脂9と木枠3で囲まれ、通気孔15は外被13が挿入さ
れているので、内部が外気から全く密閉状態にされ、ま
た表面の樹脂9及び内部に含浸した網目状樹脂17と樹
脂柱18により一体化されて剛性の高い模型となる。な
お通気孔15を形成する外被13の端部は模型の表面に
沿うように仕上られる。
As shown in FIGS. 7 and 8, the foamed plastic model produced in this manner is surrounded by the hardened resin 9 and the wooden frame 3, and the ventilation hole 15 has the jacket 13 inserted therein. Therefore, the inside is completely sealed from the outside air, and the resin 9 on the surface and the mesh resin 17 impregnated in the inside and the resin column 18 are integrated to form a highly rigid model. The end portion of the jacket 13 forming the ventilation hole 15 is finished along the surface of the model.

【0025】ところで、従来から一般的に発泡プラスチ
ック模型を製作する場合、発泡プラスチック模型の変形
と鋳型からの脱型を考慮して図9、図10、図11の如
く補強材を介して発泡体を貼合せして製作している。例
えば図9は発電機部品のベアリング模型斜視図、図10
は圧延機部品のプロジェクトブロックの斜視図、図11
は圧延機部品のレイルの斜視図を示しているものであ
り、補強材としてベニア合板を使用している公知例であ
る。この模型はベニア合板による補強のみでその他の補
強を施していないため、自硬性砂による鋳型製作では発
泡プラスチック模型の角部破損、変形を生じて鋳型製作
後の模型脱型の際に破損して、模型の繰返し使用はでき
ないのが通例である。また発泡プラスチックそのものの
剛性がないため適切な鋳型とすることが難しく、このた
め鋳造後の製品の加工がしばしば発生する。勿論これら
の欠点を発生させない模型とするため図9、図10、図
11のような発泡プラスチックに孔明け工具4によって
貫通孔や通気孔を多数設けて、常温硬化性樹脂を注入含
浸させることによって発泡プラスチック模型を一体の剛
体とすることができ、自硬性鋳型による鋳造方法ができ
る。また発泡プラスチック模型を常温硬化性の樹脂で一
体とする剛体とするため、図9に示す発電機部品のベア
リング模型の場合、図12および図13に示すように、
模型内部に板状の仕切木材20により空間21を形成
し、発泡プラスチック部材の厚さを小さくしてこの部分
の剛性を高める構造として減圧鋳造方法の鋳型とするこ
とができる。
By the way, when a foamed plastic model is generally manufactured conventionally, in consideration of deformation of the foamed plastic model and demolding from the mold, the foamed material is reinforced with a reinforcing material as shown in FIGS. 9, 10 and 11. Are produced by laminating. For example, FIG. 9 is a perspective view of a bearing model of a generator part, and FIG.
Is a perspective view of a project block for rolling mill parts, FIG.
Shows a perspective view of a rail of a rolling mill part, which is a known example using veneer plywood as a reinforcing material. Since this model is only reinforced with veneer plywood and no other reinforcement is applied, the corner parts of the foamed plastic model are damaged and deformed during mold making with self-hardening sand, which causes damage when the model is released from the mold. It is customary that the model cannot be used repeatedly. Further, since the foamed plastic itself does not have rigidity, it is difficult to form an appropriate mold, and therefore, the processing of the product after casting often occurs. Of course, in order to make a model that does not cause these defects, by providing a large number of through holes and ventilation holes with the punching tool 4 in the foamed plastic as shown in FIGS. 9, 10 and 11, and injecting and impregnating the room temperature curable resin. The foamed plastic model can be made into an integral rigid body, and a casting method using a self-hardening mold can be performed. In addition, since the foamed plastic model is a rigid body made of a resin that is hardened at room temperature, the bearing model of the generator part shown in FIG. 9 has a structure as shown in FIGS. 12 and 13.
A space 21 is formed by the plate-shaped partition wood 20 inside the model, and the structure of the foamed plastic member can be reduced in thickness to enhance the rigidity of this portion, which can be used as a mold of the vacuum casting method.

【0026】次に通気孔15を有する発泡プラスチック
模型を用いて鋳造物を作る減圧鋳造方法ついて図14〜
図19を用いて説明する。上記の方法で製作された単数
又は複数個の発泡プラスチック模型22を図14の如く
模型取付板23上に固定し減圧鋳造用減圧ボックス24
に組み立てておく、模型取付板23と減圧ボックス24
との合せ目はゴム板25によりシ−ルされる。一方、減
圧ボックス24には内部を真空引きするための真空排気
手段(図示せず)と接続される減圧用ホ−スを継ぐ減圧
口26が設けられている。
Next, a vacuum casting method for making a casting using a foamed plastic model having ventilation holes 15 will be described with reference to FIGS.
This will be described with reference to FIG. A single or plural foamed plastic models 22 manufactured by the above method are fixed on a model mounting plate 23 as shown in FIG.
Assemble in model model plate 23 and decompression box 24
The seam with is sealed by the rubber plate 25. On the other hand, the decompression box 24 is provided with a decompression port 26 for connecting a decompression hose connected to a vacuum exhaust means (not shown) for evacuating the inside.

【0027】次に、このような状態の発泡プラスチック
模型22の上面を、図15に示す如く、加熱源27を備
えているフィルム28例えば伸び率が大きくかつ塑性変
形率の高いプラスチックの薄いフィルム28を加熱源2
7(ヒーター)によって加熱伸長させることによって、
模型取付板23上に載置してある発泡プラスチック模型
22を包込むようにして気密を保って覆うと共に、直空
排気手段と接続されている減圧用ホ−スを減圧口26と
継いで減圧鋳造用減圧ボックス24内を減圧する。これ
によって発泡プラスチック模型22の通気孔15とを通
して空気が吸引され、風船状のフィルム28bは変形し
て、発泡プラスチック模型22の表面に密着する皮膜状
のフィルム膜28cとなる。
Next, as shown in FIG. 15, the upper surface of the foamed plastic model 22 in such a state is provided with a film 28 having a heating source 27, for example, a thin plastic film 28 having a large elongation and a high plastic deformation rate. The heating source 2
By heating and stretching with 7 (heater),
The foamed plastic model 22 placed on the model mounting plate 23 is covered and airtightly covered, and the decompression hose connected to the direct air exhaust means is connected to the decompression port 26 for decompression casting. The inside of the decompression box 24 is decompressed. As a result, air is sucked through the ventilation holes 15 of the foamed plastic model 22, and the balloon-shaped film 28b is deformed to form a film-like film 28c that adheres to the surface of the foamed plastic model 22.

【0028】発泡プラスチック模型22にフィルム28
cが密着した状態で、図16に示すように、各発泡プラ
スチック模型22、22間を溶湯の通り路(湯道)とな
る陶管29で連結する。その後、発泡プラスチック模型
22、陶管29を側方から枠30で囲い、枠30内に粒
子状物体31(乾燥砂)を振動を加えながら充填する。
一方、枠30には内部四方に貫通する減圧口32が設け
られ、しかも粒子状物体31に接触する枠30の内面に
は網33を介して各所に内部減圧通気孔が設けられてい
る。そして枠30の上部を図17に示すように、上述と
同様にしてフィルム34で覆い、この状態で減圧鋳造用
減圧ボックス24の内部を常圧に戻すと共に、減圧口2
6に減圧用ホ−スを継ぎ、減圧口32を介して枠30内
の粒子状物体31の充填部を減圧して粒子状物体31充
填部を所定の負圧まで下げる。
A film 28 is formed on the foamed plastic model 22.
In the state where c is in close contact with each other, as shown in FIG. 16, the foamed plastic models 22 and 22 are connected by a ceramic pipe 29 which serves as a passage (runner) for the molten metal. After that, the foamed plastic model 22 and the ceramic tube 29 are laterally surrounded by a frame 30, and the frame 30 is filled with a particulate matter 31 (dry sand) while applying vibration.
On the other hand, the frame 30 is provided with depressurization ports 32 penetrating in all four directions, and further, internal depressurization vent holes are provided at various places on the inner surface of the frame 30 contacting the particulate matter 31 via a net 33. Then, as shown in FIG. 17, the upper portion of the frame 30 is covered with the film 34 in the same manner as described above. In this state, the inside of the vacuum box 24 for vacuum casting is returned to normal pressure, and the vacuum port 2
A decompression hose is connected to 6, and the filling portion of the particulate matter 31 in the frame 30 is decompressed through the decompression port 32 to lower the filling portion of the particulate matter 31 to a predetermined negative pressure.

【0029】このようにして枠30内の粒子状物体31
充填部が外気圧をうけて硬化するので、図17に示す如
く減圧ボックス24に固定されている発泡プラスチック
模型22を減圧ボックス24と共に粒子状物体31充填
部から取り外す。これにより粒子状物体31充填部に発
泡プラスチック模型22の成型面が形成され、表面にフ
ィルム28cの皮膜を有する下型鋳型35Aができ上が
る。この鋳型35Aは最終製品となる鋳造品の下半分に
該当する。
In this way, the particulate matter 31 in the frame 30 is
Since the filling portion is cured by receiving the atmospheric pressure, the foamed plastic model 22 fixed to the decompression box 24 is removed from the filling portion of the particulate matter 31 together with the decompression box 24 as shown in FIG. As a result, the molding surface of the foamed plastic model 22 is formed in the filled portion of the particulate matter 31, and the lower mold 35A having the film of the film 28c on the surface is completed. The mold 35A corresponds to the lower half of the cast product that is the final product.

【0030】次に図1〜図8に示したのと同様な工程
で、最終製品である鋳造品の上半分の発泡プラスチック
模型を製作し、この発泡プラスチック模型を用いて図1
4〜図17に示したのと同様な工程で上型鋳型35Bを
製作する。それから下型および上型鋳型を図18に示す
ように枠30内の粒子状物体31充填部の減圧真空を保
ちながら組み合せる。そして下型鋳型と上型鋳型を敷板
36上で合せることにより内部に形成された空間37内
に陶管29を介して溶湯を注湯する。その後、空間37
内の溶湯が凝固したら枠30内の粒子状物体31充填部
を常圧に戻し、図19に示すように粒子状物体31充填
部が崩壊し、最終製品である鋳造品38(ガイドベーン
レバー)が複数個でき上がる。
Next, in the same steps as shown in FIGS. 1 to 8, a foam plastic model of the upper half of the final product, a cast product, is manufactured, and this foam plastic model is used to produce the FIG.
The upper mold 35B is manufactured by the same steps as those shown in FIGS. Then, as shown in FIG. 18, the lower mold and the upper mold are combined while maintaining the reduced pressure vacuum of the part filled with the particulate matter 31 in the frame 30. Then, the lower mold and the upper mold are put together on the floor plate 36, and the molten metal is poured into the space 37 formed inside through the ceramic tube 29. After that, space 37
When the molten metal in the inside solidifies, the filled portion of the particulate matter 31 in the frame 30 is returned to normal pressure, the filled portion of the particulate matter 31 collapses as shown in FIG. 19, and the final product is a cast product 38 (guide vane lever). Is completed.

【0031】次に発泡プラスチック模型を用いた自硬性
鋳型による鋳造方法について図20〜図26を用いて説
明する。まず、図1、図2及び図8で示した工程で製作
された鋳造品の上半分と同一形状の発泡プラスチック模
型39(本実施例での発泡プラスチック模型は減圧鋳造
法でないため図3〜図7に示す二重棒体10を埋込、通
気孔15を加工する工程は必要ない)を、図20に示す
如く模型受けボックス40上に発泡プラスチック模型3
9を載置した後に、粒子状物体を詰め込む。本実施例の
粒子状物体は図21に示すように砂(例えば硅砂等)4
1と硬化剤42(例えば水ガラス、フェノ−ル)とを混
練機43で混合したものを使用する。
Next, a casting method using a self-hardening mold using a foamed plastic model will be described with reference to FIGS. First, a foamed plastic model 39 having the same shape as the upper half of the cast product manufactured in the steps shown in FIGS. 1, 2 and 8 (see FIG. 3 to FIG. The step of embedding the double rod body 10 shown in FIG. 7 and processing the vent hole 15 is not necessary), as shown in FIG.
After placing 9, the particulate matter is packed. The particulate matter of this embodiment is sand (for example, silica sand) 4 as shown in FIG.
1 and a curing agent 42 (for example, water glass, phenol) are mixed in a kneading machine 43.

【0032】混練機43で混合した砂41と硬化剤42
から成る粒子状物体44を、図22に示すように、模型
受けボックス40に載置された発泡プラスチック模型3
9を側方から取り囲む金枠46内に粒子状物体44を詰
め込む前には、注湯のための陶管29が設けられるが、
発泡プラスチック模型39が複数個となる場合は陶管2
9で連結されている。発泡プラスチック模型39上方か
ら金枠46内に粒子状物体44を詰め込み、加圧機45
で叩きながら粒子状物体44を金枠46内に所定量詰め
込むことによって硬化剤42の作用により、粒子状物体
44が堅く硬化する。この状態を示したのが図23であ
る。
Sand 41 and curing agent 42 mixed by a kneader 43
As shown in FIG. 22, the particulate object 44 composed of the foamed plastic model 3 placed on the model receiving box 40.
Before the particulate matter 44 is packed in the metal frame 46 that surrounds 9 from the side, a ceramic pipe 29 for pouring is provided.
If there are multiple foam plastic models 39
9 are connected. The particulate object 44 is packed in the metal frame 46 from above the foamed plastic model 39, and the press 45
By packing a predetermined amount of the particulate matter 44 into the metal frame 46 while hitting with, the action of the curing agent 42 hardens the particulate matter 44. FIG. 23 shows this state.

【0033】粒子状物体44が硬化した後、図24に示
す如く、発泡プラスチック模型受けボックス40に載置
されている発泡プラスチック模型39を粒子状物体44
充填部から脱型する。これにより、粒子状物体44充填
部の表面には発泡プラスチック模型39と同様な成型面
47が形成され、これが鋳型、即ち鋳造物を作るときの
下型となる。
After the particulate matter 44 is cured, the foamed plastic model 39 placed on the foamed plastic model receiving box 40 is removed from the particulate matter 44 as shown in FIG.
Remove from the filling section. As a result, a molding surface 47 similar to the foamed plastic model 39 is formed on the surface of the filled portion of the particulate matter 44, and this serves as a mold, that is, a lower mold for making a casting.

【0034】次に、図20〜図24に示したのと同様な
工程で最終製品である鋳造品の下半分と同様な上半分と
なる発泡プラスチック模型を製作し、この発泡プラスチ
ック模型を用いて前記に示したのと同様な工程で鋳造物
を作るときの上型となる鋳型を作る。
Next, in the same steps as shown in FIGS. 20 to 24, a foamed plastic model which is the same as the lower half of the cast product, which is the final product, is manufactured, and this foamed plastic model is used. A mold, which is an upper mold for making a casting, is prepared by the same process as described above.

【0035】この下型鋳型と上型鋳型を図25に示すよ
うにあわせ、そして下型鋳型と上型鋳型の組合せ内部に
形成される空間48内に陶管29を通して溶湯を注湯す
る。空間48内の溶湯が凝固したら、下型と上型の各鋳
型を合わせた状態で図26に示すように金枠受49上に
載せ、ばね51を介して振動させ、これにより金枠46
内の粒子状物体44充填部が崩壊して入砂鋳砂解枠機5
2内に落下し、最終製品である鋳造物50が残る。本実
施例の自硬性鋳型による鋳造方法により、鋳造物を作る
ことができる。
The lower mold and the upper mold are put together as shown in FIG. 25, and a molten metal is poured through a ceramic tube 29 into a space 48 formed inside the combination of the lower mold and the upper mold. When the molten metal in the space 48 is solidified, the lower mold and the upper mold are put together and placed on a metal frame receiver 49 as shown in FIG. 26 and vibrated via a spring 51, whereby the metal frame 46
Part of the particulate matter 44 in the inside collapses and the sand casting sand demolition machine 5
2, and the final product, the casting 50, remains. A casting can be made by the casting method using the self-hardening mold of this embodiment.

【0036】以上実施例を説明したように、発泡プラス
チック模型を用いた減圧鋳造方法及び自硬性鋳型による
鋳造方法のいずれの鋳造法を用いて鋳造物を作る場合で
あっても、フィルムを破損することはないし、他品種、
少量生産品であっても発泡プラスチック模型の繰返し使
用ができ、かつ経済的にも安価で有利なものとすること
ができる。特に減圧鋳造方法では粒子状物体はほとんど
回収可能であるため、工程短縮と原価低減を図ることが
できる。なお、発泡プラスチック模型に使用される樹脂
はビスフェノ−ルA型エポキシ樹脂と変性ポリアミドア
ミンの硬化反応によって硬化するもので、樹脂の流動と
浸透性から低粘度特性、数ポイズ(25℃)、2液混合
樹脂を採用した。この樹脂を含浸、浸透させることによ
って低剛性の発泡プラスチック材を鋳造用鋳型として使
用可能な高剛性の発泡プラスチック模型としたものであ
る。
As described in the above examples, the film is damaged regardless of whether the casting is made by the casting method using the foamed plastic model or the casting method using the self-hardening mold. Never, other varieties,
The foamed plastic model can be repeatedly used even in a small-quantity product, and can be economically inexpensive and advantageous. Particularly, in the vacuum casting method, almost all particulate matter can be collected, so that the process can be shortened and the cost can be reduced. The resin used for the foamed plastic model is a resin that is cured by a curing reaction between a bisphenol A type epoxy resin and a modified polyamidoamine, and has low viscosity characteristics, several poises (25 ° C.), 2 due to the flow and permeability of the resin. Liquid mixed resin was adopted. By impregnating and permeating this resin, a low-rigidity foam plastic material is used as a high-rigidity foam plastic model that can be used as a casting mold.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、発
泡プラスチック模型の製作方法を、所定形状に加工した
発泡プラスチック部材の表面から貫通孔、多数の流通孔
を分布させて明け、表面に樹脂を塗布し貫通孔、流通孔
を通して浸透させて内部に樹脂網を形成する方法とする
ので、表面と内部を樹脂により一体化して発泡プラスチ
ック模型を剛体にすることができ、またその表面を滑ら
かに仕上げることができ、さらに発泡プラスチック材は
軽く、軟質であるので加工性もよく、短時間で型を製作
でき、模型の製作費は安価となり非量産品には好適な模
型を製作できる。
As described above, according to the present invention, a method for producing a foamed plastic model is opened by distributing through holes and a large number of through holes from the surface of a foamed plastic member processed into a predetermined shape. Since resin is applied and penetrated through the through holes and flow holes to form a resin net inside, the surface and the inside can be integrated with the resin to make the foamed plastic model a rigid body, and the surface is smooth. In addition, since the foamed plastic material is light and soft, it has good workability, can manufacture the mold in a short time, the manufacturing cost of the model is low, and the model suitable for non-mass production can be manufactured.

【0038】また、上記製作方法により製作した発泡プ
ラスチック模型を減圧鋳造方法による鋳造に用いた場
合、この模型表面が滑らかであるので、表面に密着させ
るフィルムが木型の場合にその木目によって生じるよう
な破損を防止することができ、破損に起因する鋳型の作
り直しも必要としない。また上記製作方法により製作し
た発泡プラスチック模型は安価で非量産品には好適なも
のであるので、自硬性鋳型の製作にも極めて有効であ
る。
When the foamed plastic model manufactured by the above-mentioned manufacturing method is used for casting by the reduced pressure casting method, the surface of the model is smooth, so that when the film adhered to the surface is a wood pattern, it may be caused by the wood grain. It is possible to prevent the breakage without needing to remake the mold due to the breakage. Further, the foamed plastic model manufactured by the above manufacturing method is inexpensive and suitable for non-mass-produced products, and is therefore extremely effective for manufacturing a self-hardening mold.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳造品形状に加工した発泡プラスチック部材の
斜視図である。
FIG. 1 is a perspective view of a foamed plastic member processed into a cast product shape.

【図2】発泡プラスチック部材に上面又は側面より針状
孔明け工具で樹脂含浸用縦穴及び樹脂流通孔をあけた状
態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a vertical hole for resin impregnation and a resin flow hole are formed in a foamed plastic member from the top or side surface with a needle-shaped punching tool.

【図3】減圧鋳造用通気孔の下孔を明けた発泡プラスチ
ック部材の断面図である。
FIG. 3 is a cross-sectional view of a foamed plastic member in which a pilot hole for a vacuum casting vent hole is opened.

【図4】発泡プラスチック部材の減圧鋳造用通気孔の下
孔に常温硬化性エポキシ樹脂を注入している状態を図で
ある。
FIG. 4 is a view showing a state in which a room temperature curable epoxy resin is injected into a lower hole of a reduced pressure casting vent hole of a foamed plastic member.

【図5】発泡プラスチック部材の減圧鋳造用通気孔の下
孔に樹脂を注入後、二重棒中実物体を挿入した状態を示
す断面図である。
FIG. 5 is a cross-sectional view showing a state where a double rod solid object is inserted after injecting resin into a lower hole of a reduced pressure casting ventilation hole of a foamed plastic member.

【図6】発泡プラスチック部材表面から内部に常温硬化
性樹脂を浸透させた状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a state where a room temperature curable resin has penetrated from the surface of a foamed plastic member.

【図7】常温硬化性の樹脂が硬化下後、二重棒体の芯を
引き抜いて、減圧鋳造方法で用いる通気孔を形成した発
泡プラスチック模型の断面図である。
FIG. 7 is a cross-sectional view of a foamed plastic model in which a core of a double rod is pulled out after a room temperature curable resin is cured to form a vent hole used in a vacuum casting method.

【図8】熟せいした発泡プラスチック部材内で発泡ビ−
ズ核間の間隙に網目状の合成樹脂層を形成した状態を示
す図である。
FIG. 8: Foamed beads inside the aged foamed plastic member
It is a figure which shows the state which formed the mesh-shaped synthetic resin layer in the space | interval between the nucleus.

【図9】発泡プラスチックと板材とを組合せて構成した
発電機部品のベアリング鋳造用模型の公知例を示す斜視
図である。
FIG. 9 is a perspective view showing a known example of a bearing casting model of a generator part configured by combining foamed plastic and a plate material.

【図10】発泡プラスチックと板材とを組合せて構成し
た圧延機部品のプロジェクトブロックの鋳造用模型の公
知例を示す斜視図である。
FIG. 10 is a perspective view showing a known example of a casting model of a project block of a rolling mill part configured by combining foamed plastic and a plate material.

【図11】発泡プラスチックと板材と組合せて構成した
圧延機部品のレイルの鋳造用模型の公知例を示す斜視図
である。
FIG. 11 is a perspective view showing a known example of a model for casting a rail of a rolling mill part configured by combining foamed plastic and a plate material.

【図12】減圧鋳造法で鋳造する中型製品用の発泡プラ
スチック模型の断面図である。
FIG. 12 is a cross-sectional view of a foamed plastic model for a medium-sized product cast by a vacuum casting method.

【図13】減圧鋳造法で鋳造する中型製品用の別の発泡
プラスチック模型の断面図である。
FIG. 13 is a cross-sectional view of another foamed plastic model for a medium-sized product cast by the vacuum casting method.

【図14】発泡プラスチック模型を減圧ボックスに載せ
た状態を示す断面図である。
FIG. 14 is a cross-sectional view showing a state in which a foamed plastic model is placed on a decompression box.

【図15】発泡プラスチック模型表面にフィルムを密着
する工程を説明する図である。
FIG. 15 is a diagram illustrating a step of bringing a film into close contact with the surface of a foamed plastic model.

【図16】発泡プラスチック模型上に粒子状物体を詰め
込む工程を示す図である。
FIG. 16 is a diagram showing a process of packing a particulate object on a foamed plastic model.

【図17】硬化した粒子状物体充填部から発泡プラスチ
ック模型を脱型する工程を示す図である。
FIG. 17 is a diagram showing a step of releasing the foamed plastic model from the cured particulate matter filling portion.

【図18】減圧鋳造用下型と上型の鋳型を合わせ、溶湯
を注入する工程を示す図である。
FIG. 18 is a view showing a step of pouring a molten metal by combining a lower mold for vacuum casting and an upper mold.

【図19】粒子状物体の減圧を解き、鋳型を崩壊させる
工程を示す図である。
FIG. 19 is a diagram showing a step of releasing the reduced pressure of the particulate matter to collapse the mold.

【図20】自硬性鋳型用発泡プラスチック模型をボック
スに載せた状態を示す図である。
FIG. 20 is a view showing a state in which a foamed plastic model for a self-hardening mold is placed on a box.

【図21】砂と硬化剤とを混練機で混合している状態を
示す断面図である。
FIG. 21 is a cross-sectional view showing a state where sand and a curing agent are mixed by a kneader.

【図22】混練した砂を発泡プラスチック模型上に詰め
込む工程を示す断面図である。
FIG. 22 is a cross-sectional view showing a step of packing the kneaded sand on the foamed plastic model.

【図23】発泡プラスチック模型上で混練した砂が硬化
した状態を示す図である。
FIG. 23 is a diagram showing a state in which the sand kneaded on the foamed plastic model is hardened.

【図24】硬化した砂部分発泡プラスチック模型を脱型
する工程を示す断面図である。
FIG. 24 is a cross-sectional view showing a step of releasing the cured sand partially expanded plastic model.

【図25】下型鋳型と上型鋳型を合わせ、溶湯を注入す
る工程を示す断面図である。
FIG. 25 is a cross-sectional view showing a step of pouring a molten metal by combining a lower mold and an upper mold.

【図26】自硬性鋳型を崩壊させる工程を示す図であ
る。
FIG. 26 is a diagram showing a step of collapsing a self-hardening mold.

【符号の説明】[Explanation of symbols]

1 発泡プラスチック部材 2 接着剤 3 台木 4 針状孔明け工具 5 樹脂含浸用縦孔 6 樹脂流通孔 7 下孔 9 常温硬化性樹脂 10 二重棒体 11 芯 12 滑性物体被膜 13 外被 14 発泡体 15 通気孔 16 発泡ビ−ズ核 17 網目状樹脂層 18 樹脂柱 20 仕切木材 22 発泡プラスチック模型 23 模型取付板 24 減圧ボックス 27 加熱源 28 フィルム 29 陶管 30 枠 31 粒子状物体 33 網 34 フィルム 35A 下型鋳型 35B 上型鋳型 37 成型面 38 鋳造物 39 発泡プラスチック模型 40 模型受けボックス 41 砂 42 硬化剤 44 粒子状物体 46 金枠 47 成型面 48 造型空間 50 鋳造物 DESCRIPTION OF SYMBOLS 1 Foamed plastic member 2 Adhesive 3 Rootstock 4 Needle-like hole punching tool 5 Vertical hole for resin impregnation 6 Resin through hole 7 Lower hole 9 Room temperature curable resin 10 Double rod 11 Core 12 Sliding object coating 13 Outer coating 14 Foam 15 Vent 16 Foam beads core 17 Mesh resin layer 18 Resin column 20 Partition wood 22 Foam plastic model 23 Foam mounting plate 24 Decompression box 27 Heat source 28 Film 29 Ceramic tube 30 Frame 31 Particulate object 33 Net 34 Film 35A Lower mold 35B Upper mold 37 Molding surface 38 Casting 39 Foamed plastic model 40 Model receiving box 41 Sand 42 Curing agent 44 Particulate object 46 Metal frame 47 Molding surface 48 Molding space 50 Casting

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷地 俊一郎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunichiro Yachi 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発泡プラスチック素材を所定形状に切削
加工し、該所定形状に加工された発泡プラスチック部材
の表面から針状孔明け工具により貫通孔を含めて内部に
通じる多数の流通孔を分布させて明け、前記発泡プラス
チック部材表面に常温硬化性の樹脂を塗布し、前記貫通
孔および前記流通孔を通して前記発泡プラスチック部材
を構成する発泡ビーズ核間の隙間に浸透させて樹脂網を
形成して製作することを特徴とする発泡プラスチック模
型の製作方法。
1. A foamed plastic material is cut into a predetermined shape, and a large number of through-holes, including through-holes, are distributed from the surface of the foamed plastic member processed into the predetermined shape to the inside by a needle-like punching tool. Produced by applying a room temperature curable resin to the surface of the foamed plastic member and allowing it to penetrate through the through holes and the flow holes into the gaps between the beads of the foamed beads forming the foamed plastic member to form a resin net. A method for producing a foamed plastic model, which comprises:
【請求項2】 請求項1記載の方法で製作された発泡プ
ラスチック模型に表面から該模型を貫通する孔を所定数
明け、該貫通する孔に常温硬化性の樹脂を注入し、次い
で芯と該芯を滑性被膜を介して被覆する外被とからなる
2重棒体を挿入し、前記樹脂の硬化後に前記芯を前記外
被から引抜いて通気孔を形成して製作することを特徴と
する発泡プラスチック模型の製作方法。
2. A foam plastic model produced by the method according to claim 1, wherein a predetermined number of holes penetrating the model are opened from the surface, a room temperature curable resin is injected into the penetrating hole, and then a core and the core are formed. It is characterized in that it is manufactured by inserting a double rod body comprising an outer covering for covering the core through a slippery coating, and pulling out the core from the outer covering after curing the resin to form a vent hole. How to make a foam plastic model.
【請求項3】 請求項2記載の方法で製作された発泡プ
ラスチック模型を単数個または複数個を減圧ボックス上
面に載置し、該発泡プラスチック模型表面を可撓性フィ
ルムで覆い、前記減圧ボックスを減圧させ、前記可撓性
フィルムで囲う空間内の空気を前記通気孔を通じて吸引
することにより前記可撓性フィルムを前記発泡プラスチ
ック模型に密着させ、前記発泡プラスチック模型に通じ
る湯道を形成すると共に前記発泡プラスチック模型およ
び前記湯道を側方から枠で囲い、該枠内に粒子状物体を
所定量詰め込み、前記枠上を別の可撓性フィルムで覆
い、前記減圧ボックスを常圧に戻して前記可撓性フィル
ムを発泡プラスチック模型への密着から解き、さらに前
記枠内を減圧して前記粒子状物体の詰め込み部を前記各
可撓性フィルム間で維持し、該維持した状態で前記発泡
プラスチック模型を脱型して前記粒子状物体の詰め込み
部表面に鋳造すべき製品の上下部のうちの一方の成型面
を形成した鋳型を製作し、該鋳型と同様にして前記製品
の上下部のうちの他方の成型面を形成した別の鋳型を製
作し、前記各鋳型を合わせ、該各鋳型の成型面で形成さ
れた空間に前記湯道を通して溶湯を注湯し、該溶湯が凝
固した後、前記枠内を常圧に戻して前記粒子状物体の詰
め込み部を崩壊させて前記凝固してなる鋳造物を取り出
すことを特徴とする発泡プラスチック模型を用いた減圧
鋳造方法。
3. A single or a plurality of foamed plastic models manufactured by the method according to claim 2 is placed on the upper surface of the decompression box, and the surface of the foamed plastic model is covered with a flexible film to form the decompression box. The flexible film is brought into close contact with the foamed plastic model by depressurizing and sucking the air in the space surrounded by the flexible film through the vent hole to form a runner communicating with the foamed plastic model. The foamed plastic model and the runner are laterally surrounded by a frame, a predetermined amount of particulate matter is packed in the frame, the frame is covered with another flexible film, and the decompression box is returned to normal pressure and the The flexible film is released from the close contact with the foamed plastic model, and the inside of the frame is decompressed to maintain the packed portion of the particulate matter between the flexible films. While holding the mold, the foamed plastic model is released from the mold to produce a mold in which one of the upper and lower molding surfaces of the product to be cast is formed on the surface of the packed portion of the particulate matter, In the same manner as above, another mold in which the other molding surface of the upper and lower parts of the product is formed is manufactured, the respective molds are combined, and the molten metal is passed through the runner into the space formed by the molding surface of each mold. After pouring, and after the molten metal is solidified, the inside of the frame is returned to normal pressure to collapse the packed portion of the particulate matter and the solidified casting is taken out. The reduced pressure casting method.
【請求項4】 請求項1記載の方法で製作された単数個
又は複数個の発泡プラスチック模型を台上に載置し、前
記発泡プラスチック模型に通じる湯道を形成すると共に
前記発泡プラスチック模型および前記湯道を側方から枠
で囲い、該枠内に硬化剤と混練した粒子状物体を所定量
詰め込み、該粒子状物体の詰め込み部が硬化した後、前
記発泡プラスチック模型を脱型して前記粒子状物体の詰
め込み部表面に鋳造すべき製品の上下部のうちの一方の
成型面を形成した鋳型を製作し、該鋳型と同様にして前
記製品の上下部のうちの他方の成型面が形成された別の
鋳型を製作し、前記各鋳型を合わせ、該各鋳型の成型面
で形成された空間に前記湯道を通して溶湯を注湯し、該
溶湯が凝固した後、前記粒子状物体の詰め込み部を破壊
して前記凝固してなる鋳造物を取り出すことを特徴とす
る発泡プラスチック模型を用いた自硬性鋳型による鋳造
方法。
4. A single or a plurality of foamed plastic models manufactured by the method according to claim 1 is placed on a table to form a runner communicating with the foamed plastic model, and the foamed plastic model and the foamed plastic model. The runner is surrounded by a frame from the side, and a predetermined amount of a particulate object kneaded with a curing agent is packed in the frame, and after the packed part of the particulate object is cured, the foamed plastic model is demolded and the particles are formed. A mold in which one molding surface of one of the upper and lower parts of the product to be cast is formed on the surface of the stuffed portion of the object is formed, and the other molding surface of the upper and lower parts of the product is formed in the same manner as the mold. Another mold is manufactured, the molds are combined, the molten metal is poured into the space formed by the molding surfaces of the molds through the runner, and after the molten metal is solidified, the packed portion of the particulate matter is filled. Destroy and solidify the A casting method using a self-hardening mold using a foamed plastic model, which is characterized in that a casting is taken out.
JP5178952A 1993-07-20 1993-07-20 Production of foamed plastic pattern and casting method using this pattern Pending JPH0732086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5178952A JPH0732086A (en) 1993-07-20 1993-07-20 Production of foamed plastic pattern and casting method using this pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5178952A JPH0732086A (en) 1993-07-20 1993-07-20 Production of foamed plastic pattern and casting method using this pattern

Publications (1)

Publication Number Publication Date
JPH0732086A true JPH0732086A (en) 1995-02-03

Family

ID=16057532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5178952A Pending JPH0732086A (en) 1993-07-20 1993-07-20 Production of foamed plastic pattern and casting method using this pattern

Country Status (1)

Country Link
JP (1) JPH0732086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179504A (en) * 2011-04-28 2011-09-14 风帆股份有限公司 Method for inhibiting generation of pores of plate grid of valve-controlled accumulator, and plate grid mould

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179504A (en) * 2011-04-28 2011-09-14 风帆股份有限公司 Method for inhibiting generation of pores of plate grid of valve-controlled accumulator, and plate grid mould

Similar Documents

Publication Publication Date Title
US8137607B2 (en) Process for making reusable tooling
CN101448626B (en) A method for making a composite material structure by a retractable mould
US8017054B1 (en) Systems and methods for fabricating composite fiberglass laminate articles
US4259274A (en) Method and apparatus for making a laminated ski
CN101448627A (en) Method for manufacturing composite structure by retractable die
JP3619191B2 (en) Method for manufacturing stereolithographic articles having regions of different density
US3282761A (en) Molding method, apparatus and product
CA2541266A1 (en) Process for compression moulding liquid resins with structural reinforcements
CN107096882A (en) Preparation method based on the casting molds of 3D printing and the mould
JPH0732086A (en) Production of foamed plastic pattern and casting method using this pattern
US20060043645A1 (en) Vented mold and method
JPS5940880A (en) Production of composite ski
JPH0247565B2 (en)
US11701818B2 (en) Method of producing patterns, molds, and related products
JP3141454B2 (en) Method of manufacturing resin mold and vacuum casting method using resin mold
WO2012173766A1 (en) Mold cavity having grooves formed by a flexible mesh sheet
US20010024690A1 (en) Prototype tools and models and method of making same
US7687000B2 (en) Method for the production of individual components
JPS61233509A (en) Preparation of mold, die, jig mold or mold substrate
CA2163070C (en) Rubber molding apparatus
JP4747248B2 (en) Skin material mold and manufacturing method thereof
JP3482951B2 (en) Manufacturing method of resin mold for slurry casting
JP2914530B2 (en) Repair method of slurry mold
US4150084A (en) Method of molding eggshell thin bodies
JPS6046988B2 (en) Racket frame manufacturing method