JPH06317518A - Dichroism dispersion meter - Google Patents

Dichroism dispersion meter

Info

Publication number
JPH06317518A
JPH06317518A JP12474993A JP12474993A JPH06317518A JP H06317518 A JPH06317518 A JP H06317518A JP 12474993 A JP12474993 A JP 12474993A JP 12474993 A JP12474993 A JP 12474993A JP H06317518 A JPH06317518 A JP H06317518A
Authority
JP
Japan
Prior art keywords
light
sample
component
polarization
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12474993A
Other languages
Japanese (ja)
Other versions
JP3341928B2 (en
Inventor
Youji Shindou
洋爾 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP12474993A priority Critical patent/JP3341928B2/en
Publication of JPH06317518A publication Critical patent/JPH06317518A/en
Application granted granted Critical
Publication of JP3341928B2 publication Critical patent/JP3341928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a circular dichroism dispersion meter which can reduce measurement error due to the incompleteness of an optical element and improve sensitivity. CONSTITUTION:Emission light from a light source 1 is focused and collimated by a lens 2 and then non-polarized light is applied to a sample 4 via a polarization elimination plate 3. Also, a photoelastic modulator 5, an analyzer 6, and a lens 7 are laid out on the path of the flux of beams transmitted through the sample and further the incidence slit of a spectroscope 8 is laid out at the focusing position of the lens. Then, a detector 9 is laid out at the output of the spectroscope and the light constituent detected there is sent to a signal processing device 10. Then, the non-polarized light can be regarded as the synthesis of counterclockwise and clockwise circular polarization of the same energy and then the constituent of one circular polarization in the transmission light becomes strong due to the difference in the absorption rate of both circular polarizations while the sample is passing. By detecting the polarization state with a measuring system laid out at the later stage of the sample, the characteristics of the sample are examined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円二色性分散計や直線
二色性分散計等と称される二色性分散計に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dichroic dispersometer called a circular dichroic dispersometer, a linear dichroic dispersometer or the like.

【0002】[0002]

【従来の技術】従来の円二色性分散計は、光源から出射
された光を、偏光子を介して直線偏光にするとともに、
その直線偏光を光弾性変調器で左回り或いは右回りの円
偏光に変調し、それら各円偏光を交互に試料に照射す
る。すると、試料の特性に応じて左右の円偏光による吸
光度が違うため、試料を透過した透過光の強度は円偏光
の方向によって異なる。そこで、係る各透過光の強度を
受光素子(検出器)で検出するとともに、その後段の信
号処理回路にて係る強度の差を算出するようになってい
る。これにより試料の内部構造などの特性を調べるよう
にしている。
2. Description of the Related Art A conventional circular dichroic dispersometer converts light emitted from a light source into linearly polarized light through a polarizer, and
The linearly polarized light is modulated by the photoelastic modulator into left-handed or right-handed circularly polarized light, and the circularly polarized light is alternately irradiated to the sample. Then, since the absorbance due to the left and right circularly polarized light differs depending on the characteristics of the sample, the intensity of the transmitted light that has passed through the sample differs depending on the direction of the circularly polarized light. Therefore, the intensity of each transmitted light is detected by the light receiving element (detector), and the difference in intensity is calculated by the signal processing circuit at the subsequent stage. By doing so, the characteristics such as the internal structure of the sample are investigated.

【0003】[0003]

【発明が解決しようとする課題】ところで、左右の円偏
光あるいは変調の途中段階での左右の楕円偏光に対して
作用が異なる光学素子(偏光子,光弾性変調器,検出器
等)があると、ベースラインのシフトが起き、また測定
値の直線性が悪くなる。特に、試料の配向、試料セルの
窓の歪、検出器の窓の歪が大きく影響する。また、光学
素子の温度変化により、光学的歪が変わり、偏光に対す
るその作用が変化し、安定度が悪くなる。これは、光学
素子の歪に起因する複屈折が温度により変わり、透過偏
光の偏光状態を変えてしまうためである。光学素子の屈
折率が偏光の方位で異なるとその素子により光束の曲が
り方が異なり、偏光の方位により検出器の受光面上での
光束が当たる位置がずれ、受光面の位置による感度むら
のため、検出器の出力信号が変わってしまい、偽の円二
色性が検出さる。さらに、複屈折は偏光の状態そのもの
を変える作用があり、これは直接的に円二色性の測定誤
差を生ずる原因となる。さらにまた、微量の試料に対す
る測定を行うためには、高感度にする必要があり、係る
場合には、上記した各種の問題がより顕著に現れ、精度
の向上のネックとなっていた。
By the way, if there are optical elements (polarizers, photoelastic modulators, detectors, etc.) having different actions for left and right circularly polarized light or left and right elliptically polarized light in the middle of modulation. , Baseline shift occurs, and the linearity of measured values deteriorates. In particular, sample orientation, sample cell window distortion, and detector window distortion have a large effect. Also, due to the temperature change of the optical element, the optical strain changes, its action on the polarized light changes, and the stability deteriorates. This is because the birefringence due to the distortion of the optical element changes depending on the temperature and changes the polarization state of the transmitted polarized light. If the refractive index of the optical element differs depending on the direction of polarization, the way the light beam bends differs depending on the element, and the position on the light-receiving surface of the detector where the light beam strikes will shift depending on the direction of polarization, causing uneven sensitivity due to the position of the light-receiving surface. , The output signal of the detector changes, and false circular dichroism is detected. Furthermore, birefringence has the effect of changing the state of polarization itself, which directly causes an error in measuring circular dichroism. Furthermore, in order to perform measurement on a small amount of sample, it is necessary to have high sensitivity, and in such a case, the above-mentioned various problems become more prominent, which is a bottleneck in improving accuracy.

【0004】本発明は、上記した背景に鑑みてなされた
もので、その目的とするところは、円(直線)二色性を
測定するために偏光状態を変えたときの装置の光学素子
の不完全さに起因する測定の誤差を軽減することがで
き、感度の向上を図ることのできる二色性分散計を提供
することにある。
The present invention has been made in view of the above background, and an object of the present invention is to eliminate the optical element of the apparatus when the polarization state is changed to measure the circular (linear) dichroism. An object of the present invention is to provide a dichroic dispersion meter capable of reducing the measurement error caused by perfection and improving the sensitivity.

【0005】[0005]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る二色性分散計では、略無偏光状態
の光を試料に照射する光照射手段と、前記試料からの透
過光あるいは反射光の偏光成分の位相遅れを制御する光
変調手段と、前記光変調手段で変調された光の直線偏光
成分を抽出する手段と、前記直線偏光成分を抽出する手
段にて抽出された光を受光する手段と、その受光する手
段で受光された光成分に基づいて、前記試料にて吸収さ
れた光成分を検出することにより前記試料の特性を計測
する信号処理手段とを備えた。
In order to achieve the above-mentioned object, in the dichroic dispersometer according to the present invention, a light irradiating means for irradiating a sample with light in a substantially non-polarized state, and a light transmitted from the sample. The light modulation means for controlling the phase delay of the polarization component of the light or the reflected light, the means for extracting the linear polarization component of the light modulated by the light modulation means, and the means for extracting the linear polarization component are extracted. The light receiving means and the signal processing means for measuring the characteristic of the sample by detecting the light component absorbed by the sample based on the light component received by the light receiving means.

【0006】[0006]

【作用】光照射手段を用いて、試料に対して無偏光状態
の光を照射する。この照射された無偏光は、同一エネル
ギー量の左回りの円偏光と右回りの円偏光を合成したも
のとみなせるため、試料が一方(例えば左回りの円偏
光)をよく吸収する性質を有している場合には、試料か
ら出射される透過光或いは反射光は、右回りの円偏光が
強い偏光成分となる。よって、係る偏光成分を検出する
ことにより、試料の特性を調べることができる。また上
述のごとく、試料に対しては無偏光の光が照射されるた
め、たとえ試料の配向、試料セルの窓の歪、検出器の窓
の歪があったとしても、測定結果に悪影響を与えない。
The light irradiation means is used to irradiate the sample with light in a non-polarized state. This irradiated non-polarized light can be regarded as a combination of left-handed circularly polarized light and right-handed circularly polarized light of the same energy amount, and therefore the sample has a property of absorbing one side (for example, left-handed circularly polarized light) well. In such a case, the transmitted light or the reflected light emitted from the sample becomes a polarization component having strong clockwise circularly polarized light. Therefore, the characteristics of the sample can be examined by detecting the polarized component. Further, as described above, since the sample is irradiated with unpolarized light, even if there is sample orientation, sample cell window distortion, or detector window distortion, it adversely affects the measurement results. Absent.

【0007】[0007]

【実施例】以下本発明に係る二色性分散計について添付
図面を参照にして詳述する。図1には本発明の一実施例
である円二色性分散計の概略光学系図を示している。同
図に示すように、本例では、光照射手段たるキセノンラ
ンプ等の無偏光状態の光を出射する光源1からの出射光
をレンズ2で集光して平行光束にした後、偏光解消板3
を介して試料4に照射するようにしている。ここで、レ
ンズ2と試料4との間に偏光解消板3を配置したのは、
光源1から出射する出射光自身に僅かな偏光成分が含ま
れていたり、レンズ2を透過する際(特に、中心から離
れた周縁を通過する光)に偏光成分が生じることがある
ので、係る偏光成分を除去して無偏光の光を試料4に照
射することにより高精度な測定を行えるようにしたため
である。したがって、要求される精度や、その他の条件
によっては必ずしも必要ではない。
The dichroic dispersometer according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows a schematic optical system diagram of a circular dichroism dispersion meter which is an embodiment of the present invention. As shown in the figure, in this example, the light emitted from the light source 1 that emits light in a non-polarized state such as a xenon lamp, which is a light irradiating means, is condensed by the lens 2 into a parallel light flux, and then the depolarizing plate is used. Three
The sample 4 is irradiated with the light. Here, the reason why the depolarizing plate 3 is arranged between the lens 2 and the sample 4 is that
The emitted light itself emitted from the light source 1 may include a slight polarization component, or a polarization component may be generated when passing through the lens 2 (especially, light passing through the peripheral edge away from the center). This is because high-precision measurement can be performed by removing the components and irradiating the sample 4 with unpolarized light. Therefore, it is not always necessary depending on the required accuracy and other conditions.

【0008】さらに、試料4を通過した光束の進路上に
所定の周波数f(発振器5aの発振周波数)で位相変調
(sin 変調)させる光変調手段たる光弾性変調器5,直
線偏光成分を抽出する手段たる検光子6,レンズ7を、
その順に配置し、さらにそのレンズ7の焦点位置に分光
器8の入射スリットを配置している。そしてその分光器
8の出力側に検出器9を配置している。なお、本例で
は、上記分光器8並びに検出器9で受光する手段を構成
している。そして、本例では、上記検出器9を光電子増
倍管から構成し、この検出器9で検出した光を後段の信
号処理装置10に送るようになっている。
Further, a photoelastic modulator 5, which is a light modulating means for performing phase modulation (sin modulation) at a predetermined frequency f (oscillation frequency of the oscillator 5a), on the path of the light flux passing through the sample 4, and a linear polarization component are extracted. The analyzer 6 and the lens 7, which are means,
The lenses are arranged in that order, and the entrance slit of the spectroscope 8 is arranged at the focal position of the lens 7. A detector 9 is arranged on the output side of the spectroscope 8. In this example, the spectroscope 8 and the detector 9 constitute light receiving means. In this example, the detector 9 is composed of a photomultiplier tube, and the light detected by the detector 9 is sent to the signal processing device 10 in the subsequent stage.

【0009】この信号処理装置10は、図2に示すよう
に、検出器9より出力した電気信号を前置増幅器A1に
てインピーダンス変換し、その前置増幅器A1の出力を
直流増幅器A2に接続し、そこにおいてその出力の直流
成分を増幅して検出器駆動制御部11に与え、その検出
器駆動制御部11にて検出器9を構成する光電子増倍管
の陰極電圧がコントロールされ、出力信号の直流成分が
一定になるようにフィードバック制御されている。
As shown in FIG. 2, the signal processing apparatus 10 impedance-converts an electric signal output from the detector 9 by a preamplifier A1 and connects the output of the preamplifier A1 to a DC amplifier A2. , The DC component of the output is amplified and given to the detector drive control unit 11, and the cathode voltage of the photomultiplier tube that constitutes the detector 9 is controlled by the detector drive control unit 11 to output the output signal. Feedback control is performed so that the DC component is constant.

【0010】また、上記前置増幅器A1の出力は、コン
デンサCを介して交流増幅器A3にも入力されるように
なっている。そして、光弾性変調器5の変調周波数f
[Hz]の交流成分は、交流増幅器A4で増幅されPS
Dで同期整流され、低周波増幅器A5で直流増幅された
後、記録計Rで記録される。なお、係る信号処理装置1
0の構成は、従来のものと同様であるため、その詳細な
説明を省略する。
The output of the preamplifier A1 is also input to the AC amplifier A3 via the capacitor C. Then, the modulation frequency f of the photoelastic modulator 5
The AC component of [Hz] is amplified by the AC amplifier A4 and PS
The data is synchronously rectified by D, amplified by direct current by the low frequency amplifier A5, and then recorded by the recorder R. The signal processing device 1
The configuration of 0 is the same as the conventional one, and thus the detailed description thereof is omitted.

【0011】次に、上記構成の作用について説明する。
まず、光源1から出射されレンズ2,偏光解消板3を介
して得られた無偏光状態の平行光束を試料4に照射す
る。ここで試料4への照射光に着目すると無偏光状態で
あるので、同一エネルギー強度の右回りの円偏光と、左
回りの円偏光を合成したものととらえることができる。
したがって、仮に試料4が左回りの円偏光をよく吸収す
る性質を有している場合には、試料4から出射される透
過光は、右回りの円偏光が強い偏光成分となる。そし
て、係る透過光は、従来の円二色性分散計における方向
の異なる円偏光を交互に照射した時の透過光の強度差と
等価のものとみなせる。
Next, the operation of the above configuration will be described.
First, the sample 4 is irradiated with the unpolarized parallel light flux emitted from the light source 1 and obtained through the lens 2 and the depolarization plate 3. Focusing on the irradiation light to the sample 4, since it is in a non-polarized state, it can be regarded as a combination of clockwise circularly polarized light and counterclockwise circularly polarized light having the same energy intensity.
Therefore, if the sample 4 has a property of absorbing the counterclockwise circularly polarized light well, the transmitted light emitted from the sample 4 becomes a polarized component having strong clockwise circularly polarized light. The transmitted light can be regarded as equivalent to the intensity difference of the transmitted light when the circularly polarized light having different directions in the conventional circular dichroic dispersometer is alternately irradiated.

【0012】よって、係る偏光成分を有する透過光を光
弾性変調器5にて位相変調するとともに次段の検光子6
に入射させる。すると、そこにおいて直線偏光成分のみ
が通過することになる。そしてその後はその直線偏光が
レンズ7を介して分光器8に入射されてそこにおいて単
色光にされ、それを検出器9で電気信号に変換され、さ
らに信号処理装置10にて上記電気信号に対して上記し
た所定の演算処理等を施して、試料4の特性を検出す
る。
Therefore, the transmitted light having such a polarization component is phase-modulated by the photoelastic modulator 5 and the analyzer 6 at the next stage.
Incident on. Then, only the linearly polarized light component passes there. Then, after that, the linearly polarized light is made incident on the spectroscope 8 through the lens 7 to be converted into a monochromatic light, which is converted into an electric signal by the detector 9, and further is converted by the signal processing device 10 to the electric signal. Then, the characteristics of the sample 4 are detected by performing the above-described predetermined arithmetic processing and the like.

【0013】そして、本例では上記したごとく、試料4
に対しては無偏光の光が照射されるため、たとえ試料4
の配向、試料セルの窓の歪、検出器の窓の歪があったと
しても、測定結果に悪影響を与えない。また、検光子6
以降の光は、直線偏光であるため、その後の分光器8,
検出器9での偏光による感度差の影響も受けない。よっ
て、測定誤差が可及的に抑制され、感度の向上を図るこ
とができる。さらに、同一試料に対して一回の光照射で
二色性の計測が行えるため、例えば液体クロマトグラフ
ィ等の試料が流れている(移動している)ようなものに
対しての測定も可能となり、より高精度な測定が行え
る。
In this example, as described above, sample 4
Since unpolarized light is radiated on the
Even if there is an orientation of, a sample cell window distortion, and a detector window distortion, the measurement result is not adversely affected. Also, the analyzer 6
Since the subsequent light is linearly polarized light, the subsequent spectroscope 8,
It is not affected by the difference in sensitivity due to the polarized light in the detector 9. Therefore, the measurement error can be suppressed as much as possible, and the sensitivity can be improved. Further, since the dichroism can be measured by irradiating the same sample once, it is possible to measure the sample such as liquid chromatography where the sample is flowing (moving). More accurate measurement can be performed.

【0014】ここで、上記した動作原理についての解析
結果について説明する。まず偏光を4個のパラメータを
もつストークスベクトルで表現し、偏光素子等の光学素
子や試料を、入射偏光のストークスベクトルを射出偏光
のストークスベクトルに変換する素子と考えて4×4の
行列、すなわちミュラー行列で表し、各素子および試料
のミュラー行列の積を求めることにより、検出器に入射
する光強度を求める。
Now, the analysis result of the above-mentioned operation principle will be described. First, polarization is represented by a Stokes vector having four parameters, and an optical element such as a polarizing element or a sample is considered as an element for converting a Stokes vector of incident polarized light into a Stokes vector of emitted polarized light, that is, a 4 × 4 matrix, that is, The intensity of light incident on the detector is obtained by obtaining the product of the Mueller matrix of each element and the sample by using the Mueller matrix.

【0015】つまり、偏光子をミュラ−行列で表すとと
もに、その他の光学素子も直線位相子、部分位相子とし
てミュラー行列で表現し、さらに円二色性をもつ試料を
同様にミュラー行列で表現し、光検出器に入射する偏光
のストークスベクトルを求める。そのため、入射光のス
トークスベクトルと試料、各光学素子を表す各ミュラー
行列の積を求めて、これを光検出器で検出される偏光の
ストークスベクトルとする。なおここで光弾性変調器を
f[Hz]で変調したとき、変調器はその変調成分をも
つ直線位相子のミュラー行列と同じになる。
That is, the polarizer is represented by the Mueller matrix, the other optical elements are also represented by the Mueller matrix as linear and partial retarders, and the sample having circular dichroism is similarly represented by the Mueller matrix. , The Stokes vector of the polarized light incident on the photodetector is obtained. Therefore, the product of the Stokes vector of the incident light and each Mueller matrix representing the sample and each optical element is obtained and used as the polarization Stokes vector detected by the photodetector. Here, when the photoelastic modulator is modulated at f [Hz], the modulator becomes the same as the Mueller matrix of the linear phase shifter having the modulation component.

【0016】このようにして求められた検出器で検出さ
れる偏光の強度のうち、変調成分を含まない直流成分並
びに変調成分と同じ周波数f[Hz]をもつf[Hz]
成分を導いた。このような解析の結果f[Hz]成分に
は円二色性の信号が含まれることが判明した。
Of the intensity of the polarized light detected by the detector thus obtained, a direct current component not containing a modulation component and f [Hz] having the same frequency f [Hz] as the modulation component.
Led ingredients. As a result of such an analysis, it was found that the f [Hz] component contains a circular dichroic signal.

【0017】以下さらに詳細な結果を説明する。ミュラ
ー行列法では、光の偏光状態を表すストークスベクトル
と、光学素子を表すミュラー行列を用いる。ここで、ス
トークスベクトルは、光の強さやかたよりを表す4つの
パラメータを持ち、偏光単色に対して次のように表され
る。
Further detailed results will be described below. The Mueller matrix method uses a Stokes vector representing the polarization state of light and a Mueller matrix representing an optical element. Here, the Stokes vector has four parameters that represent the intensity and the bias of light, and is expressed as follows for a single polarized light.

【0018】[0018]

【数1】 そして光源からの出射光の単色光成分は部分的に偏光し
ており円偏光成分はないと考えられるので、ストークス
ベクトルを用いると、次のように表される。
[Equation 1] Since the monochromatic light component of the light emitted from the light source is partially polarized and has no circularly polarized light component, the Stokes vector is used to express as follows.

【0019】[0019]

【数2】 さらに光学素子のミュラー行列は、それぞれ次のように
表される。すなわち、レンズは歪に起因する直線複屈折
をもつので、レンズ2の直線複屈折をLB1 とし、レン
ズ7のそれをLB2 とすると、レンズ2のミュラー行列
L1と、レンズ7のミュラー行列L2は、それぞれ)
[Equation 2] Furthermore, the Mueller matrix of the optical element is expressed as follows. That is, since the lens has a linear birefringence due to distortion, if the linear birefringence of the lens 2 is LB1 and that of the lens 7 is LB2, the Mueller matrix L1 of the lens 2 and the Mueller matrix L2 of the lens 7 are Each)

【0020】[0020]

【数3】 となる。またY軸方向にその光軸を持つ検光子のミュラ
ー行列Aは、
[Equation 3] Becomes Also, the Mueller matrix A of the analyzer having its optical axis in the Y-axis direction is

【0021】[0021]

【数4】 と表され、さらにX軸、およびY軸に対して45゜方向
にその光軸を持つ光弾性変調器のミュラー行列Mは、下
記のようになる。
[Equation 4] Further, the Mueller matrix M of the photoelastic modulator having the optical axis in the direction of 45 ° with respect to the X axis and the Y axis is as follows.

【0022】[0022]

【数5】 ここで,tは時間、ωは光弾性変調器の変調の角速度、
δ0 は変調の振幅であり、δ0 sin ωtの位相差δをX
軸およびY軸方向の偏光に与えるように光変調をしてい
ることを示す。さらにδ=δ0 sinωtと定義し、ま
たαは、光弾性変調器の光学素子が持つ残留歪の量に起
因する位相のずれである。
[Equation 5] Where t is time, ω is the angular velocity of modulation of the photoelastic modulator,
δ0 is the amplitude of the modulation, and the phase difference δ of δ0 sin ωt is X
It shows that the light is modulated so as to give the polarized light in the axial and Y-axis directions. Further, it is defined as δ = δ0 sin ωt, and α is a phase shift due to the amount of residual distortion of the optical element of the photoelastic modulator.

【0023】さらに検出器は、偏光に対して感度に差が
あるので部分検光子として扱うと、そのミュラー行列D
は、下記のようになる。但しPX2、PY 2 はそれぞれX
軸、Y軸方向の感度であり、aはX軸に対する部分検光
子としての方位角である。
Further, since the detectors have different sensitivities with respect to polarized light, when treated as a partial analyzer, its Mueller matrix D
Is as follows. However, PX2 and PY2 are each X
It is the sensitivity in the axis and Y axis directions, and a is the azimuth angle as a partial analyzer with respect to the X axis.

【0024】[0024]

【数6】 同様に、分光器を部分偏光子として扱うと、そのミュラ
ー行列Mmonoは、下記のようになる。但しbはX軸に対
する部分偏光としての方位角である。
[Equation 6] Similarly, when the spectroscope is treated as a partial polarizer, its Mueller matrix Mmono is as follows. However, b is an azimuth angle as partial polarization with respect to the X axis.

【0025】[0025]

【数7】 そして、円二色性をCD、旋光度をCBとすると、CD
およびCBをもつ試料に対しては以下のようになる。
[Equation 7] If circular dichroism is CD and optical rotation is CB, then CD
And for a sample with CB:

【0026】[0026]

【数8】 また、直線二色性をLD、直線複屈折をLBとし、LD
およびLBをもつ試料に対しては以下のようになる。
[Equation 8] LD is linear dichroism and LB is linear birefringence.
And for the sample with LB:

【0027】[0027]

【数9】 一方、円二色性試料を入れた場合の検知器の受光面での
光の状態を示すベクトルId は次式の行列演算により得
られる。
[Equation 9] On the other hand, the vector Id indicating the state of light on the light receiving surface of the detector when the circular dichroic sample is put therein is obtained by the matrix calculation of the following equation.

【0028】 Id =D・Mmono・L2 ・A・M・SCD・L1 ・I 実際に検出器で測定されるのは光の強度のみなのでそれ
を求めると、ωの周波数成分を求めればよく、
Id = D.Mmono.L2.A.M.SCD.L1.I Since only the light intensity is actually measured by the detector, if it is obtained, the frequency component of ω may be obtained.

【0029】[0029]

【数10】 となる。そして一般にレンズの複屈折LBL1 は小さい
ので、CDが小さい時は測定に影響しないことがわか
る。またCDが小さいとき試料のLBの影響も小さい。
そして高感度測定では実用的にはCD値は小さいものが
ほとんどであり、本発明の利用の目的はCD値の小さな
ものを測定することである。
[Equation 10] Becomes Since the birefringence LBL1 of the lens is generally small, it can be seen that the measurement is not affected when the CD is small. Further, when the CD is small, the influence of the LB of the sample is small.
Most of the high-sensitivity measurements have practically small CD values, and the purpose of the use of the present invention is to measure those with small CD values.

【0030】また、2ωの周波数成分を求めると、K2
を定数として I(2ω)=K2 ・LD・cos (2ω) から直線複屈折LB項の入らない式が得られ、LDの測
定に試料のLBが関係しないことがわかる。
When the frequency component of 2ω is obtained, K2
With I as a constant, I (2ω) = K2 · LD · cos (2ω) gives an equation that does not include the linear birefringence LB term, and it can be seen that the LB of the sample is not involved in the measurement of LD.

【0031】また試料のない場合の検出器受光面での光
の状態は次の行列式の演算で得られる。
The state of light on the light receiving surface of the detector when there is no sample can be obtained by the following determinant calculation.

【0032】 Ib =D・Mmono・L2 ・A・M・L1 ・I0 そして検出されるのは光強度のみなので、ωの周波数成
分を求めると、K1 を定数として、
Ib = D.Mmono.L2.A.M.L1.I0 Then, since only the light intensity is detected, when the frequency component of ω is obtained, K1 is taken as a constant and

【0033】[0033]

【数11】Ib (ω)=K1 〔LBL1・S1 −(LBL
1’+sin α)・S3 〕 この式から試料に照射する光に偏光成分がなければ、上
の式の値は零になる。すなわちベ−スラインのシフトは
なく、測定の直線性に影響を与えないことがわかる。偏
光成分がある場合は、偏光解消板を光路に入れて無偏光
状態にすることが効果的でありことがわかる。
[Equation 11] Ib (ω) = K1 [LBL1 · S1 − (LBL
1 '+ sin α) · S3] From this equation, if there is no polarization component in the light that illuminates the sample, the value in the above equation will be zero. That is, it can be seen that there is no shift of the base line and it does not affect the linearity of the measurement. It can be seen that it is effective to put the depolarizer in the optical path to make it non-polarized when there is a polarized component.

【0034】なお、本発明は、上記した実施例に限るこ
とはなく、例えば、試料が光照射により影響を受ける場
合はその影響を与える波長域の光をカットするフィルタ
を偏光解消板の前に挿入配置してもよく、また、試料が
照射される光の熱の影響をうける場合には、上記位置に
コールドミラーを配置してもよい。また、光変調手段と
しては、上記した光弾性変調器のかわりにポッケルセル
などの電気光学効果を利用した素子を使用することも可
能である。
The present invention is not limited to the above-mentioned embodiment. For example, when a sample is affected by light irradiation, a filter for cutting light in a wavelength range which affects the light irradiation is provided in front of the depolarizing plate. It may be inserted and arranged, and if it is affected by the heat of the light with which the sample is irradiated, a cold mirror may be arranged at the above position. Further, as the light modulator, it is also possible to use an element utilizing an electro-optical effect such as a Pockel cell instead of the above-mentioned photoelastic modulator.

【0035】なおまた、検出器として光電子増倍管の代
わりにホトダイオードを使用してもよく、係る場合にお
ける信号処理装置の構成としては、f[Hz]成分の出
力信号を増幅した増幅器A5の出力信号強度を、直流増
幅器A2の出力信号強度で割り算すればよい。そして割
り算はアナログ的な割り算回路を利用する方法、あるい
は信号電圧を一度デジタル変換してコンピュータで行う
方法がある。
Further, a photodiode may be used as the detector instead of the photomultiplier tube. In such a case, the signal processing device has a configuration in which the output of the amplifier A5 which amplifies the output signal of the f [Hz] component is used. The signal strength may be divided by the output signal strength of the DC amplifier A2. Then, there is a method of using an analog division circuit for the division, or a method of converting the signal voltage into a digital signal once and using a computer.

【0036】さらにまた、上記した実施例では、試料に
照射した光がその試料内を透過するものについて説明し
たが、試料にて反射してて得られた反射光に基づいて計
測するものでももちろんよい。そして、係る場合には、
試料の後段の配置が反射光の光路上に配置すればよい。
Furthermore, in the above-described embodiment, the case where the light radiated to the sample is transmitted through the sample has been described, but it goes without saying that the measurement is performed based on the reflected light obtained by being reflected by the sample. Good. And in that case,
The latter stage of the sample may be placed on the optical path of the reflected light.

【0037】なおまた、上記した各実施例では、円二色
性分散計について説明したが、本発明の原理を用いるこ
とにより直線二色性分散計についても適用できるのはも
ちろんである。
Further, although the circular dichroic dispersometer has been described in each of the above-mentioned embodiments, it is needless to say that the linear dichroic dispersometer can be applied by using the principle of the present invention.

【0038】[0038]

【発明の効果】以上のように、本発明に係る二色性分散
計では、試料に照射する光を無偏光状態(同一エネルギ
ー量の左回りの円偏光と右回りの円偏光を合成したもの
とみなせる)としたため、たとえ光学素子の不完全さ
や、試料の配向、試料セルの窓の歪、検出器の窓の歪等
があったとしても、測定結果に悪影響を与えないか、そ
の影響を可及的に減少できる。また、光を受光する手段
の手前側に直線偏光成分を抽出する手段とを配置したた
め、係る受光する手段さらには直線偏光が入射されるの
で、偏光による感度差の影響も受けない。よって、測定
誤差が可及的に抑制され、感度の向上を図ることができ
る。
As described above, in the dichroic dispersometer according to the present invention, the light irradiating the sample is in a non-polarized state (a combination of left-handed circularly polarized light and right-handed circularly polarized light having the same energy amount). Therefore, even if there are imperfections in the optical element, sample orientation, sample cell window distortion, detector window distortion, etc., the measurement results will not be adversely affected or their effects will be affected. It can be reduced as much as possible. Further, since the means for extracting the linearly polarized light component is arranged on the front side of the means for receiving the light, since the means for receiving the light and the linearly polarized light are incident, there is no influence of the sensitivity difference due to the polarization. Therefore, the measurement error can be suppressed as much as possible, and the sensitivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る二色性分光計の好適な一実施例を
示す構成図である。
FIG. 1 is a configuration diagram showing a preferred embodiment of a dichroic spectrometer according to the present invention.

【図2】信号処理装置の回路構成を詳細に示した図であ
る。
FIG. 2 is a diagram showing in detail a circuit configuration of a signal processing device.

【符号の説明】[Explanation of symbols]

1 光源 2 ミラー 3 偏光解消板 4 試料 5 光弾性変調器 6 分光器 7 ミラー 8 分光器 9 検出器 10 信号処理装置 1 light source 2 mirror 3 depolarizing plate 4 sample 5 photoelastic modulator 6 spectroscope 7 mirror 8 spectroscope 9 detector 10 signal processing device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 略無偏光状態の光を試料に照射する光照
射手段と、 前記試料からの透過光あるいは反射光の偏光成分の位相
遅れを制御する光変調手段と、 前記光変調手段で変調された光の直線偏光成分を抽出す
る手段と、 前記直線偏光成分を抽出する手段にて抽出された光を受
光する手段と、 その受光する手段で受光された光成分に基づいて、前記
試料にて吸収された光成分を検出することにより前記試
料の特性を計測する信号処理手段とを備えた二色性分散
計。
1. A light irradiating unit for irradiating a sample with light in a substantially non-polarized state, a light modulating unit for controlling a phase delay of a polarization component of transmitted light or reflected light from the sample, and a light modulating unit for modulating the phase lag. Means for extracting the linearly polarized light component of the received light, means for receiving the light extracted by the means for extracting the linearly polarized light component, and based on the light component received by the light receiving means, to the sample And a signal processing means for measuring the characteristics of the sample by detecting the absorbed light component.
【請求項2】 前記光照射手段の出力側の光路上に、偏
光解消板を挿入配置してなる請求項1に記載の二色性分
散計。
2. The dichroic dispersometer according to claim 1, wherein a depolarizing plate is inserted and arranged in the optical path on the output side of the light irradiation means.
【請求項3】 前記光照射手段の出力側の光路上に、特
定の波長範囲の光をカットするためのフィルタ及びまた
はコールドミラーを挿入配置してなる請求項1または2
に記載の二色性分散計。
3. A filter and / or a cold mirror for cutting light in a specific wavelength range is inserted and arranged on an optical path on the output side of the light irradiation means.
The dichroic dispersion meter described in.
JP12474993A 1993-04-30 1993-04-30 Dichroic dispersion meter Expired - Lifetime JP3341928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12474993A JP3341928B2 (en) 1993-04-30 1993-04-30 Dichroic dispersion meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12474993A JP3341928B2 (en) 1993-04-30 1993-04-30 Dichroic dispersion meter

Publications (2)

Publication Number Publication Date
JPH06317518A true JPH06317518A (en) 1994-11-15
JP3341928B2 JP3341928B2 (en) 2002-11-05

Family

ID=14893166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12474993A Expired - Lifetime JP3341928B2 (en) 1993-04-30 1993-04-30 Dichroic dispersion meter

Country Status (1)

Country Link
JP (1) JP3341928B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250765A (en) * 2008-04-04 2009-10-29 System Instruments Kk Method and instrument for measuring circular dichroic spectrum
EP2610665A1 (en) * 2011-12-28 2013-07-03 Jasco Corporation Depolarizer and circular dichroism spectrometer using the same
JP2014522986A (en) * 2011-07-18 2014-09-08 ブイユーブイ・アナリティクス・インコーポレイテッド Method and apparatus for vacuum ultraviolet (VUV) or shorter wavelength circular dichroism spectroscopy
JP2015227833A (en) * 2014-06-02 2015-12-17 浜松ホトニクス株式会社 Circular dichroism measuring method and circular dichroism measuring device
CN113574362A (en) * 2019-03-15 2021-10-29 日本分光株式会社 Circular dichroism measuring device and circular dichroism measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6268430B2 (en) * 2013-11-21 2018-01-31 日本分光株式会社 Method and apparatus for measuring circular dichroism spectrum and circularly polarized fluorescence with the same optical system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250765A (en) * 2008-04-04 2009-10-29 System Instruments Kk Method and instrument for measuring circular dichroic spectrum
JP2014522986A (en) * 2011-07-18 2014-09-08 ブイユーブイ・アナリティクス・インコーポレイテッド Method and apparatus for vacuum ultraviolet (VUV) or shorter wavelength circular dichroism spectroscopy
EP2610665A1 (en) * 2011-12-28 2013-07-03 Jasco Corporation Depolarizer and circular dichroism spectrometer using the same
JP2013137345A (en) * 2011-12-28 2013-07-11 Jasco Corp Depolarizing plate and circular dichroic spectral device using the same
US8797533B2 (en) 2011-12-28 2014-08-05 Jasco Corporation Depolarizer and circular dichroism spectrometer using the same
JP2015227833A (en) * 2014-06-02 2015-12-17 浜松ホトニクス株式会社 Circular dichroism measuring method and circular dichroism measuring device
US10330590B2 (en) 2014-06-02 2019-06-25 Hamamatsu Photonics K.K. Circular dichroism measuring method and circular dichroism measuring device
US10663391B2 (en) 2014-06-02 2020-05-26 Hamamatsu Photonics K.K. Circular dichroism measuring method and circular dichroism measuring device
CN113574362A (en) * 2019-03-15 2021-10-29 日本分光株式会社 Circular dichroism measuring device and circular dichroism measuring method

Also Published As

Publication number Publication date
JP3341928B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US4589776A (en) Method and apparatus for measuring optical properties of materials
US5956147A (en) Two modulator generalized ellipsometer for complete mueller matrix measurement
US10168274B2 (en) Polarization properties imaging systems
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
US7286226B2 (en) Method and apparatus for measuring birefringence
JPH054606B2 (en)
US6927853B2 (en) Method and arrangement for optical stress analysis of solids
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
CN109115690A (en) Real-time polarization sensitive terahertz time-domain ellipsometer and optical constant measuring method
JP3341928B2 (en) Dichroic dispersion meter
KR100336696B1 (en) Apparatus and method for detecting polarization
EP0080540A1 (en) Method and apparatus for measuring quantities which characterize the optical properties of substances
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
Jerrard A high precision photoelectric ellipsometer
Oakberg Measurement of waveplate retardation using a photoelastic modulator
CN113340810A (en) Semiconductor material stress measurement system and method based on photoelastic modulation technology
JP3021338B2 (en) Extinction ratio measurement method and extinction ratio measurement device
JP2004340833A (en) Optical measuring device
JPH11101739A (en) Ellipsometry apparatus
JP2004279380A (en) Angle of rotation measuring instrument
TW200928348A (en) Device for synchronous measurement of optical rotation angle and phase delay and method thereof
JP2713190B2 (en) Optical property measuring device
JP2529562B2 (en) Ellipsometer
JPH09236542A (en) Optical active body detecting device
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

EXPY Cancellation because of completion of term