JPH0652998A - High-speed exciting air-core quadripole electromagnet - Google Patents

High-speed exciting air-core quadripole electromagnet

Info

Publication number
JPH0652998A
JPH0652998A JP20549892A JP20549892A JPH0652998A JP H0652998 A JPH0652998 A JP H0652998A JP 20549892 A JP20549892 A JP 20549892A JP 20549892 A JP20549892 A JP 20549892A JP H0652998 A JPH0652998 A JP H0652998A
Authority
JP
Japan
Prior art keywords
magnetic field
pair
core
electromagnet
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20549892A
Other languages
Japanese (ja)
Other versions
JP3306552B2 (en
Inventor
Takashi Yano
隆 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP20549892A priority Critical patent/JP3306552B2/en
Publication of JPH0652998A publication Critical patent/JPH0652998A/en
Application granted granted Critical
Publication of JP3306552B2 publication Critical patent/JP3306552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a high-speed exciting air-core electromagnet which can obtain a desired magnetic field distribution from the time immediately after the power feeding, and can suppress a disorder of the magnetic field. CONSTITUTION:In this high-speed exciting air-core electromagnet, a pair of outer conductors 11 a and 11b arranged oppositely, and a pair of inner conductors 12a and 12b arranged oppositely at the inner side of the outer conductors, are provided, and a magnetic field is generated by feeding an exciting current to the pair of outer conductors and the pair of inner conductors, so as to accelerate the electrons in an electron accumulation ring. The section form of the inner conductors is made in a triangle materially, in this high-speed exciting air-core electro-magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子蓄積リングに使用
され、リング中を通過する電子を偏向或いは収束させる
ための高速励磁空芯四極電磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fast excitation air-core quadrupole electromagnet for use in an electron storage ring for deflecting or converging electrons passing through the ring.

【0002】[0002]

【従来の技術】従来、この種の空芯電磁石は、図6に示
すように、2つの断面コの字型の外導体61a及び61
bを互いに対向させて配置し、その内側に2つの断面長
方形の内導体62a及び62bを対向させて配置してい
る。
2. Description of the Related Art Conventionally, as shown in FIG. 6, an air-core electromagnet of this type has two outer conductors 61a and 61 having a U-shaped cross section.
b are arranged to face each other, and two inner conductors 62a and 62b having a rectangular cross section are arranged to face each other inside.

【0003】この空芯電磁石に図5に示す方向に励磁電
流を流すと、通電直後は(過渡状態では)、導体61
a、61b、62a、及び62bの表面のみに電流が流
れる。即ち、図7(a)に示す部分にのみ電流が流れ
る。このとき、A−A線における磁場分布は、図7
(b)に示すようになる。
When an exciting current is passed through this air-core electromagnet in the direction shown in FIG. 5, the conductor 61 is immediately after energization (in a transient state).
Current flows only on the surfaces of a, 61b, 62a, and 62b. That is, the current flows only in the portion shown in FIG. At this time, the magnetic field distribution on the line AA is shown in FIG.
As shown in (b).

【0004】また、通電後、所定の時間が経過すると
(定常状態になると)、図8(a)に示すように、導体
内部にまで電流が流れ、A−A線における磁場分布は、
図8(b)に示すようになる。
Further, after a predetermined time has passed after energization (in a steady state), as shown in FIG. 8 (a), a current flows inside the conductor, and the magnetic field distribution on the line AA is
This is as shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】蓄積リングに使用され
る高速励磁空芯電磁石は、パルス的に(高速に)励磁さ
れるので、通電直後から所望の磁場分布が得られること
が望ましい。しかしながら、従来の空芯電磁石は、定常
状態における磁場が所望の磁場となるように設計されて
おり、励磁電流通電直後は(過渡状態では)所望の磁場
が得られないという問題点がある。つまり、通電直後は
磁場に乱れが発生し、これが消えるまでは所望の磁場と
ならず、電磁石の機能を果たさないばかりか電子ビーム
を損なうことになる。
Since the fast-excited air-core electromagnet used for the storage ring is excited in a pulsed (high-speed) manner, it is desirable to obtain a desired magnetic field distribution immediately after energization. However, the conventional air-core electromagnet is designed so that the magnetic field in the steady state becomes the desired magnetic field, and there is a problem that the desired magnetic field cannot be obtained (in the transient state) immediately after the excitation current is supplied. That is, the magnetic field is disturbed immediately after energization, and the desired magnetic field is not obtained until the disturbance disappears, and not only the function of the electromagnet is not fulfilled but the electron beam is damaged.

【0006】本発明は、通電直後から所望の磁場分布が
得られ、かつ磁場の乱れを抑制できる高速励磁空芯電磁
石を提供することを目的とする。
An object of the present invention is to provide a high-speed excitation air-core electromagnet which can obtain a desired magnetic field distribution immediately after energization and can suppress the disturbance of the magnetic field.

【0007】[0007]

【課題を解決するための手段】本発明によれば、一対の
対向配置された外導体と、該一対の外導体の内側で対向
配置された一対の内導体とを有し、前記一対の外導体と
前記一対の内導体とに励磁電流を流すことにより磁場を
発生し、電子蓄積リング中の電子を偏向或いは収束させ
る高速励磁空芯電磁石において、前記内導体の断面形状
を実質的に三角形とし、これにより過渡状態においても
定常状態と相似の磁場が得られる高速励磁空芯四極電磁
石が得られる。
According to the present invention, there is provided a pair of opposed outer conductors and a pair of inner conductors opposed to each other inside the pair of outer conductors. In a high-speed excitation air-core electromagnet that generates a magnetic field by flowing an exciting current to a conductor and the pair of inner conductors to deflect or converge the electrons in the electron storage ring, the cross-sectional shape of the inner conductor is substantially triangular. As a result, a fast-excited air-core quadrupole electromagnet that can obtain a magnetic field similar to the steady state even in the transient state can be obtained.

【0008】また、本発明によれば、高速励磁空芯電磁
石は、始めは所定の電流値よりも大きな電流値を持ち、
時間経過と共に徐々に前記所定の電流値になるパルス電
流で駆動される。
Further, according to the present invention, the high-speed excitation air-core electromagnet initially has a current value larger than a predetermined current value,
It is driven by a pulse current that gradually becomes the predetermined current value as time passes.

【0009】[0009]

【実施例】以下に図面を参照して本発明の実施例を説明
する。図1に本発明の第1の実施例を示す。本実施例の
高速励磁空芯電磁石は断面コの次型の外導体11a及び
11bが対向配置され、その内側に、断面直角2等辺三
角形の内導体12a及び12bが対向配置されている。
ここで、内導体12aと内導体12bとは、直角の頂点
が互いに向き合うように配置される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. In the high-speed excitation air-core electromagnet of the present embodiment, the outer conductors 11a and 11b of the next type having a U-shaped cross section are arranged to face each other, and the inner conductors 12a and 12b having an isosceles right-angled cross section are arranged to face each other inside.
Here, the inner conductor 12a and the inner conductor 12b are arranged such that right-angled vertices face each other.

【0010】図1(a)は、励磁電流印加直後の状態を
示しており、電流は外導体11a及び11bと、内導体
12a及び12bとの表面を流れる。このとき磁力線1
3は内導体12a及び12bの斜面に沿って発生し、4
極磁場を形成する。なお、この場合には内導体12a及
び12bの内部には磁力線は侵入できない。
FIG. 1A shows a state immediately after the application of the exciting current, in which the current flows on the surfaces of the outer conductors 11a and 11b and the inner conductors 12a and 12b. Magnetic field line 1 at this time
3 occurs along the slopes of the inner conductors 12a and 12b, and 4
Creates a polar magnetic field. In this case, the magnetic field lines cannot penetrate into the inner conductors 12a and 12b.

【0011】外導体11a及び11bと内導体12a及
び12bとに通電した後、所定時間が経過すると、外導
体11a及び11bと内導体12a及び12bにはそれ
ぞれ内部にまで電流が流れ、図1(b)に示すように、
磁力線14も内導体12a及び12b内部に侵入して、
特定の点の周りを回るような形になる。なお、このとき
も四極磁場を形成する。
When a predetermined time elapses after the outer conductors 11a and 11b and the inner conductors 12a and 12b are energized, electric currents flow into the outer conductors 11a and 11b and the inner conductors 12a and 12b, respectively. As shown in b),
The magnetic lines of force 14 also enter the inner conductors 12a and 12b,
It becomes a shape that goes around a specific point. At this time also, a quadrupole magnetic field is formed.

【0012】このように本実施例では、内導体12a及
び12bの断面形状を三角形としたことで、過渡状態に
おいても定常状態と同じ磁場分布(相似で強度も同程
度)を得ることができる。
As described above, in the present embodiment, the inner conductors 12a and 12b have a triangular cross-sectional shape, so that the same magnetic field distribution (similarity and strength) as in the steady state can be obtained even in the transient state.

【0013】ところで、内導体12a及び12bの断面
形状を三角形としただけでは、通電直後の磁場の強度は
定常状態の磁場強度に比べ小さい、即ち、立上がりの強
度が不足する。そこで、図2に示すように、始めは所定
の電流a1 よりも大きな電流a2 を流し、徐々に所定の
電流a1 にまで下げ、それ以後電流a1 を流すように電
流を供給すれば良い。
By the way, if the cross-sectional shape of the inner conductors 12a and 12b is merely triangular, the strength of the magnetic field immediately after energization is smaller than the magnetic field strength in the steady state, that is, the rising strength is insufficient. Therefore, as shown in FIG. 2, if a current a 2 larger than the predetermined current a 1 is made to flow at first , the current is gradually lowered to the predetermined current a 1 , and then the current is supplied so that the current a 1 is made to flow. good.

【0014】次に、第2の実施例について図3を参照し
て説明する。本実施例でも外導体31a及び31bと内
導体32a及び32bとが第1の実施例と同様に配置さ
れている。ここで、内導体32a及び32bの断面形状
は略三角形と見なせる形状としてあり、外導体31a及
び31bは、それぞれが内導体32a及び32bに対向
する部分を凸型としてある。
Next, a second embodiment will be described with reference to FIG. Also in this embodiment, the outer conductors 31a and 31b and the inner conductors 32a and 32b are arranged similarly to the first embodiment. Here, the cross-sectional shape of the inner conductors 32a and 32b is a shape that can be regarded as a substantially triangular shape, and the outer conductors 31a and 31b have convex portions at portions facing the inner conductors 32a and 32b, respectively.

【0015】本実施例において、励起電流を印加した直
後は図4(a)示すように、表面電流のみが流れ、その
ときの磁場分布は図4(b)に示すようになる。また、
所定時間経過後は、図5(a)に示すように導体内にも
電流が流れ、図5(b)に実線で示すような磁場分布と
なる。通電直後の磁場分布と所定時間後の磁場分布とを
比較すると(図5(b)に図4(b)の磁場分布を破線
で示す。)磁場強度は異なるが、同じ分布(相似で強度
も同程度)となっている。即ち、第1の実施例と同様に
図2に示すようなパルス電流で駆動を行えば、通電直後
から定常状態まで、同じ磁場分布とすることができる。
In this embodiment, immediately after the excitation current is applied, only the surface current flows as shown in FIG. 4 (a), and the magnetic field distribution at that time is as shown in FIG. 4 (b). Also,
After the lapse of a predetermined time, a current also flows in the conductor as shown in FIG. 5 (a), and the magnetic field distribution becomes as shown by the solid line in FIG. 5 (b). When the magnetic field distribution immediately after energization and the magnetic field distribution after a predetermined time are compared (the magnetic field distribution in FIG. 4B is shown by a broken line in FIG. 5B), the magnetic field strengths are different, but the same distribution (similar strength It is about the same). That is, by driving with a pulse current as shown in FIG. 2 as in the first embodiment, the same magnetic field distribution can be obtained from immediately after energization to the steady state.

【0016】なお、上記実施例では内導体の形状を2種
類しか示さなかったが、内導体の形状は、その断面が左
右対称かつ略三角形をしていれば、他の形状であっても
良い。また、内導体の形状に合わせて外導体の形状も変
化させることが好ましい。
Although only two shapes of the inner conductor are shown in the above embodiments, the shape of the inner conductor may be any other shape as long as its cross section is bilaterally symmetrical and substantially triangular. . Further, it is preferable to change the shape of the outer conductor in accordance with the shape of the inner conductor.

【0017】[0017]

【発明の効果】本発明によれば、高速励磁空芯四極電磁
石の内導体の断面形状を実質的に三角形としたことで、
通電直後の過渡状態から、所定時間後の定常状態まで、
速い立ち上がりで安定した磁場分布を得ることができ
る。また、励磁電流を始めは所定の電流値よりも大きい
電流を与えるようにしたことで、磁場の強度も過渡状態
から定常状態まで、ほぼ同じにできる。
According to the present invention, the cross-sectional shape of the inner conductor of the high-speed excitation air-core quadrupole electromagnet is substantially triangular,
From the transient state immediately after energization to the steady state after a predetermined time,
A stable magnetic field distribution can be obtained with a fast rise. In addition, since the exciting current is initially supplied with a current larger than a predetermined current value, the strength of the magnetic field can be substantially the same from the transient state to the steady state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の断面図であり、(a)
は過渡状態の磁力線を説明するための図、(b)は定常
状態の磁力線を説明するための図である。
FIG. 1 is a cross-sectional view of a first embodiment of the present invention, (a)
FIG. 4A is a diagram for explaining magnetic field lines in a transient state, and FIG. 9B is a diagram for explaining magnetic field lines in a steady state.

【図2】図1の高速励磁空芯電磁石を励磁するためのパ
ルス電流の時間変化を説明するためのグラフである。
FIG. 2 is a graph for explaining a time change of a pulse current for exciting the high-speed excitation air-core electromagnet of FIG.

【図3】本発明の第2の実施例の断面図である。FIG. 3 is a sectional view of a second embodiment of the present invention.

【図4】図3の高速励磁空芯電磁石の過渡状態における
(a)電流分布を説明するための図、及び(b)A−A
線における磁場分布を示すグラフである。
4A and 4B are diagrams for explaining a current distribution in a transient state of the high-speed excitation air-core electromagnet of FIG. 3, and FIG.
It is a graph which shows the magnetic field distribution in a line.

【図5】図3の高速励磁空芯電磁石の定常状態における
(a)電流分布を説明するための図、及び(b)A−A
線における磁場分布を示すグラフである。
5A and 5B are diagrams for explaining a current distribution in the steady state of the high-speed excitation air-core electromagnet of FIG. 3, and FIG.
It is a graph which shows the magnetic field distribution in a line.

【図6】従来の高速励磁空芯電磁石の断面図である。FIG. 6 is a sectional view of a conventional high-speed excitation air-core electromagnet.

【図7】図6の高速励磁空芯電磁石の過渡状態における
(a)電流分布を説明するための図、及び(b)A−A
線における磁場分布を示すグラフである。
7 (a) is a diagram for explaining a current distribution in a transient state of the high-speed excitation air-core electromagnet shown in FIG. 6, and (b) is AA.
It is a graph which shows the magnetic field distribution in a line.

【図8】図6の高速励磁空芯電磁石の定常状態における
(a)電流分布を説明するための図、及び(b)A−A
線における磁場分布を示すグラフである。
FIG. 8 is a diagram for explaining (a) current distribution in a steady state of the high-speed excitation air-core electromagnet shown in FIG. 6, and (b) AA.
It is a graph which shows the magnetic field distribution in a line.

【符号の説明】[Explanation of symbols]

11a,11b 外導体 12a,12b 内導体 11a, 11b outer conductor 12a, 12b inner conductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対の対向配置された外導体と、該一対
の外導体の内側で対向配置された一対の内導体とを有
し、前記一対の外導体と前記一対の内導体とに励磁電流
を流すことにより磁場を発生し、電子蓄積リング中の電
子を偏向或いは収束させる高速励磁空芯電磁石におい
て、前記内導体の断面形状を実質的に三角形としたこと
を特徴とする高速励磁空芯四極電磁石。
1. A pair of outer conductors arranged opposite to each other, and a pair of inner conductors arranged opposite to each other inside the pair of outer conductors, wherein the pair of outer conductors and the pair of inner conductors are excited. A high-speed excitation air-core electromagnet that generates a magnetic field by passing an electric current to deflect or converge the electrons in the electron storage ring, characterized in that the cross-sectional shape of the inner conductor is substantially triangular. Quadrupole electromagnet.
【請求項2】 前記励磁電流が、始めは所定の電流値よ
りも大きな電流値を持ち、時間経過と共に徐々に前記所
定の電流値になるパルス電流であって、該パルス電流に
より駆動されることを特徴とする請求項1の高速励磁空
芯四極電磁石。
2. The exciting current is a pulse current that initially has a larger current value than a predetermined current value and gradually becomes the predetermined current value with the passage of time, and is driven by the pulse current. A high-speed excitation air-core quadrupole electromagnet according to claim 1.
JP20549892A 1992-07-31 1992-07-31 High-speed excitation air-core quadrupole electromagnet Expired - Fee Related JP3306552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20549892A JP3306552B2 (en) 1992-07-31 1992-07-31 High-speed excitation air-core quadrupole electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20549892A JP3306552B2 (en) 1992-07-31 1992-07-31 High-speed excitation air-core quadrupole electromagnet

Publications (2)

Publication Number Publication Date
JPH0652998A true JPH0652998A (en) 1994-02-25
JP3306552B2 JP3306552B2 (en) 2002-07-24

Family

ID=16507858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20549892A Expired - Fee Related JP3306552B2 (en) 1992-07-31 1992-07-31 High-speed excitation air-core quadrupole electromagnet

Country Status (1)

Country Link
JP (1) JP3306552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112693A (en) * 2006-10-31 2008-05-15 Hitachi Ltd Annular acceleration device and operating method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112693A (en) * 2006-10-31 2008-05-15 Hitachi Ltd Annular acceleration device and operating method therefor

Also Published As

Publication number Publication date
JP3306552B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP2908220B2 (en) Normal conduction type bending electromagnet
US6633039B2 (en) Electromagnets for and method of deflecting and splitting a particle beam
JPH0652998A (en) High-speed exciting air-core quadripole electromagnet
US5638041A (en) Electromagnetic assembly
EP1082540B1 (en) Magnetic flux shaping in ion accelerators with closed electron drift
US5610482A (en) Gyrotron and method of improving its efficiency
JPH07191169A (en) Ion deflecting magnet and method for ion deflecting
US5828173A (en) Magnetic system for gyrotrons forming a wavy magnetic field
JPH07335107A (en) Polarized electromagnet
JP2002025796A (en) Variable magnetic field intensity type electromagnet and variable energy type accelerator using the same
JP2699251B2 (en) Magnetic field generator
JP2980226B2 (en) Electromagnet for charged particle storage ring
WO2023281618A1 (en) Circularly polarized light modulating device
WO2019137183A1 (en) Deflection scanning device for multi-phase winding and deflection scanning system
JP3065988B2 (en) Normal conduction type bending electromagnet
JP2501380B2 (en) Bending electromagnet for accelerator
JPH08138936A (en) Method and device for magnetizing metal magnet
JP2985469B2 (en) Pulse magnetic field generator
KR0145428B1 (en) 2-pole electromagnet of accelerator
Nazarenko et al. Peculiarities of Focusing High-Power Welding Electron Beams
JPH05308769A (en) Electromagnetic flow coupler
JP4389023B2 (en) Superconducting magnet that cancels electromagnetic force
KR20210068903A (en) Hypertube Vehicle Running System
JPH07183121A (en) Deflecting electromagnet
JPH0613226A (en) Electromagnet device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020410

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees