JPH06220558A - Graded function material of ti/ti5si3 system and its production - Google Patents

Graded function material of ti/ti5si3 system and its production

Info

Publication number
JPH06220558A
JPH06220558A JP4272549A JP27254992A JPH06220558A JP H06220558 A JPH06220558 A JP H06220558A JP 4272549 A JP4272549 A JP 4272549A JP 27254992 A JP27254992 A JP 27254992A JP H06220558 A JPH06220558 A JP H06220558A
Authority
JP
Japan
Prior art keywords
region
ti5si3
alloy
graded
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4272549A
Other languages
Japanese (ja)
Other versions
JPH0823054B2 (en
Inventor
Tokuzo Tsujimoto
得蔵 辻本
Atsumasa Okada
厚正 岡田
Toru Umeki
亨 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP4272549A priority Critical patent/JPH0823054B2/en
Publication of JPH06220558A publication Critical patent/JPH06220558A/en
Publication of JPH0823054B2 publication Critical patent/JPH0823054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce the material which is usable in a severe environment and can be easily produced and restored in spite of intricate shapes. CONSTITUTION:This graded function material of the Ti/Ti5Si3 system has a Ti or its alloy region, a Ti5Si3 compd. region and a mixed region of the Ti or its alloy and the Ti5Si3 compd. The ratio of the Ti or its alloy phase and the Ti5Si3 phase in this mixed region changes nearly continuously and the part where the Ti of the mixed region concentrated is in contact with the Ti region. The part where the Ti5Si3 is concentrated is in contact with the Ti5Si3 region. This process for production of the material mainly consists of the utilization of eutectic joining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、Ti/Ti5 Si3
系傾斜機能材料とその製造方法に関するものである。さ
らに詳しくは、この発明は、航空・宇宙用構造材、エン
ジン、タービン、化学装置等に有用な、軽量で、苛酷環
境下においても使用することができ、複雑形状の成形も
可能な、新しいTi/Ti5 Si3 系傾斜機能材料とそ
の製造方法に関するものである。
This invention relates to Ti / Ti 5 Si 3
The present invention relates to a functionally graded functional material and a method for manufacturing the same. More specifically, the present invention is a new Ti which is useful for structural materials for aerospace, engines, turbines, chemical devices, etc., is lightweight, can be used in harsh environments, and is capable of forming complex shapes. / Ti 5 Si 3 -based functionally graded material and a method for producing the same.

【従来の技術とその課題】金属、合金等として均質な組
成構成からなる材料については、これまでの研究開発に
よって大きな進歩を遂げており、各種の分野において広
く用いられている。しかしながら、このような均質材料
によっては実現しえない優れた諸機能を有する材料への
関心も高まっており、これからは非均質で、しかも高度
な機能を付与された材料の研究開発が進められると予想
される。そして、このような高性能な非均質材料の開拓
は先端技術の進歩の鍵でもある。たとえば高速飛翔体で
は外壁は高温にさらされるが、内壁は人間が生活できる
温度でなければならない。このような用途に適用するも
のとして、耐熱性、高強度の特性を有するためのセラミ
ックスと金属との積層複合材が考えられる。しかしなが
ら実際には、このような複合材を用いることはできな
い。それと言うのも、金属とセラミックスでは熱膨脹係
数が1桁異なり、熱膨張によって当接面が剥離し、ま
た、セラミックスは脆く、信頼性のある大型部材を作製
することが困難だからである。そこでこの隘路の打開を
目指して、セラミックスと金属の混合割合を連続的に変
化させた傾斜組成材料または傾斜機能材料が提案される
に至っている。この傾斜機能材料を製造する手法として
は、金属とセラミックスの混合割合を変化させた原素材
を気相成長法、溶射法、粉末冶金法などにより次々積み
重ねていく手法がこれまでに知られており、また、実際
的にも採用されている。しかしながら、この方法は、材
料の堆積速度が遅く、工程が繁雑で製造性が悪いという
欠点がある。このため、大型や複雑形状の部材の製造を
困難にするとともに、製品を異常に高価なものとしてし
まう。このため、その特性や、応用への期待が大きいも
のの、傾斜機能材料については、その組成、組織の構造
と製造方法とが実用化に有意なものとして確立されてい
ないため、いまだに産業的な展望が切拓かれないでい
る。この発明は、以上の通りの事情に鑑みてなされたも
のであり、従来の傾斜機能材料に関する技術的限界を克
服し、新しい材料構成と、そのための製造方法を提供す
ることを目的としている。
2. Description of the Related Art Materials having a homogeneous composition, such as metals and alloys, have made great progress through research and development so far and are widely used in various fields. However, there is an increasing interest in materials having excellent functions that cannot be realized by such homogeneous materials, and from now on, research and development of materials that are non-homogeneous and have advanced functions will proceed. is expected. The development of such high-performance non-homogeneous materials is also the key to the progress of advanced technology. For example, in high-speed flying vehicles, the outer wall is exposed to high temperatures, but the inner wall must be at a temperature at which humans can live. A laminated composite material of ceramics and metal, which has characteristics of heat resistance and high strength, is considered to be applied to such an application. However, in practice, such composite materials cannot be used. This is because the coefficient of thermal expansion of metal differs from that of ceramics by one digit, the contact surface separates due to thermal expansion, and ceramics is brittle, making it difficult to manufacture a reliable large member. Therefore, with the aim of breaking this bottleneck, a graded composition material or a graded functional material in which the mixing ratio of ceramics and metals is continuously changed has been proposed. As a method of manufacturing this functionally graded material, there has been known a method of sequentially stacking raw materials in which the mixing ratio of metal and ceramics is changed by a vapor phase growth method, a thermal spraying method, a powder metallurgy method, or the like. , Is also practically adopted. However, this method has the drawback that the deposition rate of the material is slow, the process is complicated, and the productivity is poor. Therefore, it is difficult to manufacture a member having a large size or a complicated shape, and the product becomes abnormally expensive. Therefore, although its characteristics and expectations for its application are great, the functionally graded material has not yet been established as a composition, a structure of a structure, and a manufacturing method that are significant for practical use, so that it still has an industrial perspective. Is not cultivated. The present invention has been made in view of the above circumstances, and an object of the present invention is to overcome the technical limitations of conventional functionally graded materials, and to provide a new material structure and a manufacturing method therefor.

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、Tiもしくはその合金領域、T
5 Si3 系化合物領域、及びTiもしくはその合金と
Ti5 Si3 系化合物の混合領域を有し、この混合領域
においてはTiもしくはその合金相とTi5 Si3 相の
比率はほぼ連続的に変化し、混合領域のTiが濃化した
部分はTi領域に接し、Ti5 Si3 が濃化した部分は
Ti5 Si3 領域に接することを特徴とする傾斜組成を
有するTi/Ti5 Si3 系傾斜機能材料を提供する。
また、この発明は、Tiもしくはその合金にTi5 Si
3 系化合物を積層するか、またはTi5 Si3 系化合物
を被覆した後、1600K以上の温度に加熱することを
特徴とする傾斜組成を有するTi/Ti5 Si3 系傾斜
機能材料の製造方法をも提供する。すなわち、この発明
では、高性能でかつ製造容易な傾斜機能材料を作製する
ための材料の組み合わせと傾斜機能材料化するための技
術を提案する。ここでの傾斜機能材料は、高融点と優れ
た軽量性・耐酸化性をもつTi5 Si3 系金属間化合物
領域とTiもしくはその合金領域及びその間に存在する
両者の混合領域から成り立ち、混合領域においては両物
質の分布密度は連続的に変化する。そして、この発明で
は、Tiもしくはその合金成形材とTi5 Si3 系化合
物とから、相関係と組織制御技術を利用した熱処理のみ
で上記傾斜機能材料を製造する。Ti5 Si3 系金属間
化合物の熱膨脹係数はセラミックスに較べ遥かに金属に
近いため、熱膨脹係数の差から生じる熱歪みは従来の傾
斜機能材料よりも格段に小さい。このため急峻な温度勾
配や熱疲労により発生する割れは従来の傾斜機能材料に
較べて著しく減少する。金属間化合物Ti5 Si3 は比
重が4.3と軽量である上に、2400Kという高融点
と優れた耐酸化性をもっており、過酷環境に直面する材
料としては金属間化合物の中では最も適している。ま
た、傾斜機能材料作製のために利用する反応温度は16
00Kというように他の材料系では例を見ないほど高
い。これは作製した傾斜機能材料が充分に高温で使用で
きることを意味している。これまでに提案されている傾
斜機能材料は製造性が悪いが、この発明は、この問題を
一挙に解決している。このことは、この発明では、共晶
接合を利用してTi/Ti5 Si3 系傾斜機能材料を実
現しているからである。ここでTiは純チタン及びTi
−Al,Ti−Al−V系等の各種チタン合金を意味
し、Ti5 Si3 は金属間化合物Ti5 Si3 をベース
として他元素の添加など組成制御したTi5 Si3 基合
金を含み、さらに各種方法により組織制御を行ったTi
5 Si3 基合金、さらには不可避的不純物成分を含有す
るTiもしくはその合金およびTi5 Si3 のすべてが
この発明の対象となる。1600K以上の温度への加熱
処理としてこの共晶接合を実施するが、そのためには、
まず、Tiもしくはその合金とTi5 Si3 系化合物を
密着させることが必要である。Ti5 Si3 系化合物を
Ti合金に密着させる方法としてはTiもしくはその合
金部材の形状により様々な形態が考えられる。たとえば
単なる重ね合せによる積層はもとより、溶射による被
覆、物理的・化学的方法による蒸着、粉末の散布などで
ある。この発明では、共晶接合の目的をもってTiもし
くはその合金とTi5 Si3 系化合物を密着させるこれ
らの全ての操作が許容される。 共晶接合についてさら
に説明すると、まず、図1は、Ti−Siの2元系平衡
状態図を示したものであるが、この図からTiとTi5
Si3 は平衡状態で共存することができ、両者の間には
約1600Kに共晶反応が存在することがわかる。これ
は1600K以上に温度を上げるとTiとTi5 Si3
の界面が融解を始め、共晶組成(図1のE)の融液が形
成される。この融液量の増加は固相Tiから融液へTi
が溶ける速度と固相Ti5 Si3 が融液へ溶ける速度に
よって定まる。TiとSi5 Si3 接合対の温度を17
00Kに上げると図1のa〜bの間の組成では融液にな
る。融液の量は融液にTiやTi5 Si3 が溶け込むこ
とによって増加するが、この溶け込みによってTi側の
固相界面に近い位置の融液は組成aに、Ti5 Si3
の固相界面に近い位置の融液は組成bに保たれる。そし
て両端の間の融液の組成は連続的に変化する。すなわ
ち、融液における傾斜組成の形成である。一方、融液の
一部は粒界などを通じてTi側及びTi5 Si3 側固相
内に浸透する。形成された傾斜組成物融液の冷却時の挙
動については、組成がEよりTi側の融液ではTiが、
またEよりTi5 Si3 側の融液ではTi5 Si3 が核
生成−成長する。残った融液は冷却とともに量を減じな
がらEの組成に近ずく。Eの組成の融液では1600K
でTiとTi5 Si3 が同時に晶出し、いわゆる共晶組
織となる。つまり、冷却後形成される組織は傾斜組成に
対応して、Ti初晶、共晶、Ti5 Si3 初晶となる。
この組織分布は1600K以上の温度に加熱することに
より傾斜組成が実現していることを示している。このよ
うな共晶反応の結果、Ti/Ti5 Si3 系の共晶凝固
組織は、TiとTi5 Si3 が交互に積み重なった層状
組織となる。ただ、一般に延性や靱性は層状組織よりも
粒状組織の方が優れているので、熱衝撃や熱勾配などに
よる割れ発生に対しては粒状組織の方が抵抗力がある。
そこで、接合によって生じるTi/Ti5 Si3 系共晶
組織を改質することも有効である。接合物を1600K
以下の温度で均質化再加熱すると共晶反応で生じる層状
組織は粒状化し、材料の延性・靱性は改善される。以
下、実施例を示し、さらに詳しくこの発明について説明
する。
In order to solve the above problems, the present invention provides Ti or its alloy region, T
It has an i 5 Si 3 -based compound region and a mixed region of Ti or its alloy and Ti 5 Si 3 -based compound. In this mixed region, the ratio of Ti or its alloy phase and Ti 5 Si 3 phase is almost continuous. A Ti / Ti 5 Si 3 having a graded composition characterized in that a Ti-rich portion of the mixed region that has changed and is in contact with the Ti region and a Ti 5 Si 3 -rich portion is in contact with the Ti 5 Si 3 region Provide a functionally graded material.
In addition, the present invention provides Ti 5 Si
A method for producing a Ti / Ti 5 Si 3 -based functionally gradient material having a graded composition, which comprises laminating a 3 -based compound or coating a Ti 5 Si 3 -based compound and then heating to a temperature of 1600 K or higher. Also provide. That is, the present invention proposes a combination of materials for producing a high-performance and easy-to-manufacture functionally graded material and a technique for making the functionally graded material. The functionally graded material here is composed of a Ti 5 Si 3 intermetallic compound region having a high melting point and excellent lightness and oxidation resistance, Ti or an alloy region thereof, and a mixed region of both existing between them, and a mixed region. In, the distribution density of both substances changes continuously. In the present invention, the functionally graded material is manufactured from Ti or its alloy molded material and the Ti 5 Si 3 based compound only by the heat treatment utilizing the phase relationship and the structure control technique. Since the thermal expansion coefficient of the Ti 5 Si 3 based intermetallic compound is much closer to that of metal than that of ceramics, the thermal strain caused by the difference in thermal expansion coefficient is significantly smaller than that of conventional functionally graded materials. For this reason, cracks caused by a steep temperature gradient and thermal fatigue are significantly reduced as compared with conventional functionally graded materials. The intermetallic compound Ti 5 Si 3 has a low specific gravity of 4.3, a high melting point of 2400K, and excellent oxidation resistance, and is the most suitable intermetallic compound as a material facing a harsh environment. There is. Further, the reaction temperature used for producing the functionally gradient material is 16
It is as high as other materials such as 00K, which is unprecedented. This means that the manufactured functionally gradient material can be used at a sufficiently high temperature. The functionally graded materials proposed so far have poor manufacturability, but the present invention solves this problem all at once. This is because in the present invention, a Ti / Ti 5 Si 3 -based functionally gradient material is realized by utilizing eutectic bonding. Here, Ti is pure titanium and Ti
-Al, means various titanium alloys Ti-Al-V system, etc., comprises a Ti 5 Si 3 is Ti 5 Si 3 group alloy having controlled composition and addition of other elements as a base intermetallic compound Ti 5 Si 3, Further, Ti whose structure was controlled by various methods
5 Si 3 -based alloys, as well as Ti or its alloys containing inevitable impurity components and Ti 5 Si 3 are all subject to this invention. This eutectic bonding is carried out as a heat treatment at a temperature of 1600 K or higher.
First, it is necessary to bring Ti or its alloy into close contact with the Ti 5 Si 3 based compound. As a method for adhering the Ti 5 Si 3 compound to the Ti alloy, various forms can be considered depending on the shape of Ti or its alloy member. For example, not only lamination by simple superposition but also coating by thermal spraying, vapor deposition by physical / chemical methods, and powder dispersion. In the present invention, all of these operations for adhering Ti or its alloy and Ti 5 Si 3 based compound for the purpose of eutectic bonding are allowed. To further illustrate the eutectic bonding, first, FIG. 1, but illustrates a binary equilibrium phase diagram of the Ti-Si, Ti and Ti 5 from FIG.
It can be seen that Si 3 can coexist in an equilibrium state, and a eutectic reaction exists at about 1600 K between the two. This is because if the temperature is raised above 1600K, Ti and Ti 5 Si 3
The interface starts melting, and a melt having a eutectic composition (E in FIG. 1) is formed. This increase in the amount of melt is due to Ti
Is determined by the rate at which the solid solution and the solid phase Ti 5 Si 3 dissolve into the melt. The temperature of the Ti and Si 5 Si 3 bonding pair is set to 17
When the temperature is raised to 00K, the composition between a and b in FIG. 1 becomes a melt. The amount of the melt increases as Ti or Ti 5 Si 3 dissolves in the melt, but this melt causes the melt near the solid phase interface on the Ti side to have composition a and the solid phase on the Ti 5 Si 3 side to melt. The melt at the position close to the interface is kept in the composition b. Then, the composition of the melt between both ends continuously changes. That is, the formation of a graded composition in the melt. On the other hand, part of the melt penetrates into the Ti-side and Ti 5 Si 3- side solid phases through grain boundaries and the like. Regarding the behavior of the formed gradient composition melt at the time of cooling, Ti in the melt having a composition on the Ti side of E,
The Ti 5 Si 3 nucleation in Ti 5 Si 3 side the melt from the E - grows. The remaining melt decreases in amount as it cools and approaches the composition of E. 1600K for melt of composition E
At this time, Ti and Ti 5 Si 3 are crystallized at the same time to form a so-called eutectic structure. That is, the structure formed after cooling becomes Ti primary crystal, eutectic crystal, and Ti 5 Si 3 primary crystal corresponding to the graded composition.
This texture distribution shows that the gradient composition is realized by heating to a temperature of 1600K or higher. As a result of such eutectic reaction, the Ti / Ti 5 Si 3 system eutectic solidification structure becomes a layered structure in which Ti and Ti 5 Si 3 are alternately stacked. However, since the granular structure is generally superior to the lamellar structure in terms of ductility and toughness, the granular structure is more resistant to cracking due to thermal shock or thermal gradient.
Therefore, it is also effective to modify the Ti / Ti 5 Si 3 -based eutectic structure generated by joining. 1600K for bonded objects
When homogenized and reheated at the following temperature, the layered structure generated by the eutectic reaction is granulated, and the ductility and toughness of the material are improved. Hereinafter, the present invention will be described in more detail with reference to examples.

【実施例】非消耗電極式アルゴンアーク溶解炉によって
溶製したTi5 Si3 ボタンインゴットより10×10
×5mmの試験片を採取し、これに同一サイズのTi板
を重ね合せ、アルゴンガス雰囲気中にてTi−Ti5
3 共晶温度より高い1633Kに3.6ks加熱して
TiとTi5 Si3 を溶融拡散接合させた後、炉冷し
た。この時母材と接合層との界面には剥離・亀裂の発生
は認められなかった。生成した接合層の組織は、Ti母
材側ではまずαTi中に粒状Ti5 Si3 があらわれ、
続いてαTi中にTiとTi5 Si3 の層状組織、次に
全面的層状組織へと変化した。Ti5 Si3 母材側へ近
ずくとTi5 Si3 中に層状組織、続いてTi5 Si3
中に粒状αTi、最後はTi5 Si3 母材となってい
た。次いで、このようにして形成したTi/Ti5 Si
3 系接合材料に1573Kで86.4ks焼鈍を施すと
接合層内の層状組織は消失し、Ti母材側では粒状のT
5 Si3 を含む組織に、またTi5 Si3 母材側では
粒状αTiを含む組織に変化した。この状態の断面SE
M像を示したものが図2である。
EXAMPLE 10 × 10 from a Ti 5 Si 3 button ingot melted in a non-consumable electrode type argon arc melting furnace
× collected specimens of 5 mm, this superimposing a Ti plate of the same size, Ti-Ti 5 S in an argon gas atmosphere
After heating at 1633 K, which is higher than the i 3 eutectic temperature, for 3.6 ks to melt-diffusion bond Ti and Ti 5 Si 3 , the furnace was cooled. At this time, no peeling or cracking was observed at the interface between the base material and the bonding layer. On the Ti base material side, the structure of the generated bonding layer is such that granular Ti 5 Si 3 first appears in αTi,
Subsequently, the layer structure of Ti and Ti 5 Si 3 in αTi, and then the entire layer structure was changed. Ti 5 Si 3 layer to the base metal in the near Nuisance and Ti 5 Si 3 tissue, followed by Ti 5 Si 3
It contained granular αTi, and finally the Ti 5 Si 3 base material. Then, the Ti / Ti 5 Si thus formed
When the 3 type bonding material is annealed at 1573 K for 86.4 ks, the lamellar structure in the bonding layer disappears, and the granular T
The structure changed to i 5 Si 3 -containing structure, and changed to a structure containing granular αTi on the Ti 5 Si 3 base material side. Section SE in this state
FIG. 2 shows the M image.

【発明の効果】以上の通りのこの発明によって、以下の
通りの優れた効果が得られる。 1)複雑形状の傾斜機能材料が容易に製造できる。すな
わち、これまでも傾斜機能材料という概念は存在した
が、製造工程の複雑さのために実用の対象からは遥かに
かけ離れた存在であった。それがこの発明により、容易
に製造でき、実用化し得ることになる。 2)Ti/Ti5 Si3 系傾斜機能材料は軽量で苛酷環
境下で使用できる。このため、宇宙往換機やSSTの機
体材料として使用できる。航空機や自動車用エンジン、
及び発電用タービンなどに適用して高性能化が可能にな
る。 3)Ti/Ti5 Si3 系傾斜機能材料は、苛酷環境下
で使用できる修復容易な材料である。このため、たとえ
ば石炭液化などエネルギー関係の装置は苛酷環境下で稼
働し、これに耐え得る材料がないことが隘路になり機器
開発は阻害されてきたが、この発明の材料を適用するこ
とにより今後大きく進展することが期待される。
According to the present invention as described above, the following excellent effects can be obtained. 1) A functionally gradient material having a complicated shape can be easily manufactured. That is, although the concept of functionally graded material has existed up to now, it has been far away from the object of practical use due to the complexity of the manufacturing process. According to the present invention, it can be easily manufactured and put into practical use. 2) Ti / Ti 5 Si 3 system functionally graded material is lightweight and can be used in harsh environments. For this reason, it can be used as a body material for space transit machines and SST. Aircraft and car engines,
Also, it can be applied to a turbine for power generation, etc. to achieve higher performance. 3) Ti / Ti 5 Si 3 -based functionally gradient material is an easily repairable material that can be used in a harsh environment. For this reason, for example, energy-related equipment such as coal liquefaction operates in a harsh environment, and it has been a bottleneck that there is no material that can withstand this, and equipment development has been hindered, but by applying the material of this invention in the future Expected to make significant progress.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti−Siの2元系平衡状態図である。FIG. 1 is an equilibrium diagram of a binary system of Ti—Si.

【図2】実施例としてのTi/Ti5 Si3 傾斜機能材
料の断面SEM像図である。
FIG. 2 is a sectional SEM image view of a Ti / Ti 5 Si 3 functionally gradient material as an example.

【図1】 [Figure 1]

【図2】 [Fig. 2]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月12日[Submission date] November 12, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti−Siの2元系平衡状態図である。FIG. 1 is an equilibrium diagram of a binary system of Ti—Si.

【図2】実施例としてのTi/Ti5 Si3 傾斜機能材
料の断面SEM像図である。 ─────────────────────────────────────────────────────
FIG. 2 is a sectional SEM image view of a Ti / Ti 5 Si 3 functionally gradient material as an example. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月12日[Submission date] November 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Tiもしくはその合金領域、Ti5 Si
3 系化合物領域、及びTiもしくはその合金とTi5
3 系化合物の混合領域を有し、この混合領域において
はTiもしくはその合金相とTi5 Si3 相の比率はほ
ぼ連続的に変化し、混合領域のTiが濃化した部分はT
i領域に接し、Ti5 Si3 が濃化した部分はTi5
3 領域に接することを特徴とする傾斜組成を有するT
i/Ti5 Si3 系傾斜機能材料。
1. Ti or its alloy region, Ti 5 Si
3 type compound area and Ti or its alloy and Ti 5 S
There is a mixed region of the i 3 -based compound. In this mixed region, the ratio of Ti or its alloy phase and the Ti 5 Si 3 phase changes almost continuously, and the Ti-rich portion in the mixed region is T
The part that is in contact with the i region and is enriched with Ti 5 Si 3 is Ti 5 S
T having a graded composition characterized by being in contact with the i 3 region
i / Ti 5 Si 3 system functionally graded material.
【請求項2】 Tiもしくはその合金にTi5 Si3
化合物を積層するか、またはTi5 Si3 系化合物を被
覆した後、1600K以上の温度に加熱することを特徴
とする請求項1の傾斜組成を有するTi/Ti5 Si3
系傾斜機能材料の製造方法。
2. The gradient according to claim 1, wherein Ti or a Ti 5 Si 3 -based compound is laminated on Ti or an alloy thereof, or Ti 5 Si 3 -based compound is coated and then heated to a temperature of 1600 K or higher. Ti / Ti 5 Si 3 with composition
Of producing a functionally graded functional material.
【請求項3】 真空また不活性ガス中において加熱する
請求項2の製造方法。
3. The method according to claim 2, wherein the heating is performed in vacuum or in an inert gas.
【請求項4】 請求項2または3により得られた材料を
1600K以下において再加熱するTi/Ti5 Si3
系傾斜機能材料の製造方法。
4. Ti / Ti 5 Si 3 for reheating the material obtained according to claim 2 or 3 below 1600 K.
Of producing a functionally graded functional material.
JP4272549A 1992-09-17 1992-09-17 Ti / Ti5 Si3 System Functionally Gradient Material and Manufacturing Method Thereof Expired - Lifetime JPH0823054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272549A JPH0823054B2 (en) 1992-09-17 1992-09-17 Ti / Ti5 Si3 System Functionally Gradient Material and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272549A JPH0823054B2 (en) 1992-09-17 1992-09-17 Ti / Ti5 Si3 System Functionally Gradient Material and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
JPH06220558A true JPH06220558A (en) 1994-08-09
JPH0823054B2 JPH0823054B2 (en) 1996-03-06

Family

ID=17515455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272549A Expired - Lifetime JPH0823054B2 (en) 1992-09-17 1992-09-17 Ti / Ti5 Si3 System Functionally Gradient Material and Manufacturing Method Thereof

Country Status (1)

Country Link
JP (1) JPH0823054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916987A (en) * 2017-03-09 2017-07-04 盐城工学院 Ti5Si3Nearly isometric particle enhancing titanium matrix composite and preparation method thereof
CN112176214A (en) * 2020-09-14 2021-01-05 哈尔滨工业大学 Novel Ti5Si3TiAl-based porous material with particle-reinforced reticular pore walls and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916987A (en) * 2017-03-09 2017-07-04 盐城工学院 Ti5Si3Nearly isometric particle enhancing titanium matrix composite and preparation method thereof
CN106916987B (en) * 2017-03-09 2019-01-25 盐城工学院 Ti5Si3Nearly isometric particle enhancing titanium composite material and preparation method thereof
CN112176214A (en) * 2020-09-14 2021-01-05 哈尔滨工业大学 Novel Ti5Si3TiAl-based porous material with particle-reinforced reticular pore walls and preparation method thereof

Also Published As

Publication number Publication date
JPH0823054B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
US20010046597A1 (en) Reactive multilayer structures for ease of processing and enhanced ductility
JP2004523363A5 (en)
Movchan EB-PVD technology in the gas turbine industry: present and future
EP0261063B1 (en) Method for producing self-supporting ceramic bodies with graded properties
US3666436A (en) Cermet-type alloy and method of making same
US7222775B2 (en) Process for the metallization and/or brazing with a silicon alloy of parts made of an oxide ceramic unable to be wetted by the said alloy
US4168182A (en) Method of producing shaped metallic parts
JP4591900B2 (en) Method for producing Ti-Al intermetallic compound plate
JPH06220558A (en) Graded function material of ti/ti5si3 system and its production
JPH09501135A (en) Directionally solidified eutectic reinforced fiber
JP2019122967A (en) Method for manufacturing copper tin alloy
JP3705368B2 (en) Ti-based functionally gradient material and manufacturing method thereof
Kirihara et al. Application of an intermetallic compound Ti5Si3 to functionally graded materials.
Kudesia et al. Design and fabrication of TiC/NiAl functionally gradient materials for joining applications
US6265080B1 (en) Pest resistant molybdenum disilicide type materials
JP2001342553A (en) Method for forming alloy protection coating
JPS5868489A (en) Bodies to be joined and joining method for said bodies
JPH0355232B2 (en)
JPH11104852A (en) Method for joining ti base material and cu base material, and bucking plate for sputtering target
JPH0569158A (en) Manufacture of complex material composed of intermetallic compound in at least a part
JPH0569159A (en) Method for joining composite material composed of, at least, one part of intermetallic compound
JPH09287038A (en) Production of composite product of titanium-aluminum alloy and metal fiber
JPH01502977A (en) Production of superconducting ceramic materials
JPS62170450A (en) Ta amorphous alloy and its production
JPH05295408A (en) Production of rapidly cooled and solidified powder using inclined function material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term