JPH0629948A - Synchronization tracking circuit - Google Patents

Synchronization tracking circuit

Info

Publication number
JPH0629948A
JPH0629948A JP4206037A JP20603792A JPH0629948A JP H0629948 A JPH0629948 A JP H0629948A JP 4206037 A JP4206037 A JP 4206037A JP 20603792 A JP20603792 A JP 20603792A JP H0629948 A JPH0629948 A JP H0629948A
Authority
JP
Japan
Prior art keywords
manchester code
phase
signal
dll
inverse spread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4206037A
Other languages
Japanese (ja)
Inventor
Atsuya Yokoi
敦也 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP4206037A priority Critical patent/JPH0629948A/en
Publication of JPH0629948A publication Critical patent/JPH0629948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To provide a delay locked loop circuit(DLL) in which synchronization tracking is normally implemented even with the use of a Manchester code when a frequency characteristic close to a DC is deteriorated in a transmission line or the common use of spread spectrum communication and DC signal transmission is desired for the transmission line. CONSTITUTION:A DLL 3 of means in which the phase of a Manchester code for inverse spread is controlled in proportion to a difference signal level between signals subjected to inverse spread by a Manchester code whose phase is led by one SYNC tip than that of an inverse spread Manchester code and a Manchester code whose phase is lagged by one SYNC tip than that of an inverse spread Manchester code respectively and the phase is synchronized with a phase of a sender side Manchester code controls the phase of the inverse spread Manchester code in proportion to a signal level obtained by multiplying a difference signal by a state signal of +1 or -1 resulting from binarizing the signal subjected to inverse spread by the inverse spread Manchester code.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業用の利用分野】本発明はスペクトル拡散通信方式
に於ける同期追従回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous tracking circuit in a spread spectrum communication system.

【0002】[0002]

【従来技術】スペクトル拡散通信方式は広い周波数帯域
に信号を拡散して伝送するため、単位ヘルツ当たりの電
力が小さく他の通信への妨害を与えることが少ないのみ
ならず雑音や伝送路特性の変動の影響を受けにくい特徴
を有していることから、近年多用されつつある。このス
ペクトル拡散通信方式では、送信側に於ける拡散用及び
受信側に於ける逆拡散用のPN符号(疑似雑音信号)と
しては図2に示すように自己相関特性の良好なM系列を
(同図に於いて、横軸はM系列の位相ずれを、TcはM
系列のチップ周期を表す)使用することが多く、又送信
側と受信側とのM系列の位相を一致させる、即ち同期を
とる必要がある。このための同期追従回路としては、比
較的簡単な回路構成で同期追従特性が良いことから、一
般にDelay LockLoop回路(以下、DLL
と称する)が良く用いられる。
2. Description of the Related Art In a spread spectrum communication system, a signal is spread and transmitted in a wide frequency band, so that the power per unit hertz is small and interference with other communication is small, and noise and fluctuations in transmission line characteristics are caused. In recent years, it has been widely used because it has a characteristic that it is not easily affected by. In this spread spectrum communication system, as a PN code (pseudo noise signal) for spreading on the transmitting side and for despreading on the receiving side, as shown in FIG. In the figure, the horizontal axis is the phase shift of the M series, and Tc is M
(Which represents the chip cycle of the sequence) is often used, and the phases of the M sequences of the transmitting side and the receiving side must be matched, that is, synchronized. As a synchronization follow-up circuit for this purpose, a delay lock loop circuit (hereinafter, DLL) is generally used because it has a relatively simple circuit configuration and good synchronization follow-up characteristics.
Is called) is often used.

【0003】以下、このDLLを用いたベースバンドス
ペクトル拡散受信機を図3に示すブロック図を参照して
説明する。同図に於いて、M0は逆拡散用のM系列であ
って、M系列MEはM系列M0よりも0.5チップ分位
相の進んだM系列であり、M系列MLはM系列M0より
も0.5チップ分位相の遅れたM系列で、このようなM
系列を使用するDLLは「1Δ−DLL」と呼ばれる。
又、DLLは送信側から送られたスペクトル拡散信号に
対してM系列ME及びM系列MLを夫々乗積して求めた
各相関値の絶対値を相互に引き算を行って図4の実線に
示すような出力波形、所謂Sカーブを得る。ここで、絶
対値をとるのは受信したM系列に乗積されているデータ
によって自己相関の極性が変わり、図4の点線に示すよ
うにSカーブの傾きが逆になるのを防ぐためである。
A baseband spread spectrum receiver using this DLL will be described below with reference to the block diagram shown in FIG. In the figure, M0 is an M sequence for despreading, M sequence ME is an M sequence that is 0.5 chips ahead of M sequence M0 in phase, and M sequence ML is more than M sequence M0. This is an M series with a phase delay of 0.5 chip
A DLL that uses a sequence is called "1Δ-DLL".
Further, the DLL performs mutual subtraction of the absolute values of the respective correlation values obtained by multiplying the spread spectrum signal sent from the transmission side by the M series ME and the M series ML, and shows the solid line in FIG. Such an output waveform, so-called S curve, is obtained. Here, the absolute value is taken in order to prevent the polarity of the autocorrelation from changing depending on the received data multiplied by the M sequence, and preventing the slope of the S curve from being reversed as shown by the dotted line in FIG. .

【0004】更に、DLLはそのSカーブを制御電圧と
して前記各M系列の基準クロック発生用電圧制御発振回
路VCOに印加することにより基準クロックの周波数を
制御し、前記M系列M0の位相を送信側の拡散用M系列
の位相に同期させていた。従って、DLLの性能はSカ
ーブの形状によって決まり、これに要求される条件とし
ては、(1)原点近傍での傾きが大であること、(2)
原点を除く原点近傍のなるべく広い範囲で絶対値が大で
あること、等が挙げられる。
Further, the DLL controls the frequency of the reference clock by applying the S curve as a control voltage to the voltage control oscillation circuit VCO for generating the reference clock of each M series, and the phase of the M series M0 is transmitted. It was synchronized with the phase of the spreading M series. Therefore, the performance of the DLL is determined by the shape of the S curve, and the conditions required for this are (1) a large inclination near the origin, (2)
The absolute value is large in as wide a range as possible near the origin, excluding the origin.

【0005】上述したような拡散符号としてM系列を用
いたスペクトル拡散通信方式では上記の条件を満足して
いるが、図5の実線に示すようにM系列には直流近傍の
周波数成分が多いため、送受信間を結ぶ伝送路の直流近
傍の周波数特性が劣悪な場合、又はその伝送路に対しス
ペクトル拡散通信と直流信号伝送との兼用を希望する場
合、各M系列で逆拡散した信号のレベルが劣化するか
ら、図5の点線に示すように直流近傍の周波数成分が小
さなマンチェスタ符号を用いるのが一般的である。即
ち、図6に示すようにM系列を所定のクロック信号に掛
け算したものを前記M系列に替えて使用する手段が考え
られる。しかしながら、マンチェスタ符号の自己相関特
性は図7(a)に示すようにサイドローブを持ち、Sカ
ーブは図7(b)に示すようにその原点近傍で傾斜が逆
になるから、DLLの同期追従特性が大幅に劣化すると
いう問題があった。
The above-mentioned condition is satisfied in the spread spectrum communication system using the M series as the spread code as described above, but the M series has many frequency components near DC as shown by the solid line in FIG. , If the frequency characteristics near the direct current of the transmission line connecting the transmitter and the receiver are poor, or if it is desired to use both spread spectrum communication and DC signal transmission for that transmission line, the level of the despread signal in each M series is Since it deteriorates, it is common to use a Manchester code having a small frequency component near DC as shown by the dotted line in FIG. That is, as shown in FIG. 6, a means of using a product obtained by multiplying a M-sequence by a predetermined clock signal instead of the M-sequence can be considered. However, the autocorrelation characteristic of the Manchester code has a side lobe as shown in FIG. 7A, and the S curve has a reverse slope near its origin as shown in FIG. There is a problem that the characteristics are significantly deteriorated.

【0006】[0006]

【発明の目的】本発明は上述したような従来のDLLの
問題を解決するためになされたものであって、伝送路の
直流近傍の周波数特性が劣悪な場合、又は伝送路に対し
スペクトル拡散通信と直流信号伝送との兼用を希望する
場合にマンチェスタ符号を使用しても同期追従を正常に
行うことが可能なDLLを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the problems of the conventional DLL as described above, and when the frequency characteristic near the direct current of the transmission line is poor, or the spread spectrum communication is performed on the transmission line. It is an object of the present invention to provide a DLL that can normally perform synchronous tracking even if Manchester code is used when it is desired to combine the use of DC code and DC signal transmission.

【0007】[0007]

【発明の概要】上述の目的を達成するため、本発明に於
いては以下のように構成する。即ち、逆拡散用マンチェ
スタ符号よりも位相が同一チップ分進んだマンチェスタ
符号及び遅れたマンチェスタ符号夫々で逆拡散した信号
夫々の差分信号レベルに比例して前記逆拡散用マンチェ
スタ符号の位相を制御し、その位相を送信側のマンチェ
スタ符号の位相に同期させる手段に於いて、前記逆拡散
用マンチェスタ符号で逆拡散した信号を2値化して求め
た+1又は−1の状態信号を前記差分信号に掛け合わせ
て求めた信号レベルに比例して逆拡散用マンチェスタ符
号の位相を制御するように構成する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is configured as follows. That is, the phase of the despreading Manchester code is controlled in proportion to the differential signal level of the despread signals of the Manchester code and the delayed Manchester code whose phases are advanced by the same chip as the despreading Manchester code. In the means for synchronizing the phase with the phase of the Manchester code on the transmission side, the differential signal is multiplied by the status signal of +1 or -1 obtained by binarizing the signal despread by the Manchester code for despreading. The phase of the Manchester code for despreading is controlled in proportion to the obtained signal level.

【0008】[0008]

【実施例】以下、本発明を図面に示した実施例に基づい
て詳細に説明する。図1は本発明に係るDLLを具えた
スペクトル拡散受信機の一実施例を示す構成図である。
同図に於いて符号1はスペクトル拡散受信機であって、
そのスペクトル拡散受信機1は図示を省略した送信側と
同一のマンチェスタ符号P0、その符号P0よりも0.
5チップ分位相が進んだマンチェスタ符号PE及び符号
P0よりも0.5チップ分位相が遅れたマンチェスタ符
号PL各々を発生する拡散符号発生器2を具えたDLL
3を設ける。又、スペクトル拡散受信機1は前記送信側
から送致されたスペクトル拡散信号Sを増幅器4に供給
すると共に、乗算器5によりその増幅信号を前記マンチ
ェスタ符号P0で逆拡散し、その逆拡散信号をローパス
フィルタ6を介してデータ復調器7に供給し、その出力
端から元のデータを復調するように接続する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on the embodiments shown in the drawings. FIG. 1 is a block diagram showing an embodiment of a spread spectrum receiver including a DLL according to the present invention.
In the figure, reference numeral 1 is a spread spectrum receiver,
The spread spectrum receiver 1 has the same Manchester code P0 as that of the transmitting side (not shown), which is 0.
A DLL including a spreading code generator 2 for generating a Manchester code PE having a phase advanced by 5 chips and a Manchester code PL having a phase delayed by 0.5 chip from the code P0.
3 is provided. Further, the spread spectrum receiver 1 supplies the spread spectrum signal S sent from the transmitting side to the amplifier 4, and the multiplier 5 despreads the amplified signal with the Manchester code P0, and the despread signal is low-passed. The data is supplied to the data demodulator 7 through the filter 6, and the output terminal thereof is connected so as to demodulate the original data.

【0009】一方、前記DLL3は乗算器8により前記
増幅信号をマンチェスタ符号PEで逆拡散し、その逆拡
散信号をローパスフィルタ9を介して加算器10の+端
子に供給すると共に、乗算器11により前記増幅信号を
マンチェスタ符号PLで逆拡散し、その逆拡散信号をロ
ーパスフィルタ12を介して前記加算器10の−端子に
供給する。又、DLL3は加算器10の出力端を乗算器
13の一方の入力端に接続すると共に、前記ローパスフ
ィルタ6の出力端を2値化回路14を介して前記乗算器
13の他方の入力端に接続し、その出力端をループフィ
ルタ15及び前記各マンチェスタ符号の基準クロックを
発生するための電圧制御発振回路(以下、VCOと称す
る)16を介して前記拡散符号発生器2の制御端子に接
続し、送信側のマンチェスタ符号と前記マンチェスタ符
号P0との同期をとった後にその状態を保持するように
構成する。
On the other hand, the DLL 3 despreads the amplified signal with the Manchester code PE by the multiplier 8, supplies the despread signal to the + terminal of the adder 10 through the low-pass filter 9, and the multiplier 11 also. The amplified signal is despread with the Manchester code PL, and the despread signal is supplied to the-terminal of the adder 10 via the low-pass filter 12. The DLL 3 connects the output terminal of the adder 10 to one input terminal of the multiplier 13 and connects the output terminal of the low-pass filter 6 to the other input terminal of the multiplier 13 via the binarization circuit 14. The output terminal is connected to the control terminal of the spread code generator 2 via a loop filter 15 and a voltage controlled oscillator circuit (hereinafter referred to as VCO) 16 for generating a reference clock for each Manchester code. , The transmission-side Manchester code and the Manchester code P0 are synchronized and then held in that state.

【0010】このように構成する受信機1は以下のよう
に動作する。即ち、受信機1はスペクトル拡散信号Sを
受信した際に、DLL3が加算器10を使用してローパ
スフィルタ9の出力信号からローパスフィルタ12の出
力信号を差し引いて図8の点線に示すようなSカーブε
pを生成すると共に、2値化回路14を使用してローパ
スフィルタ6の出力信号を2値化して+1又は−1の状
態値を生成し、乗算器13から図8の実線に示すような
Sカーブεaを生成する。又、DLL3はSカーブεa
をループフィルタ15により制御電圧とし、その電圧値
に比例して前記VCO16の基準クロック周波数を制御
する。ここで、Sカーブεaは前記図7(b)に示すよ
うな従来のDLLに於けるSカーブのように、その原点
近傍で傾斜が逆にならずその傾きが大きいから、VCO
16はマンチェスタ符号P0の位相と送信側のマンチェ
スタ符号の位相とを正確に同期させると共に、その同期
状態を保持するように発振クロックを制御することがで
き、スペクトル拡散受信機1はデータ復調器7から元の
データを正常に復調することができる。
The receiver 1 configured as described above operates as follows. That is, when the receiver 1 receives the spread spectrum signal S, the DLL 3 subtracts the output signal of the low-pass filter 12 from the output signal of the low-pass filter 9 by using the adder 10 to obtain the S as shown by the dotted line in FIG. Curve ε
In addition to generating p, the binarization circuit 14 is used to binarize the output signal of the low-pass filter 6 to generate a state value of +1 or -1, and the multiplier 13 outputs S as shown by the solid line in FIG. A curve εa is generated. DLL3 has an S curve εa
Is set as a control voltage by the loop filter 15, and the reference clock frequency of the VCO 16 is controlled in proportion to the voltage value. Here, the S-curve εa does not reverse the slope in the vicinity of its origin and has a large slope unlike the S-curve in the conventional DLL as shown in FIG.
16 can precisely synchronize the phase of the Manchester code P0 and the phase of the Manchester code on the transmission side, and can control the oscillation clock so as to maintain the synchronization state. The original data can be demodulated normally.

【0011】更に、送信側及び受信側では直流近傍の周
波数成分が少ないマンチェスタ符号を使用しているか
ら、送受信間を結ぶ伝送路の直流近傍の周波数特性が劣
悪な場合、又はその伝送路に対しスペクトル拡散通信と
直流信号伝送との兼用を希望する場合であっても、これ
等の条件に左右されることなく同期追従を正常に行うこ
とができる。
Further, since the transmitting side and the receiving side use the Manchester code, which has few frequency components near DC, when the frequency characteristic near DC of the transmission line connecting the transmission and reception is poor, or for that transmission line. Even when the spread spectrum communication and the DC signal transmission are desired to be combined, the synchronization follow-up can be normally performed without being influenced by these conditions.

【0012】尚、上述の実施例では逆拡散用マンチェス
タ符号P0よりも0.5チップ分位相が進んだマンチェ
スタ符号PE及び符号P0よりも0.5チップ分位相が
遅れたマンチェスタ符号PLを使用したDLLを説明し
たが、本発明はこれに限らず逆拡散用マンチェスタ符号
P0よりも所定量位相が進んだマンチェスタ符号及び符
号P0よりも所定量位相が遅れたマンチェスタ符号PL
を使用したDLLであっても良く、上述の実施例と同様
の効果が得られることは自明であろう。
In the above embodiment, the Manchester code PE which is 0.5 chips ahead of the despreading Manchester code P0 and the Manchester code PL which is 0.5 chips behind the code P0 are used. Although the DLL has been described, the present invention is not limited to this, and the Manchester code PL having a predetermined phase advance from the despreading Manchester code P0 and the Manchester code PL having a predetermined phase delay from the code P0.
It is obvious that a DLL using the above may be used, and the same effect as that of the above-described embodiment can be obtained.

【0013】又、上述の実施例では2値化回路14を使
用してローパスフィルタ6の出力信号を2値化して+1
又は−1の状態値を生成し、乗算器13の他方の入力端
に供給したが、本発明はこれに替えて例えば状態値が1
及び0のデータを夫々状態値+1及び−1に変換する手
段をデータ復調器7と前記乗算器13の他方の入力端と
の間に接続しても良く、上述した実施例と同様の効果が
得られる。
In the above embodiment, the binarizing circuit 14 is used to binarize the output signal of the low-pass filter 6 to +1.
Alternatively, a state value of -1 was generated and supplied to the other input terminal of the multiplier 13. However, the present invention replaces this with, for example, a state value of 1
Means for converting the data of 0 and 0 to the state values +1 and -1, respectively, may be connected between the data demodulator 7 and the other input terminal of the multiplier 13, and the same effect as the above-mentioned embodiment can be obtained. can get.

【0014】[0014]

【発明の効果】本発明は以上説明したように、逆拡散用
マンチェスタ符号よりも位相が進んだマンチェスタ符号
及び位相が遅れたマンチェスタ符号各々でスペクトル拡
散信号を逆拡散した両信号の相互の差分から求めたSカ
ーブと、前記逆拡散用マンチェスタ符号でスペクトル拡
散信号を逆拡散した信号を2値化して求めた+1又は−
1の状態信号とを乗積した信号レベルに比例して拡散用
マンチェスタ符号の位相を制御したので、送受信間を結
ぶ伝送路の直流近傍の周波数特性が劣悪な場合、又はそ
の伝送路に対しスペクトル拡散通信と直流信号伝送との
兼用を希望する場合であっても、Sカーブの性能を悪化
させることなく送信側と受信側とのマンチェスタ符号の
同期及び同期保持を正確に行うことが可能なDLLを提
供する上で効果がある。
As described above, according to the present invention, the spread spectrum signal is despread with the Manchester code whose phase is advanced and the Manchester code whose phase is delayed from the despreading Manchester code. +1 or − obtained by binarizing the obtained S curve and the signal obtained by despreading the spread spectrum signal by the Manchester code for despreading.
Since the phase of the Manchester code for spreading is controlled in proportion to the signal level obtained by multiplying the status signal by 1, the frequency characteristic near the direct current of the transmission line connecting the transmitter and the receiver is poor, or the spectrum for that transmission line is poor. Even if it is desired to use both spread communication and DC signal transmission, a DLL capable of accurately synchronizing and maintaining synchronization of Manchester codes on the transmitting side and the receiving side without deteriorating the performance of the S curve. Is effective in providing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】M系列の自己相関特性図である。FIG. 2 is an autocorrelation characteristic diagram of M series.

【図3】従来のDLLを説明するためのスペクトル拡散
受信機の構成図である。
FIG. 3 is a configuration diagram of a spread spectrum receiver for explaining a conventional DLL.

【図4】M系列を使用した従来のDLLに於けるSカー
ブを示す図である。
FIG. 4 is a diagram showing an S curve in a conventional DLL using an M sequence.

【図5】M系列及びマンチェスタ符号の周波数スペクト
ルを示す図である。
FIG. 5 is a diagram showing frequency spectra of M-sequence and Manchester code.

【図6】マンチェスタ符号の構成を説明するための図で
ある。
FIG. 6 is a diagram for explaining the configuration of Manchester code.

【図7】(a)はマンチェスタ符号の自己相関特性を、
(b)はマンチェスタ符号を使用した従来のDLLに於
けるSカーブを示す図である。
FIG. 7A shows the autocorrelation characteristic of Manchester code,
(B) is a diagram showing an S curve in a conventional DLL using Manchester code.

【図8】本発明の一実施例に於けるSカーブを説明する
ための図である。
FIG. 8 is a diagram for explaining an S curve in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 スペクトル拡散受信機、2 拡散符号発生器、3
DLL、4 増幅器、5、8、11 乗算器、6、9、
12及び13 ローパスフィルタ、7 データ復調器、
10 加算器、14 2値化回路、15 ループフィル
タ、16 電圧制御発振回路。
1 spread spectrum receiver, 2 spread code generator, 3
DLL, 4 amplifiers, 5, 8, 11 multipliers, 6, 9,
12 and 13 low pass filter, 7 data demodulator,
10 adder, 14 binarization circuit, 15 loop filter, 16 voltage controlled oscillator circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 逆拡散用マンチェスタ符号よりも位相が
同一チップ分進んだマンチェスタ符号及び遅れたマンチ
ェスタ符号夫々で逆拡散した信号夫々の差分信号レベル
に比例して前記逆拡散用マンチェスタ符号の位相を制御
し、その位相を送信側のマンチェスタ符号の位相に同期
させる手段に於いて、前記逆拡散用マンチェスタ符号で
逆拡散した信号を2値化して求めた+1又は−1の状態
信号を前記差分信号に掛け合わせて求めた信号レベルに
比例して逆拡散用マンチェスタ符号の位相を制御したこ
とを特徴とする同期追従回路。
1. The phase of the despreading Manchester code is proportional to the differential signal level of each of the signals despread by the Manchester code whose phase is advanced by the same chip as the despreading Manchester code and the delayed Manchester code. In the means for controlling and synchronizing the phase with the phase of the Manchester code on the transmission side, the state signal of +1 or -1 obtained by binarizing the signal despread by the Manchester code for despreading is the difference signal. A synchronous tracking circuit characterized in that the phase of the Manchester code for despreading is controlled in proportion to the signal level obtained by multiplying by.
JP4206037A 1992-07-09 1992-07-09 Synchronization tracking circuit Pending JPH0629948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206037A JPH0629948A (en) 1992-07-09 1992-07-09 Synchronization tracking circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206037A JPH0629948A (en) 1992-07-09 1992-07-09 Synchronization tracking circuit

Publications (1)

Publication Number Publication Date
JPH0629948A true JPH0629948A (en) 1994-02-04

Family

ID=16516857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206037A Pending JPH0629948A (en) 1992-07-09 1992-07-09 Synchronization tracking circuit

Country Status (1)

Country Link
JP (1) JPH0629948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208683B1 (en) 1997-06-10 2001-03-27 Nec Corporation Receiving apparatus for use in CDMA type mobile radio communication system comprising a plurality of path receivers each including a follow-up path detection unit
KR100307007B1 (en) * 1998-09-08 2001-11-07 가네꼬 히사시 Mobile communication device having a good tracking precision and a wide following range of synchronization
WO2004070981A1 (en) * 2003-02-05 2004-08-19 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless transmitter, wireless receiver, wireless communication method, wireless transmission method and wireless reception method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208683B1 (en) 1997-06-10 2001-03-27 Nec Corporation Receiving apparatus for use in CDMA type mobile radio communication system comprising a plurality of path receivers each including a follow-up path detection unit
KR100307007B1 (en) * 1998-09-08 2001-11-07 가네꼬 히사시 Mobile communication device having a good tracking precision and a wide following range of synchronization
WO2004070981A1 (en) * 2003-02-05 2004-08-19 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless transmitter, wireless receiver, wireless communication method, wireless transmission method and wireless reception method
US7545845B2 (en) 2003-02-05 2009-06-09 Nippon Telegraph And Telephone Corporation Wireless communication system, wireless transmitter, wireless receiver, wireless communication method, wireless transmission method and wireless reception method

Similar Documents

Publication Publication Date Title
USRE38603E1 (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
US6459721B1 (en) Spread spectrum receiving apparatus
US5062122A (en) Delay-locked loop circuit in spread spectrum receiver
JP3229393B2 (en) Spread spectrum communication system
US4943976A (en) Spread spectrum communication system
US8040935B2 (en) Methods and apparatus for spread spectrum modulation and demodulation
EP0562529A2 (en) Spread spectrum communication system and method
JP2728034B2 (en) Spread spectrum signal receiver
JPH06204978A (en) Spread spectrum communication system
JPH0629948A (en) Synchronization tracking circuit
GB2313750A (en) Digital delay locked loop
JP3304340B2 (en) Receiver using spread spectrum
JPH0213979B2 (en)
JPH0435332A (en) Spread spectrum communication system
JPH0213978B2 (en)
JPH0239139B2 (en)
JPH0211034A (en) Spread spectrum communication receiver
JPH0468832A (en) Synchronous catching circuit for spread spectrum communication
JPH09247046A (en) Receiver for spread spectrum communication
JPH07154296A (en) Spread spectrum communication system and spread spectrum receiver
JPH06197091A (en) Spread spectrum communication system
JPH07170211A (en) Code synchronizing circuit
JPH0131815B2 (en)
JPH05268190A (en) Spread spectrum communication equipment
JPH03236644A (en) Spread spectrum communication receiver