JPH062982A - Absorption cooling and heating system and its control method - Google Patents

Absorption cooling and heating system and its control method

Info

Publication number
JPH062982A
JPH062982A JP15778892A JP15778892A JPH062982A JP H062982 A JPH062982 A JP H062982A JP 15778892 A JP15778892 A JP 15778892A JP 15778892 A JP15778892 A JP 15778892A JP H062982 A JPH062982 A JP H062982A
Authority
JP
Japan
Prior art keywords
refrigerant
solution
absorber
pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15778892A
Other languages
Japanese (ja)
Other versions
JP2985513B2 (en
Inventor
Akira Nishiguchi
章 西口
Tomihisa Ouchi
富久 大内
Hiroshi Kushima
大資 久島
Hiroaki Yoda
裕明 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4157788A priority Critical patent/JP2985513B2/en
Publication of JPH062982A publication Critical patent/JPH062982A/en
Application granted granted Critical
Publication of JP2985513B2 publication Critical patent/JP2985513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】 【目的】本発明の目的は、冷房負荷が急激に減少した場
合にも冷媒凍結などが起こらない、マルチ空調システム
に対応可能な吸収冷暖房システムとその制御方法を提供
することにある。 【構成】冷水温度検出手段101の温度がある設定値T
l以上の場合には、バーナの熱入力は制御装置102に
より段階制御が行われる。冷房負荷が小さくなって冷水
温度がTlよりも低下した場合には、バーナが停止され
る。冷房負荷が非常に小さいか無くなった場合には、さ
らに冷水温度は低下し温度Tcに達する。この時に制御
装置102からの制御信号により、冷媒蒸発停止動作を
行う。すなわち、冷水温度がTcに達した時、弁26を
開、弁27を閉とするように制御され、低温熱交換器6
から戻って来る濃溶液は溶液管22を通り、溶液バイパ
ス管25、弁26を経由して溶液タンク24へ送られ
る。溶液散布装置23からは溶液が散布されないので吸
収器1における吸収は停止し、従って蒸発器5における
蒸発も停止する。
(57) [Summary] [Object] An object of the present invention is to provide an absorption cooling / heating system and a control method thereof, which are compatible with a multi-air-conditioning system, in which refrigerant freezing does not occur even when a cooling load suddenly decreases. It is in. [Structure] A set value T having a temperature of the cold water temperature detecting means 101
When it is 1 or more, the heat input of the burner is stepwise controlled by the controller 102. When the cooling load decreases and the cold water temperature falls below Tl, the burner is stopped. When the cooling load is very small or disappears, the cold water temperature further decreases and reaches the temperature Tc. At this time, the refrigerant evaporation stop operation is performed by the control signal from the control device 102. That is, when the cold water temperature reaches Tc, the valve 26 is controlled to open and the valve 27 is closed to control the low temperature heat exchanger 6.
The concentrated solution returning from the above passes through the solution pipe 22, the solution bypass pipe 25, and the valve 26 and is sent to the solution tank 24. Since the solution is not sprayed from the solution spraying device 23, the absorption in the absorber 1 is stopped, so that the evaporation in the evaporator 5 is also stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空調システムに用いられ
る吸収式冷温水機に係り、特に室内機側から自由に発停
ができるマルチタイプの空調システムに好適な吸収冷暖
房システムの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater used in an air-conditioning system, and more particularly to a method of controlling an absorption cooling-heating system suitable for a multi-type air-conditioning system that can be started and stopped freely from the indoor unit side.

【0002】[0002]

【従来の技術】臭化リチウム水溶液を吸収媒体、水を冷
媒とする吸収冷暖房システムにおいては、運転時に溶液
が濃縮されて冷房能力を発揮しており、これをそのまま
停止すると溶液が結晶してしまうので、吸収冷温水機を
停止する時には溶液を冷媒で希釈して濃度を低くしてか
ら停止する必要がある。このため従来の吸収冷暖房シス
テムにおいては、システムを停止するときには、再生器
の加熱を停止した後も溶液に冷媒を吸収させるために冷
房運転を継続し、充分に溶液を希釈してからシステムを
停止していた。そこで、あらかじめ空調を停止する時刻
を設定しておき、その時間にちょうど溶液の希釈が完了
するようにシステムの運転をスケジュールしている。
2. Description of the Related Art In an absorption cooling and heating system using an aqueous lithium bromide solution as an absorption medium and water as a refrigerant, the solution is concentrated during operation and exerts a cooling capacity, and if this is stopped as it is, the solution will crystallize. Therefore, when stopping the absorption chiller-heater, it is necessary to dilute the solution with the refrigerant to reduce the concentration and then stop. Therefore, in the conventional absorption cooling and heating system, when the system is stopped, the cooling operation is continued to absorb the refrigerant in the solution even after the heating of the regenerator is stopped, and the system is stopped after the solution is sufficiently diluted. Was. Therefore, the time to stop the air conditioning is set in advance, and the operation of the system is scheduled so that the solution is just diluted at that time.

【0003】また、冷媒の凍結を防止する手段として、
蒸発器の冷媒温度を検知してこの温度がある下限値に達
した時に、吸収器への冷却水量をバイパス手段により調
節するものがある(特開昭58−221358号)。
Further, as a means for preventing the freezing of the refrigerant,
There is one that detects the refrigerant temperature of the evaporator and, when this temperature reaches a certain lower limit value, adjusts the amount of cooling water to the absorber by a bypass means (JP-A-58-221358).

【0004】[0004]

【発明が解決しようとする課題】上記のような従来技術
においては、あらかじめ決められたスケジュールに従っ
て空調が行われるために、自由に冷暖房を開始したり停
止したりできなかった。このため、1台の吸収冷温水機
に複数台の室内機を接続して、各室内機で自由に冷暖房
を行えるマルチタイプの冷暖房システムには対応が困難
であった。
In the prior art as described above, since air conditioning is performed according to a predetermined schedule, it is not possible to freely start and stop cooling and heating. Therefore, it is difficult to support a multi-type cooling / heating system in which a plurality of indoor units are connected to one absorption chiller / heater and each indoor unit can freely perform cooling / heating.

【0005】また、急に室内機側の運転を停止したり、
大幅に負荷を低下させた場合には、冷水温度が低下して
バーナを停止するように制御するが、溶液は濃縮された
状態にあるので冷房能力が残っており、蒸発器での蒸発
により冷媒温度がさらに低下して冷媒が凍結し、サイク
ルが動作しなくなるという不具合点があった。
In addition, the operation on the indoor unit side is suddenly stopped,
When the load is drastically reduced, the cold water temperature is controlled to stop and the burner is stopped, but since the solution is in a concentrated state, the cooling capacity remains, and the refrigerant is evaporated by evaporation in the evaporator. There is a problem that the temperature further decreases and the refrigerant freezes, and the cycle does not operate.

【0006】また、蒸発器の冷媒温度を検知してこの温
度がある下限値に達した時に、吸収器への冷却水量をバ
イパス手段により調節する方法のものでは、凍結防止用
のセンサと、これとは別に容量制御を行うためのセンサ
の両方が必要となり、センサの数が増えるという問題が
あった。
Also, in the method of detecting the refrigerant temperature of the evaporator and adjusting the amount of cooling water to the absorber by a bypass means when this temperature reaches a certain lower limit value, a freezing prevention sensor and In addition to the above, both of the sensors for performing the capacity control are required, and the number of sensors increases.

【0007】本発明の目的は、負荷の急変動に対応でき
る空調システム用の吸収冷暖房システムとその制御方法
を提供することにある。
It is an object of the present invention to provide an absorption cooling / heating system for an air conditioning system and a control method therefor capable of coping with a sudden change in load.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明には、再生器、凝縮器、蒸発器、吸収器、溶液
ポンプ、冷媒ポンプ、吸収器内の溶液散布装置を配管接
続して吸収冷凍サイクルを構成する吸収冷暖房システム
において、冷媒蒸気の発生を阻害する手段を設けたもの
で、具体的には再生器と溶液散布装置とを接続する濃溶
液配管の途中に、濃溶液を溶液ポンプの吸い込み側へ送
るバイパス配管、もしくは吸収器の冷却水配管の入口と
出口とを接続するバイパス配管、もしくは冷媒ポンプの
吐出側と冷媒散布装置とを結ぶ配管の途中に、冷媒を蒸
発器底部に送るバイパス配管を設け、それぞれのバイパ
ス配管に流れを切り替える切り替え手段を設けて負荷の
変動に応じてこの切り替え手段を切り替える制御装置を
設けたものである。
In order to achieve the above object, the present invention connects a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, and a solution spraying device in the absorber by piping. In an absorption cooling and heating system that constitutes an absorption refrigeration cycle, a means for inhibiting the generation of refrigerant vapor is provided.Specifically, a concentrated solution is provided in the middle of a concentrated solution pipe connecting a regenerator and a solution spraying device. In the middle of the bypass pipe for sending to the suction side of the solution pump, the bypass pipe for connecting the inlet and the outlet of the cooling water pipe of the absorber, or the pipe connecting the discharge side of the refrigerant pump and the refrigerant distribution device, the evaporator Bypass pipes to be sent to the bottom are provided, switching means for switching the flow to each of the bypass pipes, and a control device for switching the switching means in response to load fluctuations.

【0009】[0009]

【作用】負荷が急激に低下、あるいはなくなった場合に
冷水温度が低下し、バーナを停止した後もさらに冷水温
度が低下し、ある設定値に達した場合に、再生器から熱
交換器を経由して吸収器へ戻る濃溶液流路を、吸収器内
の溶液散布装置へ戻る配管から、吸収器底部の希溶液タ
ンクあるいは溶液循環ポンプの吸い込み管に送るバイパ
ス配管に切り替えるように制御するので、吸収伝熱管に
溶液が散布されず冷媒蒸気の吸収が停止するために、蒸
発器での冷媒の蒸発も停止して、冷媒温度がさらに低下
して凍結するなどの不具合を防止することができる。
[Operation] When the load drops sharply or disappears, the cold water temperature drops, and even after the burner is stopped, the cold water temperature drops further and reaches a certain set value. Then, the concentrated solution flow path returning to the absorber is controlled so as to switch from the pipe returning to the solution spraying device in the absorber to the bypass pipe sending to the dilute solution tank at the bottom of the absorber or the suction pipe of the solution circulation pump. Since the solution is not sprayed to the absorption heat transfer tube and the absorption of the refrigerant vapor is stopped, the evaporation of the refrigerant in the evaporator is also stopped, and it is possible to prevent a problem such as the refrigerant temperature further lowering and freezing.

【0010】さらに、冷水温度が低下してある設定値に
達した場合に、吸収器を流れる冷却水を、吸収器の入口
と出口を接続するバイパス配管に切り替えるように制御
するので、吸収伝熱管に散布されている溶液が冷却され
ず吸収が停止するために、蒸発器での冷媒の蒸発も停止
して、冷媒温度がさらに低下して凍結するなどの不具合
を防止することができる。
Further, when the cold water temperature drops and reaches a certain set value, the cooling water flowing through the absorber is controlled so as to be switched to the bypass pipe connecting the inlet and the outlet of the absorber. Since the solution sprayed on the substrate is not cooled and the absorption is stopped, the evaporation of the refrigerant in the evaporator is also stopped, and it is possible to prevent problems such as the refrigerant temperature further lowering and freezing.

【0011】さらに、冷水温度が低下してある設定値に
達した場合に、吸収器に冷却水を送る冷却水ポンプを停
止するように制御するので、吸収伝熱管に散布されてい
る溶液が冷却されず吸収が停止するために、蒸発器での
冷媒の蒸発も停止して、冷媒温度がさらに低下して凍結
するなどの不具合を防止することができる。
Further, when the cold water temperature drops to a certain set value, the cooling water pump for sending the cooling water to the absorber is controlled to stop, so that the solution sprayed on the absorption heat transfer tube is cooled. Since the absorption is stopped without doing so, the evaporation of the refrigerant in the evaporator is also stopped, and it is possible to prevent a problem such as the refrigerant temperature further lowering and freezing.

【0012】あるいは、冷水温度が低下してある設定値
に達した場合に、冷媒ポンプからの冷媒を、冷媒散布装
置へ送る配管からバイパス配管に切り替えるように制御
するので、蒸発器での冷媒の蒸発が停止して、冷媒温度
がさらに低下して凍結するなどの不具合を防止すること
ができる。
Alternatively, when the chilled water temperature drops and reaches a certain set value, the refrigerant from the refrigerant pump is controlled so as to be switched from the pipe for sending to the refrigerant spraying device to the bypass pipe. It is possible to prevent problems such as the evaporation being stopped and the refrigerant temperature further lowering and freezing.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0014】図1に示すように吸収冷温水機は、吸収器
1、高温再生器2、低温再生器3、凝縮器4、蒸発器
5、低温熱交換器6、高温熱交換器7、溶液ポンプ8、
冷媒ポンプ9、加熱用のバーナ10、低温再生器3内に
吸収器1からの溶液を散布する散布装置11、低温再生
器3内に配置し高温再生器2で発生した冷媒蒸気を凝縮
して管外を流下する溶液と熱交換する伝熱管12、この
伝熱管12を凝縮器4に導く配管の途中に設けられた絞
り13、凝縮器4からU字シールと絞り15を介して液
冷媒を蒸発器5に導く冷媒液管14、弁17を介して凝
縮器4の気相部と蒸発器5を結ぶ冷媒蒸気管16、冷媒
ポンプ9の吐出側と冷媒散布装置20とをフロート弁1
9を介して連結する冷媒管18、蒸発器5の下部に配置
した冷媒タンク21、低温熱交換器6から溶液を溶液散
布装置23へ導く溶液管22、吸収器1の下部に設けら
れた溶液タンク24、溶液管22の途中から分岐して弁
26を介して吸収器1に接続する溶液バイパス管25、
溶液管22の途中で溶液バイパス管25を分岐した後流
側に設置された弁27、冷媒管18の途中から分岐して
弁29を介して蒸発器5に接続する冷媒バイパス管2
8、冷媒管18の途中で冷媒バイパス管28を分岐した
後流側に設置された弁30、凝縮器4の下部に設けられ
た冷媒タンク31と、吸収器1の下部の溶液タンク24
から溶液ポンプ8へ至る配管の途中とを弁33を介して
結ぶ冷媒ブロー配管32、冷媒管18の途中でフロート
弁19の後流部で分岐し、弁35を介して吸収器1へ開
口する冷媒管34、蒸発器5内に設置された蒸発伝熱管
51と室内機52の間を冷水ポンプ53により冷水を循
環させる冷水配管54、吸収器1内に設置された吸収伝
熱管55と凝縮器4内に設置された凝縮伝熱管56と冷
却塔57の間を冷却水ポンプ58により冷却水を循環さ
せる冷却水配管59、吸収伝熱管55の入り口に接続す
る冷却水配管59から、三方弁60により分岐して、吸
収伝熱管55の出口に接続する冷却水配管59へ接続す
る冷却水バイパス配管61、冷水配管54の蒸発器5の
出口側に設置された冷水温度検出手段101、冷水温度
検出手段101からの温度信号を受けて、高温再生器2
に設置されたバーナ(図示せず)、弁26、29、3
3、三方弁60へ制御信号を送る制御装置102から構
成されている。
As shown in FIG. 1, the absorption chiller-heater includes an absorber 1, a high temperature regenerator 2, a low temperature regenerator 3, a condenser 4, an evaporator 5, a low temperature heat exchanger 6, a high temperature heat exchanger 7, and a solution. Pump 8,
Refrigerant pump 9, burner 10 for heating, spraying device 11 for spraying the solution from absorber 1 in low temperature regenerator 3, and placed in low temperature regenerator 3 to condense the refrigerant vapor generated in high temperature regenerator 2. A heat transfer tube 12 that exchanges heat with a solution flowing down the pipe, a throttle 13 provided in the middle of a pipe that guides the heat transfer tube 12 to the condenser 4, and a liquid refrigerant from the condenser 4 via a U-shaped seal and a throttle 15 The refrigerant liquid pipe 14 leading to the evaporator 5, the refrigerant vapor pipe 16 connecting the vapor phase portion of the condenser 4 and the evaporator 5 via the valve 17, the discharge side of the refrigerant pump 9 and the refrigerant spraying device 20 are connected to the float valve 1
9, a refrigerant pipe 18 connected through 9, a refrigerant tank 21 arranged under the evaporator 5, a solution pipe 22 for guiding the solution from the low temperature heat exchanger 6 to the solution spraying device 23, a solution provided under the absorber 1 A tank 24, a solution bypass pipe 25 branched from the middle of the solution pipe 22 and connected to the absorber 1 via a valve 26,
A valve 27 installed on the downstream side of the solution bypass pipe 25 branching the solution bypass pipe 25, and a refrigerant bypass pipe 2 branching from the middle of the refrigerant pipe 18 and connected to the evaporator 5 via a valve 29.
8, a valve 30 installed on the downstream side of the refrigerant bypass pipe 28 that branches off in the middle of the refrigerant pipe 18, a refrigerant tank 31 provided below the condenser 4, and a solution tank 24 below the absorber 1.
From the flow path to the solution pump 8 is branched via a valve 33 in the middle of the refrigerant blow pipe 32 connecting the refrigerant blow pipe 32 and the refrigerant pipe 18, and opens to the absorber 1 via the valve 35. Refrigerant pipe 34, cold water pipe 54 for circulating cold water by cold water pump 53 between evaporator heat transfer pipe 51 installed in evaporator 5 and indoor unit 52, absorption heat transfer pipe 55 installed in absorber 1, and condenser The cooling water pipe 59 that circulates the cooling water by the cooling water pump 58 between the condensing heat transfer pipe 56 and the cooling tower 57 that are installed in the cooling water pipe 57, the cooling water pipe 59 that is connected to the inlet of the absorption heat transfer pipe 55, and the three-way valve 60. The cooling water bypass pipe 61 connected to the cooling water pipe 59 connected to the outlet of the absorption heat transfer pipe 55, the cold water temperature detecting means 101 installed on the outlet side of the evaporator 5 of the cold water pipe 54, and the cold water temperature detection. Means 101 Receiving a temperature signal, the high-temperature regenerator 2
Burner (not shown) installed in the valve, valves 26, 29, 3
3. The control device 102 sends a control signal to the three-way valve 60.

【0015】冷房運転時にシステムは次のように動作す
る。冷房運転時には弁17は閉となっている。また、通
常運転中は弁26、29、33、35は閉、弁27、3
0は開となっており、三方弁60は、冷却水バイパス配
管61へは冷却水を流さず、全量を吸収伝熱管55へ流
すようにコントロールされている。
During cooling operation, the system operates as follows. The valve 17 is closed during the cooling operation. Also, during normal operation, the valves 26, 29, 33, 35 are closed and the valves 27, 3 are closed.
0 is open, and the three-way valve 60 is controlled so that the cooling water does not flow to the cooling water bypass pipe 61 but the entire amount flows to the absorption heat transfer pipe 55.

【0016】吸収器1の下部にある溶液タンク24の溶
液は、溶液ポンプ8により低温熱交換器6に送られた
後、一部は高温熱交換器7、流量制御機構(図示せず)
を通って高温再生器2へ送られ、残りは低温再生器3へ
送られて散布装置11から散布される。高温再生器2に
送られた溶液はバーナや廃熱等の加熱源に加熱されて沸
騰し冷媒蒸気を発生する。発生した冷媒蒸気は低温再生
器3に送られて伝熱管12の管内で凝縮した後、絞り1
3を通って凝縮器4へ送られる。この時の凝縮熱は、散
布装置11から散布されて伝熱管12の管外を流下する
溶液を加熱して、再び冷媒蒸気を発生させる。発生した
冷媒蒸気は凝縮器4へ送られ、凝縮伝熱管56内を流れ
る冷却水により冷却されて凝縮し、高温再生器2からの
冷媒と合流して冷媒タンク31に溜められる。一方、高
温再生器2で冷媒蒸気を発生して濃縮された濃溶液は、
高温熱交換器7で吸収器1からの希溶液と熱交換して温
度を下げ、低温再生器3からの濃溶液と合流する。合流
した濃溶液は、低温熱交換器6で吸収器1からの希溶液
と熱交換してさらに温度を下げ、溶液管22を通って溶
液散布装置23へ送られ、吸収器1内に散布される。散
布された濃溶液は、吸収伝熱管55内を流れる冷却水に
より冷却されつつ蒸発器5からの冷媒蒸気を吸収して濃
度が薄くなり、希溶液として溶液タンク24に戻る。一
方、凝縮器4の下部の冷媒タンク31に溜められた液冷
媒は、冷媒液管14、絞り15を経由して蒸発器5に流
入する。蒸発器5では、下部に設けられた冷媒タンク2
1の液冷媒が、冷媒ポンプ9により冷媒管18、フロー
ト弁19を通って冷媒散布装置20に送られ、蒸発器5
内の伝熱管群上に散布され、管群内を流れる冷水と熱交
換して蒸発し、その結果冷水から蒸発潜熱を奪い冷凍作
用が得られる。蒸発した冷媒は、吸収器1へ流出して、
吸収器1内を流下する濃溶液に吸収される。
The solution in the solution tank 24 at the lower part of the absorber 1 is sent to the low temperature heat exchanger 6 by the solution pump 8, and then part of it is heated by the high temperature heat exchanger 7 and a flow rate control mechanism (not shown).
Is passed to the high temperature regenerator 2 and the rest is sent to the low temperature regenerator 3 and sprayed from the spraying device 11. The solution sent to the high temperature regenerator 2 is heated by a heating source such as a burner or waste heat and boils to generate a refrigerant vapor. The generated refrigerant vapor is sent to the low temperature regenerator 3 and condensed in the heat transfer tube 12, and then the throttle 1
It is sent to the condenser 4 through 3. The condensation heat at this time heats the solution that is scattered from the spraying device 11 and flows down the outside of the heat transfer tube 12, and again generates the refrigerant vapor. The generated refrigerant vapor is sent to the condenser 4, cooled and cooled by the cooling water flowing in the condensing heat transfer tube 56, condensed, and merges with the refrigerant from the high temperature regenerator 2 to be stored in the refrigerant tank 31. On the other hand, the concentrated solution generated by generating the refrigerant vapor in the high temperature regenerator 2 is
The high temperature heat exchanger 7 exchanges heat with the dilute solution from the absorber 1 to lower the temperature, and joins with the concentrated solution from the low temperature regenerator 3. The combined concentrated solution exchanges heat with the dilute solution from the absorber 1 in the low temperature heat exchanger 6 to further lower the temperature, is sent to the solution spraying device 23 through the solution pipe 22, and is sprayed in the absorber 1. It The dispersed concentrated solution is cooled by the cooling water flowing in the absorption heat transfer tube 55, absorbs the refrigerant vapor from the evaporator 5 and becomes thin, and returns to the solution tank 24 as a diluted solution. On the other hand, the liquid refrigerant stored in the refrigerant tank 31 below the condenser 4 flows into the evaporator 5 via the refrigerant liquid pipe 14 and the throttle 15. In the evaporator 5, the refrigerant tank 2 provided in the lower part
The liquid refrigerant of No. 1 is sent by the refrigerant pump 9 to the refrigerant spraying device 20 through the refrigerant pipe 18 and the float valve 19, and the evaporator 5
It is sprayed on the heat transfer tube group inside and evaporates by exchanging heat with cold water flowing in the tube group, and as a result, latent heat of vaporization is taken from the cold water to obtain a refrigerating action. The evaporated refrigerant flows out to the absorber 1,
It is absorbed by the concentrated solution flowing down in the absorber 1.

【0017】一方、冷却塔57で冷却された冷却水は、
冷却水ポンプ58により吸収器1に送られ吸収伝熱管5
5で吸収熱を奪って温度上昇し、次に凝縮器4に送られ
凝縮伝熱管56で凝縮熱を奪ってさらに温度上昇する。
その後冷却塔57に戻って冷却される。
On the other hand, the cooling water cooled in the cooling tower 57 is
Absorption heat transfer pipe 5 sent to absorber 1 by cooling water pump 58
In 5 the absorption heat is taken to increase the temperature, and then it is sent to the condenser 4 and the condensation heat transfer tube 56 takes the condensation heat to further increase the temperature.
Then, it returns to the cooling tower 57 and is cooled.

【0018】また、蒸発器5内の蒸発伝熱管51で冷却
された冷水は冷水ポンプ53で室内機52に送られ、室
内を冷房して温度上昇し、再び蒸発器5に戻る。
The cold water cooled by the evaporative heat transfer tube 51 in the evaporator 5 is sent to the indoor unit 52 by the cold water pump 53 to cool the room to raise the temperature and return to the evaporator 5 again.

【0019】本実施例において負荷の制御は図2に示す
ように行われる。冷水温度検出手段101の温度が設定
値Tl以上の場合には、バーナの熱入力は制御装置10
2により段階制御が行われ、冷水温度がTm,Thと上
るにつれて熱入力も段階的に大きくなり、逆に冷水温度
がTm,Tlに下るにつれて段階的に熱入力が小さくな
るように制御される。冷房負荷が小さくなって冷水温度
がTlよりも低下した場合には、バーナが停止される。
バーナが停止された後も溶液濃度は高く保たれているの
で、吸収器1での冷媒の吸収は継続して行われ、蒸発器
5における冷水冷却能力は保持される。室内機52にお
ける冷房負荷がこの冷却能力よりも小さいか無くなった
場合には、さらに冷水温度は低下し温度Tcに達する。
この時に制御装置102からの制御信号により、冷媒蒸
発停止動作を行う。
In this embodiment, the load control is performed as shown in FIG. When the temperature of the cold water temperature detecting means 101 is equal to or higher than the set value Tl, the heat input of the burner is the control device 10
In step 2, the heat input is increased stepwise as the cold water temperature rises to Tm and Th, and conversely, the heat input is gradually decreased to fall as the cold water temperature falls to Tm and Tl. . When the cooling load decreases and the cold water temperature falls below Tl, the burner is stopped.
Since the solution concentration is kept high even after the burner is stopped, the absorption of the refrigerant in the absorber 1 is continued and the cooling water cooling capacity of the evaporator 5 is maintained. When the cooling load in the indoor unit 52 is smaller than or equal to this cooling capacity, the cooling water temperature further decreases and reaches the temperature Tc.
At this time, the refrigerant evaporation stop operation is performed by the control signal from the control device 102.

【0020】すなわち、冷水温度がTcに達した時、制
御装置102からの制御信号により、弁26を開、弁2
7を閉とするように制御され、低温熱交換器6から戻っ
て来る濃溶液は溶液管22を通り、溶液バイパス管2
5、弁26を経由して溶液タンク24へ送られる。溶液
散布装置23からは溶液が散布されないので吸収器1に
おける吸収は停止し、従って蒸発器5における蒸発も停
止して冷却能力が無くなり、冷媒温度がさらに低下して
凍結するなどの不具合を防止することができる。
That is, when the cold water temperature reaches Tc, the control signal from the control device 102 opens the valve 26 and the valve 2
The concentrated solution which is controlled to close 7 and returns from the low temperature heat exchanger 6 passes through the solution pipe 22 and the solution bypass pipe 2
5, it is sent to the solution tank 24 via the valve 26. Since the solution is not sprayed from the solution spraying device 23, the absorption in the absorber 1 is stopped, the evaporation in the evaporator 5 is also stopped, the cooling capacity is lost, and the refrigerant temperature is further lowered to prevent freezing. be able to.

【0021】また、冷水温度がTcに達した時、制御装
置102からの制御信号により、弁29を開、弁30を
閉とするように制御され、冷媒ポンプ9から送り出され
た冷媒は冷媒バイパス管28、弁29を経由して、直接
冷媒タンク21に戻る。冷媒散布装置20から冷媒は散
布されないので、蒸発器5における蒸発が停止して冷却
能力が無くなり、冷媒温度がさらに低下して凍結するな
どの不具合を防止することができる。
When the chilled water temperature reaches Tc, the control signal from the control device 102 controls the valve 29 to open and the valve 30 to close, and the refrigerant sent from the refrigerant pump 9 is bypassed by the refrigerant. It returns directly to the refrigerant tank 21 via the pipe 28 and the valve 29. Since the refrigerant is not sprayed from the refrigerant spraying device 20, the evaporation in the evaporator 5 is stopped, the cooling capacity is lost, and it is possible to prevent a problem such as the refrigerant temperature further lowering and freezing.

【0022】また、冷水温度がTcに達した時、制御装
置102からの制御信号により、三方弁60は吸収伝熱
管55へは冷却水を流さず、冷却水バイパス配管61へ
冷却水の全量を流すように切り替える。このため吸収伝
熱管55が冷却されないので吸収器1における吸収は停
止し、従って蒸発器5における蒸発も停止して冷却能力
が無くなり、冷媒温度がさらに低下して凍結するなどの
不具合を防止することができる。
When the cold water temperature reaches Tc, the control signal from the control device 102 causes the three-way valve 60 not to flow the cooling water to the absorption heat transfer pipe 55, but to the cooling water bypass pipe 61 to supply the entire amount of the cooling water. Switch to flush. Therefore, since the absorption heat transfer tube 55 is not cooled, the absorption in the absorber 1 is stopped, the evaporation in the evaporator 5 is also stopped, the cooling capacity is lost, and the problem that the refrigerant temperature further lowers and freezes is prevented. You can

【0023】その後、冷水温度が再び上昇してTlに達
した場合には、制御装置102からの制御信号により、
弁26、弁29を閉、弁27、弁30を開とし、三方弁
60は冷却水バイパス配管61から吸収伝熱管55へ、
冷却水の流れを切り替えるように制御される。これによ
り、吸収冷温水機は再び冷房能力を発揮して冷水を冷却
し、冷水温度によるバーナの熱入力制御を行う。ここ
で、冷却水の流れを切り替える時に、急激に切り替える
のではなく、ある一定時間は吸収伝熱管55と冷却水バ
イパス配管61の両方を流れるように、冷却水バイパス
配管61から吸収伝熱管55へ、徐々に冷却水の流れを
切り替えるように制御することにより、吸収伝熱管55
内で温度上昇した冷却水がそのまま冷却塔に運ばれて、
冷却塔の充填物を熱変形させてしまうという不具合点を
防止できる。
After that, when the cold water temperature rises again and reaches Tl, the control signal from the controller 102 causes
The valves 26 and 29 are closed, the valves 27 and 30 are opened, and the three-way valve 60 moves from the cooling water bypass pipe 61 to the absorption heat transfer pipe 55.
It is controlled to switch the flow of cooling water. As a result, the absorption chiller-heater exerts the cooling capacity again to cool the chilled water, and the heat input of the burner is controlled by the chilled water temperature. Here, when the flow of the cooling water is switched, instead of abruptly switching, the cooling water bypass pipe 61 moves to the absorption heat transfer pipe 55 so as to flow through both the absorption heat transfer pipe 55 and the cooling water bypass pipe 61 for a certain period of time. , The absorption heat transfer tube 55 is controlled by gradually changing the flow of the cooling water.
The cooling water whose temperature has risen inside is directly conveyed to the cooling tower,
It is possible to prevent the problem that the packing in the cooling tower is thermally deformed.

【0024】また、冷媒蒸発停止動作を行った後タイマ
等で経過時間を計測し、一定時間経過後も冷水温度がT
lに達しない場合には、弁33を開として冷媒タンク3
1の液冷媒を溶液ポンプ8の吸い込み側に送って溶液の
希釈を行い、希釈完了後全システムを停止する。希釈の
完了は、あらかじめ冷媒タンク31の冷媒がすべて溶液
に送りこまれるのに必要な時間を設定しておき、タイマ
等で時間を計測することにより判断できる。
After the operation of stopping the evaporation of the refrigerant is performed, the elapsed time is measured by a timer or the like, and the chilled water temperature remains at T for a certain time.
When it does not reach 1, the valve 33 is opened and the refrigerant tank 3 is opened.
The liquid refrigerant No. 1 is sent to the suction side of the solution pump 8 to dilute the solution, and after the dilution is completed, the entire system is stopped. The completion of the dilution can be determined by setting the time required for all the refrigerant in the refrigerant tank 31 to be sent into the solution in advance and measuring the time with a timer or the like.

【0025】一方、暖房運転時にシステムは次のように
動作する。暖房運転時には弁17及び弁35は開となっ
ており、冷却水ポンプ58を停止し吸収器1内の吸収伝
熱管55及び凝縮器4内の凝縮伝熱管56に冷却水は流
さない。また、弁26は開、弁27は閉とし、冷媒ポン
プ9は停止とする。
On the other hand, during heating operation, the system operates as follows. During the heating operation, the valves 17 and 35 are open, the cooling water pump 58 is stopped, and the cooling water does not flow to the absorption heat transfer pipe 55 in the absorber 1 and the condensation heat transfer pipe 56 in the condenser 4. Further, the valve 26 is opened, the valve 27 is closed, and the refrigerant pump 9 is stopped.

【0026】吸収器1の下部にある溶液タンク24の溶
液は、溶液循環ポンプ8により低温熱交換器6に送られ
た後、一部は高温熱交換器7、流量制御機構(図示せ
ず)を通って高温再生器2へ送られ、残りは低温再生器
3へ送られて散布装置11から散布される。高温再生器
2に送られた溶液はバーナ10に加熱沸騰されて冷媒蒸
気を発生する。発生した冷媒蒸気は低温再生器3に送ら
れて伝熱管12の管内で凝縮した後、絞り13を通って
凝縮器4へ送られる。この時の凝縮熱は、散布装置11
から散布されて伝熱管12の管外を流下する溶液を加熱
して、再び冷媒蒸気を発生させる。発生した冷媒蒸気は
凝縮器4へ送られるが、凝縮器4内に設けられた管群内
に冷却水が流されていないので、凝縮液化せず、冷媒蒸
気管16、弁17を経由して蒸発器5に送られる。ま
た、高温再生器2からの液冷媒は、冷媒液管14、絞り
15を経由して蒸発器5に流入する。蒸発器5では凝縮
器4からの冷媒蒸気が、蒸発伝熱管51を流れる温水と
熱交換して凝縮液化し、この時の凝縮潜熱により温水を
加熱して暖房能力を発生する。凝縮液化した液冷媒は冷
媒タンク21で凝縮器4からの液冷媒と合流して溜めら
れ、冷媒ポンプ9により、冷媒管18、フロート弁1
9、冷媒管34、弁35を経由して吸収器1に送られ
る。一方、高温再生器2で冷媒蒸気を発生して濃縮され
た濃溶液は、高温熱交換器7で吸収器1からの希溶液と
熱交換して温度を下げ、低温再生器3からの濃溶液と合
流する。合流した濃溶液は、低温熱交換器6で吸収器1
からの希溶液と熱交換してさらに温度を下げ、溶液管2
2に送られる。この濃溶液は溶液バイパス管25、弁2
6を経由して溶液タンク24に送られる。
The solution in the solution tank 24 at the lower part of the absorber 1 is sent to the low temperature heat exchanger 6 by the solution circulation pump 8, and then part of it is heated to the high temperature heat exchanger 7 and a flow rate control mechanism (not shown). Is passed to the high temperature regenerator 2 and the rest is sent to the low temperature regenerator 3 and sprayed from the spraying device 11. The solution sent to the high temperature regenerator 2 is heated and boiled by the burner 10 to generate a refrigerant vapor. The generated refrigerant vapor is sent to the low temperature regenerator 3 and condensed inside the heat transfer tube 12, and then sent to the condenser 4 through the throttle 13. The heat of condensation at this time is applied to the spraying device 11
The solution that has been sprayed from and flows down the outside of the heat transfer tube 12 is heated to generate refrigerant vapor again. The generated refrigerant vapor is sent to the condenser 4, but since cooling water does not flow in the tube group provided in the condenser 4, it does not condense and liquefy, and passes through the refrigerant vapor pipe 16 and the valve 17. It is sent to the evaporator 5. Further, the liquid refrigerant from the high temperature regenerator 2 flows into the evaporator 5 via the refrigerant liquid pipe 14 and the throttle 15. In the evaporator 5, the refrigerant vapor from the condenser 4 exchanges heat with the hot water flowing through the evaporation heat transfer tube 51 to be condensed and liquefied, and the latent heat of condensation at this time heats the hot water to generate a heating capacity. The condensed and liquefied liquid refrigerant merges with the liquid refrigerant from the condenser 4 and is stored in the refrigerant tank 21, and the refrigerant pump 9 causes the refrigerant pipe 18 and the float valve 1
It is sent to the absorber 1 via 9, the refrigerant pipe 34, and the valve 35. On the other hand, the concentrated solution generated by generating the refrigerant vapor in the high temperature regenerator 2 is heat-exchanged with the dilute solution from the absorber 1 in the high temperature heat exchanger 7 to lower the temperature, and the concentrated solution from the low temperature regenerator 3 is reduced. Join up with. The combined concentrated solution was absorbed by the low temperature heat exchanger 6 into the absorber 1
The temperature is lowered by exchanging heat with the dilute solution from the solution tube 2
Sent to 2. This concentrated solution is a solution bypass pipe 25, valve 2
It is sent to the solution tank 24 via 6.

【0027】暖房運転時に冷媒タンク21の液冷媒が、
冷媒スプレーポンプ9により送り出されて、冷媒散布装
置20へは送られずに、溶液管34へ送られるようにす
るためには、それぞれの管路抵抗を適当に調整すれば良
い。
During the heating operation, the liquid refrigerant in the refrigerant tank 21
In order to be sent out by the refrigerant spray pump 9 and sent to the solution pipe 34 without being sent to the refrigerant spraying device 20, the respective line resistances may be adjusted appropriately.

【0028】以上説明したように本実施例によれば、冷
水温度が低下してある設定値に達した場合に、再生器
2,3から熱交換器7,6を経由して吸収器1へ戻る濃
溶液流路を、吸収器内の溶液散布装置23へ戻る配管か
ら、溶液ポンプ8の吸い込み管に送るバイパス配管25
に切り替えるように制御するので、吸収伝熱管に溶液が
散布されず冷媒蒸気の吸収が停止するために、蒸発器5
での冷媒の蒸発も停止して、冷媒温度がさらに低下して
凍結するなどの不具合を防止することができる。
As described above, according to the present embodiment, when the cold water temperature drops and reaches a certain set value, the regenerators 2, 3 pass through the heat exchangers 7, 6 to the absorber 1. Bypass pipe 25 for sending the returning concentrated solution flow path from the pipe returning to the solution spraying device 23 in the absorber to the suction pipe of the solution pump 8.
Since the control is performed so that the absorption heat transfer tube is not sprayed with the solution and the absorption of the refrigerant vapor is stopped, the evaporator 5
It is also possible to prevent the inconvenience that the refrigerant temperature further decreases and the refrigerant freezes.

【0029】また、冷水温度が低下してある設定値に達
した場合に、吸収器1を流れる冷却水を、吸収器1の入
口と出口を接続するバイパス配管61に切り替えるよう
に制御するので、吸収伝熱管に散布されている溶液が冷
却されず吸収が停止するために、蒸発器5での冷媒の蒸
発も停止して、冷媒温度がさらに低下して凍結するなど
の不具合を防止することができる。
Further, when the cold water temperature is lowered and reaches a certain set value, the cooling water flowing through the absorber 1 is controlled so as to be switched to the bypass pipe 61 connecting the inlet and the outlet of the absorber 1. Since the solution sprayed on the absorption heat transfer tube is not cooled and absorption is stopped, evaporation of the refrigerant in the evaporator 5 is also stopped, and it is possible to prevent problems such as the refrigerant temperature further lowering and freezing. it can.

【0030】さらに、冷水温度が低下してある設定値に
達した場合に、冷媒ポンプ9からの冷媒を、冷媒散布装
置20へ送る配管からバイパス配管28に切り替えるよ
うに制御するので、蒸発器5での冷媒の蒸発が停止し
て、冷媒温度がさらに低下して凍結するなどの不具合を
防止することができる。
Further, when the chilled water temperature decreases to a certain set value, the refrigerant from the refrigerant pump 9 is controlled so as to be switched from the pipe for sending to the refrigerant spraying device 20 to the bypass pipe 28. Therefore, the evaporator 5 is controlled. It is possible to prevent problems such as the evaporation of the refrigerant being stopped and the temperature of the refrigerant further lowering and freezing.

【0031】本実施例において、冷房負荷の急変動によ
り冷水温度が急激に低下した場合に、冷媒蒸発を停止す
る手段として、吸収器内の伝熱管に散布する濃溶液をバ
イパスする方法、蒸発器内の伝熱管に散布する冷媒をバ
イパスする方法、吸収器内の伝熱管に通水する冷却水を
バイパスする方法の3種類の手段を実施したが、これら
のうちの1種類あるいは2種類の組合せを実施しても同
様の効果が得られる。この場合には、制御がより簡単に
なるという効果がある。
In this embodiment, as a means for stopping the evaporation of the refrigerant when the chilled water temperature sharply drops due to a sudden change in the cooling load, a method of bypassing the concentrated solution sprayed to the heat transfer tubes in the absorber, the evaporator The three means of bypassing the refrigerant sprayed to the heat transfer tubes inside and the method of bypassing the cooling water passing to the heat transfer tubes inside the absorber were implemented, but one or two of them were combined. The same effect can be obtained by implementing. In this case, there is an effect that the control becomes easier.

【0032】また、本実施例においては蒸発器5での冷
媒蒸発を停止させた後再び冷水温度が上昇して、バーナ
を停止したのと同じ温度Tlになったときに、もとの運
転状態に戻して冷媒の蒸発動作が再開するように制御し
ているが、もとの運転状態に戻す温度をTlよりも高い
温度Tl’に設定してもよい。この場合には、冷媒の蒸
発動作が再開して蒸発器5での冷却能力が急に大きくな
ることにより冷水温度がすぐに低下して、再び冷媒蒸発
停止動作に入りシステムの運転が振動的になるのを防止
することができる。この制御方法を図3に示す。
Further, in this embodiment, when the cooling water temperature rises again after stopping the evaporation of the refrigerant in the evaporator 5 and reaches the same temperature Tl as when the burner was stopped, the original operating condition However, the temperature for returning to the original operating state may be set to a temperature Tl ′ higher than Tl. In this case, the evaporation operation of the refrigerant is restarted and the cooling capacity of the evaporator 5 is suddenly increased, so that the temperature of the chilled water is immediately lowered, and the refrigerant evaporation stop operation is resumed. Can be prevented. This control method is shown in FIG.

【0033】また、本実施例において、吸収伝熱管内に
冷却水を流さないことにより、蒸発器5における冷媒蒸
発を停止するように制御しているが、冷却水ポンプ58
及び冷却塔57を停止することにより、吸収器1の吸収
能力を停止して冷媒蒸発を停止するように制御してもよ
い。この場合には、冷却水ポンプを停止するので省エネ
ルギにつながるという効果がある。
Further, in the present embodiment, the cooling water is not flown into the absorption heat transfer tube so that the refrigerant evaporation in the evaporator 5 is stopped.
Also, by stopping the cooling tower 57, the absorption capacity of the absorber 1 may be stopped and the evaporation of the refrigerant may be stopped. In this case, since the cooling water pump is stopped, there is an effect that it leads to energy saving.

【0034】次に本発明の他の実施例を図4に示す。図
1の実施例と異なる点は、冷媒ブロー管32を冷媒タン
ク31から弁33を経由して、吸収器1内の空間に開口
するように設置した点である。また、冷房負荷を評価す
るための冷水温度検出手段101を、冷水配管54の途
中であって、室内機52からの戻り冷却水配管部分に設
置した点である。さらに、凝縮器4から冷却塔57へ至
る冷却水配管59の途中に三方弁62を設け、凝縮器4
から戻ってきた冷却水を冷却塔57へ送る流路と、冷却
塔57をバイパスする冷却塔バイパス流路63との間で
切り替えることができるようにし、この切り替えを制御
装置102で制御するようにした点である。その他の構
成及び動作は図1の実施例と同様である。
Next, another embodiment of the present invention is shown in FIG. The difference from the embodiment of FIG. 1 is that the refrigerant blow pipe 32 is installed from the refrigerant tank 31 via the valve 33 so as to open into the space inside the absorber 1. In addition, the chilled water temperature detection means 101 for evaluating the cooling load is installed in the chilled water pipe 54 in the middle of the chilled water pipe 54 and in the portion of the returned cooling water pipe from the indoor unit 52. Furthermore, a three-way valve 62 is provided in the middle of the cooling water pipe 59 from the condenser 4 to the cooling tower 57, and the condenser 4
The flow path for sending the cooling water returned from the cooling tower 57 to the cooling tower 57 and the cooling tower bypass flow path 63 bypassing the cooling tower 57 can be switched, and this switching is controlled by the control device 102. That is the point. Other configurations and operations are similar to those of the embodiment shown in FIG.

【0035】本実施例において、冷媒ブロー管32を用
いて冷媒タンク31の冷媒を溶液中に送りこむ場合に、
管の開口部が直接溶液中になく吸収器の気相部に開口し
ているので、濃度差による腐食の進行を防止できるとい
う利点がある。また、蒸発器5での冷媒蒸発を停止させ
た後再び冷水温度が上昇して、冷媒の蒸発動作が再開す
るように制御したときに、蒸発器5での冷却能力が急に
大きくなることにより冷水温度がすぐに低下して、冷媒
蒸発停止動作に入りシステムの運転が振動的になるのを
防止することができる。さらに、負荷が急激に減少して
冷水温度が低下し、吸収器1内を流れる冷却水をバイパ
スし、あるいは冷却水ポンプ58を停止した後、再び冷
却水を吸収器1内に流すように切り替える、あるいは冷
却水ポンプ58を再起動するときに、一定時間の間冷却
水が冷却塔57をバイパスして流れるように、三方弁6
2を制御することにより、吸収伝熱管55内で温度上昇
した冷却水が冷却塔57に運ばれて、冷却塔57内の充
填物を熱変形させてしまうという不具合を防止すること
ができる。
In the present embodiment, when the refrigerant in the refrigerant tank 31 is fed into the solution using the refrigerant blow pipe 32,
Since the opening of the tube is not directly in the solution but is open to the gas phase of the absorber, there is an advantage that the progress of corrosion due to the difference in concentration can be prevented. Further, when the cooling water temperature rises again after stopping the evaporation of the refrigerant in the evaporator 5, and the cooling operation of the refrigerant is restarted, the cooling capacity of the evaporator 5 suddenly increases. It is possible to prevent the chilled water temperature from immediately lowering and causing the refrigerant evaporation stop operation to vibrate the operation of the system. Further, the load is sharply reduced to lower the cold water temperature, the cooling water flowing in the absorber 1 is bypassed, or the cooling water pump 58 is stopped, and then the cooling water is switched into the absorber 1 again. Alternatively, when the cooling water pump 58 is restarted, the three-way valve 6 is controlled so that the cooling water bypasses the cooling tower 57 and flows for a certain period of time.
By controlling 2, it is possible to prevent the problem that the cooling water whose temperature has risen in the absorption heat transfer tube 55 is carried to the cooling tower 57 and the filler in the cooling tower 57 is thermally deformed.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、負
荷が急激に低下、あるいはなくなった場合に、冷水温度
が低下してバーナを停止した後もさらに冷水温度が低下
し、ある設定値に達した場合に、再生器から熱交換器を
経由して吸収器へ戻る濃溶液流路を、吸収器内の溶液散
布装置へ戻る配管から、吸収器底部の希溶液タンクある
いは溶液循環ポンプの吸い込み管に送るバイパス配管に
切り替えるように制御するので、吸収伝熱管に溶液が散
布されず冷媒蒸気の吸収が停止するために、蒸発器での
冷媒の蒸発も停止して、冷媒温度がさらに低下して凍結
するなどの不具合を防止することができる。
As described above, according to the present invention, when the load sharply decreases or disappears, the cold water temperature lowers and the cold water temperature further lowers even after the burner is stopped. When the temperature reaches the limit, the concentrated solution flow path that returns from the regenerator to the absorber via the heat exchanger is connected to the dilute solution tank at the bottom of the absorber or the solution circulation pump from the pipe returning to the solution spraying device in the absorber. By controlling to switch to the bypass pipe that sends to the suction pipe, since the solution is not sprayed to the absorption heat transfer pipe and the absorption of the refrigerant vapor stops, the evaporation of the refrigerant in the evaporator also stops and the refrigerant temperature further decreases. It is possible to prevent problems such as freezing.

【0037】[0037]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の一実施例の制御方法を説明する図であ
る。
FIG. 2 is a diagram illustrating a control method according to an embodiment of the present invention.

【図3】本発明の一実施例の他の制御方法を説明する
図。
FIG. 3 is a diagram illustrating another control method according to the embodiment of the present invention.

【図4】本発明の他の実施例の構成図である。FIG. 4 is a configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…吸収器、2…高温再生器、3…低温再生器、4…凝
縮器、5…蒸発器、6…低温熱交換器、7…高温熱交換
器、8…溶液ポンプ、9…冷媒ポンプ、10…バーナ、
11…散布装置、12…伝熱管、13…絞り、14…冷
媒液管、15…絞り、16…冷媒蒸気管、17…弁、1
8…冷媒管、19…フロート弁、20…冷媒散布装置、
21…冷媒タンク、22…溶液管、23…溶液散布装
置、24…溶液タンク、25…溶液バイパス管、26…
弁、27…弁、28…冷媒バイパス管、29…弁、30
…弁、31…冷媒タンク、32…冷媒ブロー管、33…
弁、34…冷媒管、35…弁、51…蒸発伝熱管、52
…室内機、53…冷水ポンプ、54…冷水配管、五五…
吸収伝熱管、56…凝縮伝熱管、57…冷却塔、58…
冷却水ポンプ、59…冷却水配管、60…三方弁、61
…冷却水バイパス配管、62…三方弁、63…冷却塔バ
イパス配管、101…冷水温度検出手段、102…制御
装置
1 ... Absorber, 2 ... High temperature regenerator, 3 ... Low temperature regenerator, 4 ... Condenser, 5 ... Evaporator, 6 ... Low temperature heat exchanger, 7 ... High temperature heat exchanger, 8 ... Solution pump, 9 ... Refrigerant pump 10 ... Burner,
11 ... Spraying device, 12 ... Heat transfer tube, 13 ... Restrictor, 14 ... Refrigerant liquid tube, 15 ... Restrictor, 16 ... Refrigerant vapor tube, 17 ... Valve, 1
8 ... Refrigerant pipe, 19 ... Float valve, 20 ... Refrigerant spraying device,
21 ... Refrigerant tank, 22 ... Solution pipe, 23 ... Solution spraying device, 24 ... Solution tank, 25 ... Solution bypass pipe, 26 ...
Valve, 27 ... Valve, 28 ... Refrigerant bypass pipe, 29 ... Valve, 30
... Valve, 31 ... Refrigerant tank, 32 ... Refrigerant blow pipe, 33 ...
Valve, 34 ... Refrigerant tube, 35 ... Valve, 51 ... Evaporative heat transfer tube, 52
… Indoor unit, 53… Chilled water pump, 54… Cold water piping, Gogo…
Absorption heat transfer tube, 56 ... Condensing heat transfer tube, 57 ... Cooling tower, 58 ...
Cooling water pump, 59 ... Cooling water piping, 60 ... Three-way valve, 61
... cooling water bypass pipe, 62 ... three-way valve, 63 ... cooling tower bypass pipe, 101 ... chilled water temperature detecting means, 102 ... control device

フロントページの続き (72)発明者 依田 裕明 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内Continuation of the front page (72) Inventor Hiroaki Yoda 603 Kitsudachi-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Tsuchiura factory

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】再生器、凝縮器、蒸発器、吸収器、溶液ポ
ンプ、冷媒ポンプ、吸収器内の溶液散布装置を配管接続
して吸収冷凍サイクルを構成する吸収冷暖房システムに
おいて、冷媒蒸気の発生を阻害する手段を設けたことを
特徴とする吸収冷暖房システム。
1. A refrigerant vapor is generated in an absorption cooling / heating system which constitutes an absorption refrigeration cycle by connecting a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, and a solution spraying device in the absorber by piping. An absorption cooling and heating system characterized by being provided with a means for inhibiting the above.
【請求項2】再生器、凝縮器、蒸発器、吸収器、溶液ポ
ンプ、冷媒ポンプ、吸収器内の溶液散布装置を配管接続
して吸収冷凍サイクルを構成する吸収冷暖房システムに
おいて、再生器と溶液散布装置とを接続する濃溶液配管
の途中に、濃溶液を溶液ポンプの吸い込み側へ送るバイ
パス配管を設け、濃溶液を前記溶液散布装置へ送る配管
と前記バイパス配管とで流路を切り替える切り替え手段
を設けて、負荷の変動に応じてこの切り替え手段を切り
替える制御装置を設けたことを特徴とする吸収冷暖房シ
ステム。
2. An absorption cooling / heating system in which an absorption refrigeration cycle is configured by connecting a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, and a solution spraying device in the absorber in a pipe to form a regenerator and a solution. A bypass pipe for sending the concentrated solution to the suction side of the solution pump is provided in the middle of the concentrated solution pipe connecting to the spraying device, and switching means for switching the flow path between the pipe for sending the concentrated solution to the solution spraying device and the bypass pipe. Is provided, and a control device for switching the switching means in accordance with a change in load is provided.
【請求項3】請求項2に記載の吸収冷暖房システムにお
いて、バイパス配管を溶液タンクの底部に設けたことを
特徴とする吸収冷暖房システム。
3. The absorption cooling / heating system according to claim 2, wherein a bypass pipe is provided at the bottom of the solution tank.
【請求項4】請求項2に記載の吸収冷暖房システムにお
いて、バイパス配管を溶液ポンプの吸い込み管に設けた
ことを特徴とする吸収冷暖房システム。
4. The absorption cooling / heating system according to claim 2, wherein a bypass pipe is provided in a suction pipe of the solution pump.
【請求項5】請求項2に記載の吸収冷暖房システムにお
いて、負荷の変動を検出する手段を冷水出口もしくは冷
水入口に取り付けることを特徴とする吸収冷暖房システ
ム。
5. The absorption cooling / heating system according to claim 2, wherein a means for detecting a change in load is attached to the cold water outlet or the cold water inlet.
【請求項6】再生器、凝縮器、蒸発器、吸収器、溶液ポ
ンプ、冷媒ポンプ、吸収器内の溶液散布装置を配管接続
して吸収冷凍サイクルを構成する吸収冷暖房システムに
おいて、吸収器の冷却水配管の入口と出口とを接続する
バイパス配管を設け、このバイパス配管と前記吸収器の
冷却水配管へ流す冷却水の流れを切り替える切り替え手
段を設けて、負荷の変動に応じてこの切り替え手段を切
り替える制御装置を設けたことを特徴とする吸収冷暖房
システム。
6. An absorption cooling / heating system in which an absorption refrigeration cycle is configured by connecting a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, and a solution spraying device in the absorber by piping to cool the absorber. A bypass pipe that connects the inlet and the outlet of the water pipe is provided, and a switching unit that switches the flow of the cooling water flowing to the bypass pipe and the cooling water pipe of the absorber is provided. An absorption cooling and heating system characterized by being provided with a switching control device.
【請求項7】再生器、凝縮器、蒸発器、吸収器、溶液ポ
ンプ、冷媒ポンプを配管接続して吸収冷凍サイクルを構
成する吸収冷暖房システムの制御方法において、吸収器
の冷却水配管の入口と出口を接続するバイパス配管から
前記吸収器の冷却水配管へ冷却水の流れを切り替える際
に徐々に切り替えることを特徴とする吸収冷暖房システ
ムの制御方法。
7. A method of controlling an absorption cooling / heating system in which a regenerator, a condenser, an evaporator, an absorber, a solution pump, and a refrigerant pump are connected by pipes to form an absorption refrigeration cycle, and an inlet of a cooling water pipe of the absorber is used. A method for controlling an absorption cooling / heating system, comprising: gradually changing a flow of cooling water from a bypass pipe connecting an outlet to a cooling water pipe of the absorber.
【請求項8】再生器、凝縮器、蒸発器、吸収器、溶液ポ
ンプ、冷媒ポンプ、冷却水を前記吸収器へ送る冷却水ポ
ンプを配管接続して吸収冷凍サイクルを構成する吸収冷
温水機、及びこの吸収冷温水機と冷温水配管で接続する
室内機を備える吸収冷暖房システムの制御方法におい
て、負荷の変動に応じて冷却水ポンプを発停することを
特徴とする吸収冷暖房システムの制御方法。
8. An absorption chiller-heater that constitutes an absorption refrigeration cycle by connecting a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, and a cooling water pump for sending cooling water to the absorber by piping. And a method of controlling an absorption cooling / heating system including an indoor unit connected to the absorption cooling / heating machine by a cooling / heating water pipe, wherein a cooling water pump is started / stopped according to a change in load.
【請求項9】請求項7に記載の吸収冷暖房システムの制
御方法において、冷却水通水開始後の所定時間、冷却水
が冷却塔をバイパスするように制御することを特徴とす
る吸収冷暖房システムの制御方法。
9. The method of controlling an absorption cooling / heating system according to claim 7, wherein the cooling water is controlled so as to bypass the cooling tower for a predetermined time after the start of cooling water passage. Control method.
【請求項10】再生器、凝縮器、蒸発器、吸収器、冷却
塔、溶液ポンプ、冷媒ポンプ、冷却水ポンプを配管接続
して吸収冷凍サイクルを構成する吸収冷暖房システムの
制御方法において、負荷の変動に応じて冷却水ポンプを
発停するように制御することを特徴とする吸収冷暖房シ
ステムの制御方法。
10. A control method for an absorption cooling / heating system comprising a regenerator, a condenser, an evaporator, an absorber, a cooling tower, a solution pump, a refrigerant pump, and a cooling water pump, which are connected by pipes to constitute an absorption refrigeration system. A control method for an absorption heating and cooling system, which controls to start and stop a cooling water pump according to fluctuations.
【請求項11】再生器、凝縮器、蒸発器、吸収器、容液
ポンプ、冷媒ポンプ、蒸発器内の冷媒散布装置を配管接
続して吸収冷凍サイクルを構成する吸収冷暖房システム
において、冷媒ポンプの吐出側と冷媒散布装置とを結ぶ
配管の途中に、冷媒を蒸発器底部に送るバイパス配管を
設けて、冷媒散布装置へ送る配管と前記バイパス配管と
で冷媒の流れを切り替える切り替え手段を設け、負荷の
変動に応じてこの切り替え手段を切り替える制御装置を
設けたことを特徴とする吸収冷暖房システム。
11. An absorption cooling / heating system comprising a regenerator, a condenser, an evaporator, an absorber, a liquid pump, a refrigerant pump, and a refrigerant spraying device in the evaporator connected by piping to form an absorption refrigeration system. In the middle of the pipe connecting the discharge side and the refrigerant distribution device, a bypass pipe for supplying the refrigerant to the bottom of the evaporator is provided, and a switching means for switching the flow of the refrigerant between the pipe for the refrigerant distribution device and the bypass pipe is provided. An absorption cooling / heating system characterized in that a control device for switching the switching means according to the fluctuation of
【請求項12】再生器、凝縮器、蒸発器、吸収器、溶液
ポンプ、冷媒ポンプ、吸収器内の溶液散布装置、蒸発器
内の冷媒散布装置を配管接続して吸収冷凍サイクルを構
成する吸収冷暖房システムにおいて、再生器と溶液散布
装置とを接続する濃溶液配管の途中に濃溶液を溶液ポン
プの吸い込み側へ送るバイパス配管と、吸収器の冷却水
配管の入口と出口とを接続するバイパス配管と、冷媒ポ
ンプの吐出側と冷媒散布装置とを結ぶ配管の途中に冷媒
を蒸発器底部に送るバイパス配管とを設け、濃溶液を前
記溶液散布装置へ送る配管と前記バイパス配管とで流路
を切り替える切り替え手段と、バイパス配管と前記吸収
器の冷却水配管へ流す冷却水の流れを切り替える切り替
え手段と、冷媒散布装置へ送る配管と前記バイパス配管
とで冷媒の流れを切り替える切り替え手段とを設けて、
負荷の変動に応じてこれらの切り替え手段を切り替える
制御装置を設けたことを特徴とする吸収冷暖房システ
ム。
12. Absorption which constitutes an absorption refrigeration cycle by connecting a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, a solution spraying device in the absorber, and a refrigerant spraying device in the evaporator by piping. In an air conditioning system, a bypass pipe that connects the regenerator and the solution spraying device to the suction side of the solution pump in the middle of the concentrated solution pipe, and a bypass pipe that connects the inlet and outlet of the cooling water pipe of the absorber. And a bypass pipe for sending the refrigerant to the bottom of the evaporator in the middle of the pipe connecting the discharge side of the refrigerant pump and the refrigerant spraying device, and forming a flow path with the pipe for sending the concentrated solution to the solution spraying device and the bypass pipe. Switching means for switching, switching means for switching the flow of cooling water to be flown to the bypass pipe and the cooling water pipe of the absorber, and the flow of the refrigerant through the pipe to the refrigerant spraying device and the bypass pipe. Ri replaced by providing a switching means,
An absorption cooling / heating system characterized by comprising a control device for switching these switching means in accordance with changes in load.
【請求項13】請求項11に記載の吸収冷暖房システム
において、切り替え手段のいずれかを切り替える制御装
置を設けたことを特徴とする吸収冷暖房システム。
13. The absorption cooling / heating system according to claim 11, further comprising a controller for switching any one of the switching means.
【請求項14】再生器、凝縮器、蒸発器、吸収器、冷却
塔、溶液ポンプ、冷媒ポンプ、冷却水ポンプ、吸収器内
の溶液散布装置、蒸発器内の冷媒散布装置を配管接続し
て吸収冷凍サイクルを構成する吸収冷暖房システムにお
いて、再生器と溶液散布装置とを接続する濃溶液配管の
途中に濃溶液を溶液ポンプの吸い込み側へ送るバイパス
配管と、吸収器の冷却水配管の入口と出口とを接続する
バイパス配管と、冷媒ポンプの吐出側と冷媒散布装置と
を結ぶ配管の途中に冷媒を蒸発器底部に送るバイパス配
管とを設け、濃溶液を前記溶液散布装置へ送る配管と前
記バイパス配管とで流路を切り替える切り替え手段と、
バイパス配管と前記吸収器の冷却水配管へ流す冷却水の
流れを切り替える切り替え手段と、冷媒散布装置へ送る
配管と前記バイパス配管とで冷媒の流れを切り替える切
り替え手段とを設けて、負荷の変動に応じてこれらの切
り替え手段を切り替える制御装置、負荷の変動に応じて
冷却水ポンプの発停を制御する制御装置を設けたことを
特徴とする吸収冷暖房システム。
14. A regenerator, a condenser, an evaporator, an absorber, a cooling tower, a solution pump, a refrigerant pump, a cooling water pump, a solution spraying device in the absorber, and a refrigerant spraying device in the evaporator are connected by piping. In an absorption cooling and heating system that constitutes an absorption refrigeration cycle, a bypass pipe that sends a concentrated solution to the suction side of a solution pump in the middle of a concentrated solution pipe that connects a regenerator and a solution spraying device, and an inlet of a cooling water pipe of an absorber. A bypass pipe connecting the outlet, a bypass pipe for sending the refrigerant to the bottom of the evaporator is provided in the middle of the pipe connecting the discharge side of the refrigerant pump and the refrigerant spraying device, and a pipe for sending the concentrated solution to the solution spraying device and the Switching means for switching the flow path with bypass piping,
By providing a switching means for switching the flow of the cooling water flowing to the bypass piping and the cooling water piping of the absorber, and a switching means for switching the flow of the refrigerant between the piping to be sent to the refrigerant spraying device and the bypass piping, to prevent fluctuations in load. An absorption cooling / heating system characterized by comprising a control device for switching these switching means in accordance with the control device, and a control device for controlling the start / stop of the cooling water pump in accordance with the fluctuation of the load.
【請求項15】再生器、凝縮器、蒸発器、吸収器、溶液
ポンプ、冷媒ポンプ、吸収器内の溶液散布装置、蒸発器
内の冷媒散布装置を配管接続して吸収冷凍サイクルを構
成する吸収冷暖房システムの制御方法において、再生器
の加熱源を停止後、負荷の変動に応じて再生器からの濃
溶液を溶液ポンプの吸い込み側へバイパスさせる手段、
冷却水を吸収器の出口側へバイパスさせる手段、冷媒を
蒸発器底部へバイパスさせる手段によって吸収器へ送る
濃溶液もしくは冷却水、冷媒散布装置へ送る冷媒の流量
のいずれかもしくは全ての流量を制御することを特徴と
する吸収冷暖房システムの制御方法。
15. An absorption forming an absorption refrigeration cycle by connecting a regenerator, a condenser, an evaporator, an absorber, a solution pump, a refrigerant pump, a solution spraying device in the absorber, and a refrigerant spraying device in the evaporator by piping. In the control method of the cooling and heating system, after stopping the heating source of the regenerator, means for bypassing the concentrated solution from the regenerator to the suction side of the solution pump according to the fluctuation of the load,
Controlling any or all of the flow rate of the concentrated solution or cooling water sent to the absorber and the flow rate of the refrigerant sent to the refrigerant spraying device by means of bypassing the cooling water to the outlet side of the absorber and means for bypassing the refrigerant to the bottom of the evaporator A method for controlling an absorption cooling and heating system, comprising:
JP4157788A 1992-06-17 1992-06-17 Absorption cooling and heating system and its control method Expired - Fee Related JP2985513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157788A JP2985513B2 (en) 1992-06-17 1992-06-17 Absorption cooling and heating system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157788A JP2985513B2 (en) 1992-06-17 1992-06-17 Absorption cooling and heating system and its control method

Publications (2)

Publication Number Publication Date
JPH062982A true JPH062982A (en) 1994-01-11
JP2985513B2 JP2985513B2 (en) 1999-12-06

Family

ID=15657309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157788A Expired - Fee Related JP2985513B2 (en) 1992-06-17 1992-06-17 Absorption cooling and heating system and its control method

Country Status (1)

Country Link
JP (1) JP2985513B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130486A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Absorption chiller / heater and control method thereof
JP2010078297A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Absorption heat pump
JP2011202948A (en) * 2011-06-06 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
KR102012331B1 (en) * 2019-01-28 2019-08-20 (주)월드이엔씨 Coolant control system of absorption type heat pump providing hot water and cold water
JP2020046128A (en) * 2018-09-20 2020-03-26 矢崎エナジーシステム株式会社 Absorption refrigerator
KR102315626B1 (en) * 2021-07-01 2021-10-21 현대공조 주식회사 Absorption Type Water Heater Having Orifice Mounting Structure To Improve Performance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130486A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Absorption chiller / heater and control method thereof
JP2010078297A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Absorption heat pump
JP2011202948A (en) * 2011-06-06 2011-10-13 Sanyo Electric Co Ltd Absorption refrigerating machine
JP2020046128A (en) * 2018-09-20 2020-03-26 矢崎エナジーシステム株式会社 Absorption refrigerator
KR102012331B1 (en) * 2019-01-28 2019-08-20 (주)월드이엔씨 Coolant control system of absorption type heat pump providing hot water and cold water
KR102315626B1 (en) * 2021-07-01 2021-10-21 현대공조 주식회사 Absorption Type Water Heater Having Orifice Mounting Structure To Improve Performance

Also Published As

Publication number Publication date
JP2985513B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
JP2560550B2 (en) Absorption cooling / heating device and control method thereof
JP2002147885A (en) Absorption refrigerating machine
JPH062982A (en) Absorption cooling and heating system and its control method
JP2000018762A (en) Absorption refrigeration equipment
JPH0552441A (en) Absorption type air conditioner control method and device
JP2001099474A (en) Air conditioner
JP3448680B2 (en) Absorption air conditioner
JPH05312429A (en) Absorption water cooling/heating apparatus
JP2532982B2 (en) Absorption refrigerator control device
JP3831425B2 (en) Control method of absorption chiller / heater
KR100542461B1 (en) Absorptive refrigerator
JP3075944B2 (en) Absorption chiller / heater
JP3281228B2 (en) Absorption type cold / hot water unit
JP3594426B2 (en) Air conditioner
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP3383898B2 (en) Absorption type cold heat generator
JPH06294556A (en) Airconditioning system using absorption water cooling/ heating apparatus
JP2918665B2 (en) Operation stop method and stop control device for absorption chiller / chiller / heater
JP3615353B2 (en) Operation control method for air conditioner
JP3448681B2 (en) Absorption type cold heat generator
JP2779422B2 (en) Absorption chiller / heater
JP3157668B2 (en) Absorption chiller / heater
JP3594453B2 (en) Operating method of air conditioner
JP3280261B2 (en) Absorption refrigeration equipment
JPH0754209B2 (en) Absorption cold / hot water device and its operating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees