JPH06236766A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06236766A
JPH06236766A JP50A JP2291293A JPH06236766A JP H06236766 A JPH06236766 A JP H06236766A JP 50 A JP50 A JP 50A JP 2291293 A JP2291293 A JP 2291293A JP H06236766 A JPH06236766 A JP H06236766A
Authority
JP
Japan
Prior art keywords
filler
electrode
fuel cell
filling
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Kyotaro Iyasu
巨太郎 居安
Takeshi Maekawa
全 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP50A priority Critical patent/JPH06236766A/en
Publication of JPH06236766A publication Critical patent/JPH06236766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the gas sealing property of the electrode end part with rib of a fuel cell, and allow the fuel cell to keep a stable performance for a long time. CONSTITUTION:A filler 3 is charged in the electrode end part 2 of an electrode with rib 1. Phosphoric acid is charged in the void of the filler 3. As the filler 3, superfine powders having heat resistance and phosphoric acid resistance such as carbon, graphite, and SiC are generally used. The charging capacity is 30-55% of the void of the electrode end part, preferably, 40-50%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池本体の電極端
部におけるガスシール性の向上を図った燃料電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which the gas sealing property at the electrode end of the fuel cell body is improved.

【0002】[0002]

【従来の技術】従来から、燃料の有しているエネルギー
を直接電気的エネルギーに変換する装置として燃料電池
が知られている。この燃料電池は、通常、電解質を含浸
したマトリックスを挟んで一対の多孔質電極を配置する
とともに、一方の電極背面に水素等の流体燃料を接触さ
せ、また他方の電極背面に酸素等の流体酸化剤を接触さ
せ、この時に起こる電気化学的反応を利用して、上記両
電極間から電気エネルギーを取り出すように構成された
ものである。この種の燃料電池においては、上記燃料と
酸化剤が供給されている限り、高い変換効率で電気エネ
ルギーを取り出すことができる。
2. Description of the Related Art Conventionally, a fuel cell has been known as a device for directly converting the energy of fuel into electrical energy. In this fuel cell, usually, a pair of porous electrodes are arranged with a matrix impregnated with an electrolyte sandwiched between them, a fluid fuel such as hydrogen is brought into contact with the back surface of one electrode, and a fluid oxidation such as oxygen is carried out on the back surface of the other electrode. It is configured such that an agent is brought into contact with each other and an electrochemical reaction that takes place at this time is utilized to take out electric energy from between the electrodes. In this type of fuel cell, electric energy can be taken out with high conversion efficiency as long as the fuel and the oxidant are supplied.

【0003】[0003]

【発明が解決しようとする課題】ところで、通常燃料電
池は200℃前後で運転されており、長時間にわたって
安定した性能を維持することが望まれている。しかしな
がら、電極端部のガスシールが十分でないと、燃料電池
を長時間運転した場合に、電極端部からガスがリーク
し、流体燃料と流体酸化剤が混合することにより発熱あ
るいは燃焼が起こり、ついには燃料電池を運転すること
ができなくなるという問題があった。
By the way, a fuel cell is usually operated at about 200 ° C., and it is desired to maintain stable performance for a long time. However, when the gas seal at the electrode end is not sufficient, when the fuel cell is operated for a long time, gas leaks from the electrode end and the fluid fuel and the fluid oxidizer are mixed to generate heat or finally burn. Had a problem that the fuel cell could not be operated.

【0004】本発明は、上記の様な従来技術の欠点を解
消するために提案されたもので、その目的は、リブ付電
極端部のガスシール性を向上させることにより、長時間
安定した性能を維持できる信頼性の高い燃料電池を提供
することにある。
The present invention has been proposed in order to solve the above-mentioned drawbacks of the prior art. The purpose of the present invention is to improve the gas sealability at the end portion of the ribbed electrode so that the performance is stable for a long time. It is to provide a highly reliable fuel cell that can maintain

【0005】[0005]

【課題を解決するための手段】本発明は、背面側に流体
燃料と流体酸化剤の流通溝が形成された一対のリブ付電
極を、電解質を含んだマトリックスを挟んで対向配置し
て成り、前記流通溝に燃料と酸化剤が流通している条件
下で電気エネルギーを出力する単位セルを、セパレータ
ーを介して複数個積層して構成した燃料電池において、
前記リブ付電極端部に、耐熱性、耐リン酸性を有する充
填材を電極端部空隙の30〜55%容量、充填したこと
を特徴とするものである。
According to the present invention, a pair of electrodes with ribs having a flow groove for fluid fuel and a fluid oxidant formed on the back side are arranged to face each other with a matrix containing an electrolyte interposed therebetween. In the fuel cell constituted by stacking a plurality of unit cells for outputting electric energy under the condition that the fuel and the oxidant are flowing in the flow groove, a separator is provided,
The rib-shaped electrode end portion is filled with a heat-resistant and phosphoric acid-resistant filler at a capacity of 30 to 55% of the electrode end portion void.

【0006】[0006]

【作用】本発明の燃料電池によれば、リブ付電極端部に
耐熱、耐リン酸性を有する充填材を電極端部空隙の30
〜55%容量、充填することにより、充填材が均一に充
填され、その結果、ガスシール性を向上させることがで
きる。
According to the fuel cell of the present invention, a filler having heat resistance and phosphoric acid resistance is applied to the end portion of the ribbed electrode in the electrode end space 30
By filling up to 55% by volume, the filling material is evenly filled, and as a result, the gas sealability can be improved.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1乃至図7に基
づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIGS.

【0008】本実施例においては、図1に示した様に、
リブ付電極1の電極端部2には、充填材3が充填されて
いる。また、前記充填材3の空隙にはリン酸が充填され
ている。なお、前記充填材3としては、通常、カーボ
ン、黒鉛、SiC等の耐熱、耐リン酸性を有する微粉体
が用いられる。また、その充填容量は、電極端部の空隙
の30〜55%、好ましくは40〜50%とする。
In this embodiment, as shown in FIG.
The electrode end 2 of the ribbed electrode 1 is filled with a filler 3. The voids of the filler 3 are filled with phosphoric acid. As the filler 3, fine powder having heat resistance and phosphoric acid resistance such as carbon, graphite and SiC is usually used. The filling capacity is 30 to 55%, preferably 40 to 50% of the voids at the electrode ends.

【0009】ここで、充填材3の充填容量を、電極端部
の空隙の30〜55%、好ましくは40〜50%とした
理由を説明する。この点は、本発明者等が鋭意研究した
結果、リブ付電極端部の空隙に対する充填材の充填容量
には、クリティカルな点があることが明らかになったも
のである。
Here, the reason why the filling capacity of the filling material 3 is set to 30 to 55%, preferably 40 to 50% of the void at the end of the electrode will be described. As a result of diligent research by the present inventors, it has been clarified that the filling capacity of the filling material with respect to the voids at the end portions of the ribbed electrode has a critical point.

【0010】まず、充填材の充填容量と充填後の平均気
孔径、泡出圧力の関係について検討した。即ち、気孔率
約70%のリブ付電極を用い、電極端部の空隙に、その
充填容量が20〜60%となるように充填材量を適宜変
化させて充填した。なお、充填材としては、粒子径2ミ
クロン以下のカーボンを用いた。そして、このカーボン
を水と少量の分散剤を用いて分散した溶液をリブ付電極
端部に含浸して乾燥した後、平均気孔径を測定し、さら
にリン酸を含浸して泡出圧力を調べた。
First, the relationship between the filling capacity of the filling material, the average pore diameter after filling, and the foaming pressure was examined. That is, a ribbed electrode having a porosity of about 70% was used, and the voids at the ends of the electrode were filled with the filler amount appropriately changed so that the filling capacity was 20 to 60%. As the filler, carbon having a particle diameter of 2 microns or less was used. Then, after the solution in which this carbon was dispersed using water and a small amount of a dispersant was impregnated into the ribbed electrode end and dried, the average pore diameter was measured, and phosphoric acid was further impregnated to check the foaming pressure. It was

【0011】図2は、充填材の充填容量と平均気孔径の
関係を示したものである。即ち、電極端部の空隙の30
%程度まで充填しても、平均気孔径の減少は少ない。し
かし、30%程度以上になると平均気孔径は徐々に減少
し、40%以上になると急激に減少する。さらに、55
%以上充填しても、平均気孔径の減少は少ないことが明
らかになった。
FIG. 2 shows the relationship between the filling capacity of the filler and the average pore diameter. That is, the gap of 30 at the end of the electrode
%, The average pore diameter does not decrease much. However, when it exceeds about 30%, the average pore diameter gradually decreases, and when it exceeds 40%, it rapidly decreases. Furthermore, 55
It was revealed that the average pore diameter was not significantly reduced even when the content was more than 100%.

【0012】この現象の明確な原因は不明であるが、次
のように推測される。即ち、図3は、電極端部に存在す
る一つの気孔に充填材が充填される様子を示したもので
あるが、充填材が少ない場合には、図3(A)に示した
様に、充填材は気孔の周囲に充填されるため、気孔径の
減少は少ないと考えられる。そして、充填された気孔径
の小さい部分と未充填の気孔径の大きい部分が存在する
ため、気孔径の分布は比較的不均一になるものと考えら
れる。しかし、ガスシールにおいては気孔径の大きい部
分がリークの原因となるため、気孔径の分布はできるだ
け均一であることが望ましい。従って、図3(A)に示
した程度の充填容量では不十分であると考えられる。
Although the exact cause of this phenomenon is unknown, it is presumed as follows. That is, FIG. 3 shows a state in which one pore existing at the end of the electrode is filled with the filling material. However, when the filling material is small, as shown in FIG. Since the filler is filled around the pores, it is considered that the decrease in pore diameter is small. Then, it is considered that the distribution of the pore diameter becomes relatively non-uniform because there are a portion having a small pore diameter filled and a portion having a large pore diameter not filled. However, in the gas seal, a portion having a large pore diameter causes a leak, and therefore it is desirable that the distribution of the pore diameter be as uniform as possible. Therefore, it is considered that the filling capacity shown in FIG. 3 (A) is insufficient.

【0013】また、図3(B)に示した様に、充填材の
充填容量の増加に伴い気孔径も徐々に減少するが、ま
だ、気孔径の減少は少ないといえる。さらに充填材を増
加させ、ある一定容量以上に達すると、図3(C)に示
した様に、気孔は無数の小さな穴、あるいは無数の小さ
なヒビ割れのような状態になり、気孔径は急激に減少
し、それとともに比較的均一な気孔分布になるものと考
えられる。このことから電極端部の空隙に対する充填材
の充填容量は、気孔径が減少し始める30%程度以上必
要であり、好ましくは気孔径が減少している45%以上
であるといえる。
Further, as shown in FIG. 3 (B), the pore diameter gradually decreases as the filling capacity of the filler increases, but it can be said that the decrease in pore diameter is still small. When the filling material is further increased to reach a certain capacity or more, as shown in FIG. 3 (C), the pores become innumerable small holes or innumerable small cracks, and the pore diameter rapidly increases. It is considered that the pore size decreases to a relatively uniform value and the pore size distribution becomes relatively uniform. From this, it can be said that the filling capacity of the filling material with respect to the voids at the end of the electrode needs to be about 30% or more at which the pore diameter starts to decrease, and preferably 45% or more at which the pore diameter decreases.

【0014】一方、55%以上ではさらに気孔径はわず
かずつ減少するが、電極端部全体を均一に充填するのが
困難となる。なぜならば、充填材の容量を55%以上に
するためには、含浸する溶液中の充填材濃度を高くする
必要があるが、その結果、充填材を含有した溶液の粘度
が上昇して、リブ付電極の気孔径の影響を大きく受ける
ようになるからである。即ち、図4に示した様に、充填
材含有溶液の充填材濃度と粘度の関係を調べた結果、充
填材濃度の増加に対して粘度は指数関数的に増加するこ
とが明らかとなった。一方、一般にリブ付電極の気孔径
はバラツキを持っており、局部的に気孔径の小さい部分
が存在する。そのため、上記の様に溶液の粘度が高い
と、小さい気孔部分に含浸することができず、この部分
からガスがリークすることが判明した。
On the other hand, if it is 55% or more, the pore diameter is further reduced, but it becomes difficult to uniformly fill the entire electrode end portion. This is because in order to increase the volume of the filler to 55% or more, it is necessary to increase the concentration of the filler in the solution to be impregnated. As a result, the viscosity of the solution containing the filler is increased and the rib This is because it will be greatly affected by the pore diameter of the attached electrode. That is, as shown in FIG. 4, as a result of examining the relationship between the filler concentration and the viscosity of the filler-containing solution, it was revealed that the viscosity exponentially increases with the increase of the filler concentration. On the other hand, the pore diameter of the ribbed electrode generally varies, and there are locally small pore diameter portions. Therefore, it has been found that when the viscosity of the solution is high as described above, the small pores cannot be impregnated, and gas leaks from this portion.

【0015】このように、リブ付電極端部の空隙に対す
る充填材の充填容量にクリティカルな点があることが明
らかになった。
As described above, it has been revealed that there is a critical point in the filling capacity of the filling material with respect to the voids at the end portions of the ribbed electrodes.

【0016】次に、充填材の充填容量と泡出圧力の関係
について説明する。即ち、図5に示した様に、充填材の
充填容量が電極端部の空隙の30%程度から泡出圧力は
立上がり、徐々に増加する。そして、充填容量が40%
以上になると泡出圧力は急激に増加する。この傾向は、
図2に示した気孔径の変化に対応している。即ち、気孔
径の減少とともに泡出圧力は徐々に増加し、気孔径が急
激に減少する充填容量40%以上で泡出圧力も急激に増
加する。このことは、気孔径の減少に従ってシール性は
徐々に増加し、充填材の充填容量が40%以上となると
シール性は急激に増加することを示している。
Next, the relationship between the filling capacity of the filling material and the foaming pressure will be described. That is, as shown in FIG. 5, the bubble generation pressure rises from the filling capacity of the filling material of about 30% of the voids at the electrode end and gradually increases. And the filling capacity is 40%
When it becomes above, the foaming pressure rapidly increases. This trend is
This corresponds to the change in the pore diameter shown in FIG. That is, the bubble generation pressure gradually increases as the pore size decreases, and the bubble generation pressure also rapidly increases at a filling volume of 40% or more where the pore size sharply decreases. This indicates that the sealability gradually increases as the pore diameter decreases, and the sealability sharply increases when the filling capacity of the filler becomes 40% or more.

【0017】以上の結果から、電極端部の空隙に対する
充填材の充填容量は30〜55%、好ましくは40〜5
0%の適性容量とすることにより、気孔径が小さく、か
つ比較的均一な気孔分布を持つ電極端部を得ることがで
き、ガスシール性を大幅に向上させることができる。な
お、上記実施例では、充填材はカーボンを使用している
が、他の黒鉛、SiC、テフロン等の耐熱、耐リン酸性
の粉体でも同様の効果が得られることは言うまでもな
い。
From the above results, the filling capacity of the filling material with respect to the voids at the electrode ends is 30 to 55%, preferably 40 to 5%.
By setting the appropriate capacity to 0%, it is possible to obtain an electrode end portion having a small pore diameter and a relatively uniform pore distribution, and it is possible to greatly improve the gas sealing property. Although carbon is used as the filler in the above-mentioned examples, it goes without saying that the same effect can be obtained with other heat-resistant and phosphoric acid-resistant powders of graphite, SiC, Teflon, or the like.

【0018】次に、実際の電池で検証した結果について
説明する。充填材としては、粒子径2ミクロン以下の熱
分解カーボンを用いた。また、電極端部の空隙に対する
充填材の充填容量は45%であった。このガスシール構
造を持つリブ付電極を用いて電池を構成し、長時間にわ
たって運転を行い、その電位変化及びガスの混合量を調
査した。なお、試験前のリブ付電極端部の空隙はほぼ1
00%、リン酸が満たされていることを確認した。
Next, the result of verification using an actual battery will be described. As the filler, pyrolytic carbon having a particle size of 2 microns or less was used. Further, the filling capacity of the filling material with respect to the voids at the electrode end portion was 45%. A battery was constructed using the ribbed electrode having this gas sealing structure, and the battery was operated for a long time, and the potential change and the gas mixture amount were investigated. The gap at the end of the ribbed electrode before the test was approximately 1
It was confirmed that the phosphoric acid was filled with 00%.

【0019】図6は燃料電池の電位変化を示したもので
あるが、本実施例による特性曲線X1 は、従来例の特性
曲線Y1 と比較して、長時間の運転を行っても電位変化
は少なく、電池性能は劣化しないことが明らかとなっ
た。また、反応ガスの混合量については、カソード側の
CO2 濃度の時間的変化を調べた。その結果、図7に示
した様に、本実施例による特性曲線X2 は、長時間の運
転を行った後も、従来例の特性曲線Y2 と比較してその
濃度が低いことが示された。このことは、電極端部から
反応ガスがリークしていないことを示している。
FIG. 6 shows changes in the potential of the fuel cell. The characteristic curve X 1 according to the present embodiment is different from the characteristic curve Y 1 according to the conventional example even after a long time operation. It was revealed that the change was small and the battery performance did not deteriorate. Regarding the mixing amount of the reaction gas, the temporal change of the CO 2 concentration on the cathode side was examined. As a result, as shown in FIG. 7, it is shown that the characteristic curve X 2 according to the present embodiment has a lower concentration than the characteristic curve Y 2 of the conventional example even after a long time operation. It was This indicates that the reaction gas did not leak from the electrode end portion.

【0020】なお、充填材としては、原則的には耐熱、
耐リン酸性の粉体であれば、いかなる粉体でも良いが、
好ましくはカーボン、黒鉛、SiC、テフロンである。
また、粉体の粒子径は細かい方が望ましく、少なくとも
数ミクロン以下のものが好ましい。さらに、数種の粒子
径の異なる粉体を混合して用いることも可能である。ま
た、粒子の形状はできるだけ球形に近いほうが好まし
い。同じ粒子径ならば球形に近い方が溶液の粘度が小さ
く、流動性も良好で、より均一に充填することができる
からである。
As a filling material, in principle, heat resistance,
Any powder can be used as long as it is phosphoric acid resistant powder,
Preferred are carbon, graphite, SiC, and Teflon.
Further, it is desirable that the particle diameter of the powder is small, and it is preferable that the particle diameter is at least several microns or less. Furthermore, it is also possible to mix and use several kinds of powders having different particle sizes. Further, it is preferable that the shape of the particles is as close to a spherical shape as possible. This is because if the particles have the same particle size, the closer they are spherical, the smaller the viscosity of the solution, the better the fluidity, and the more uniform the filling.

【0021】次に、リブ付電極端部への充填材の充填方
法はどんな方法でも良いが、湿式で充填する方法が最も
均一に充填することができる。即ち、充填材を溶媒に分
散させた溶液を加圧してリブ付電極端部へ充填する、あ
るいは、充填材を溶媒に分散させた溶液に電極端部を浸
せきして充填する方法が望ましい。
Next, any method may be used to fill the end portions of the ribbed electrodes with the filling material, but the wet filling method can provide the most uniform filling. That is, it is desirable to pressurize a solution in which the filler is dispersed in a solvent to fill the end portion of the ribbed electrode, or to immerse the electrode end in a solution in which the filler is dispersed in the solvent to fill the electrode.

【0022】また、充填後、溶媒を除去するための乾燥
方法としては、リブ付電極全体を均一に、徐々に温度を
上げて乾燥する方法が望ましく、乾燥温度は溶媒の沸点
以上である。その理由は、乾燥を行う際に一方向のみか
ら加熱すると、溶媒の蒸発とともに充填材が加熱面側に
偏り、不均一となるからである。また、急激に乾燥する
と、充填材含有溶液が突沸して充填材が飛散し、電極端
部の内部に気泡が残る場合があるからである。
As a drying method for removing the solvent after filling, it is desirable to uniformly and gradually raise the temperature of the entire ribbed electrode to dry it, and the drying temperature is not lower than the boiling point of the solvent. The reason for this is that if drying is performed from only one direction, the filler will be biased toward the heating surface side as the solvent evaporates and become non-uniform. Further, if the material is rapidly dried, the filler-containing solution may be bumped to scatter the filler, and bubbles may remain inside the electrode ends.

【0023】この様に、本実施例によるガスシール構造
を持つリブ付電極は、充填材が均一に充填されているた
め気孔径が小さく、比較的均一な気孔分布が得られるの
で、優れたガスシール性を得ることができる。
As described above, the ribbed electrode having the gas sealing structure according to this embodiment has a small pore size because the filler is uniformly filled, and a relatively uniform pore distribution can be obtained. A sealing property can be obtained.

【0024】[0024]

【発明の効果】以上述べた様に、本発明によれば、リブ
付電極端部へ耐熱性、耐リン酸性を有する充填材を電極
端部空隙の30〜55%容量、充填することにより、ガ
スシール性を向上させ、長時間安定した性能を維持でき
る信頼性の高い燃料電池を得ることができる。
As described above, according to the present invention, by filling the ribbed electrode end portion with a filler having heat resistance and phosphoric acid resistance in an amount of 30 to 55% of the electrode end void volume, It is possible to obtain a highly reliable fuel cell capable of improving gas sealing property and maintaining stable performance for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の一実施例を示す要部拡大斜
視図
FIG. 1 is an enlarged perspective view of an essential part showing an embodiment of a fuel cell of the present invention.

【図2】電極端部空隙に対する充填材の充填容量と充填
後の平均気孔径の関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between a filling capacity of a filler with respect to an electrode end void and an average pore diameter after filling.

【図3】(A)〜(C)はリブ付電極端部の一つの気孔
における充填材の充填状態を示す図
3A to 3C are views showing a filling state of a filling material in one pore of an end portion of a ribbed electrode.

【図4】充填材含有溶液の充填材濃度と粘度の関係を示
す特性図
FIG. 4 is a characteristic diagram showing the relationship between the filler concentration and the viscosity of the filler-containing solution.

【図5】電極端部空隙に対する充填材の充填容量と充填
後の泡出圧力の関係を示す特性図
FIG. 5 is a characteristic diagram showing a relationship between a filling capacity of a filling material with respect to an electrode end void and a foaming pressure after filling.

【図6】本発明の一実施例による運転特性を示す図FIG. 6 is a diagram showing operating characteristics according to an embodiment of the present invention.

【図7】本発明の一実施例による運転特性を示す図FIG. 7 is a diagram showing operating characteristics according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…リブ付電極 2…電極端部 3…充填材 1 ... ribbed electrode 2 ... electrode end 3 ... filler

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 背面側に流体燃料と流体酸化剤の流通溝
が形成された一対のリブ付電極を、電解質を含んだマト
リックスを挟んで対向配置して成り、前記流通溝に燃料
と酸化剤が流通している条件下で電気エネルギーを出力
する単位セルを、セパレーターを介して複数個積層して
構成した燃料電池において、 前記リブ付電極端部に、耐熱性、耐リン酸性を有する充
填材を電極端部空隙の30〜55%容量、充填したこと
を特徴とする燃料電池。
1. A pair of ribbed electrodes having flow grooves for fluid fuel and a fluid oxidizer formed on the back side are arranged to face each other with a matrix containing an electrolyte interposed therebetween, and the fuel and oxidizer are placed in the flow grooves. In a fuel cell constituted by stacking a plurality of unit cells that output electric energy under the condition where the is distributed, a filler having heat resistance and phosphoric acid resistance at the end portion of the ribbed electrode, Filled with 30 to 55% of the capacity of the electrode end voids.
JP50A 1993-02-10 1993-02-10 Fuel cell Pending JPH06236766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06236766A (en) 1993-02-10 1993-02-10 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06236766A (en) 1993-02-10 1993-02-10 Fuel cell

Publications (1)

Publication Number Publication Date
JPH06236766A true JPH06236766A (en) 1994-08-23

Family

ID=12095854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06236766A (en) 1993-02-10 1993-02-10 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06236766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302526A (en) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JP2013505374A (en) * 2009-09-21 2013-02-14 オムヤ・デイベロツプメント・アー・ゲー Aqueous slurry containing calcium carbonate fine particles for use in paper coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302526A (en) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JP2013505374A (en) * 2009-09-21 2013-02-14 オムヤ・デイベロツプメント・アー・ゲー Aqueous slurry containing calcium carbonate fine particles for use in paper coating

Similar Documents

Publication Publication Date Title
KR100483123B1 (en) Separator for Fuel Cell and Method of Manufacture Therefor
US3676222A (en) Conductive carbon membrane electrode
Ye et al. A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading
US3385736A (en) Method of making electrode from viscoelastic dough
US3536537A (en) Method of making electrode having improved gas-recombination properties
US3733221A (en) Gas diffusion electrode
CA1210805A (en) Process for forming integral edge seals in porous gas distribution plates utilizing a vibratory means
JP3504021B2 (en) Electrode for electrochemical device and method for producing the same
US3671323A (en) Hydrophobic layers for gas diffusion electrodes
US3493434A (en) Zinc electrode
JPH06236766A (en) Fuel cell
JP3738723B2 (en) ELECTRODE FOR FUEL CELL AND FUEL CELL USING THE SAME
JP3579886B2 (en) Electrode structure for fuel cell and manufacturing method thereof
CN114497586A (en) Three-dimensional graphene frame material, microporous layer, gas diffusion layer and preparation method thereof
JPH0544145B2 (en)
CN105762344A (en) Electrode and preparation method of electrode material
JP5019926B2 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
US3355326A (en) Method of preparing electrodes
JPH07134994A (en) Fuel cell electrode and manufacture thereof
Rodríguez et al. Effect of a Rigid Gas Diffusion Media Applied as Distributor of Reagents in a PEMFC in Operation, Part I: Dry Gases.
JPS6340025B2 (en)
Saito et al. Study of electrolyte management in phosphoric acid fuel cells
JP2001513940A (en) Gas diffusion electrode and polymer electrolyte membrane fuel cell with low water diffusion capacity
JPS61259460A (en) Matrix for phosphoric-acid fuel cell
JPS6273570A (en) Manufacture of fuel cell