JPH0621318B2 - Melting method of medium / low carbon ferromanganese - Google Patents

Melting method of medium / low carbon ferromanganese

Info

Publication number
JPH0621318B2
JPH0621318B2 JP63320497A JP32049788A JPH0621318B2 JP H0621318 B2 JPH0621318 B2 JP H0621318B2 JP 63320497 A JP63320497 A JP 63320497A JP 32049788 A JP32049788 A JP 32049788A JP H0621318 B2 JPH0621318 B2 JP H0621318B2
Authority
JP
Japan
Prior art keywords
molten metal
water
gas
oxidizing gas
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63320497A
Other languages
Japanese (ja)
Other versions
JPH02166256A (en
Inventor
康夫 岸本
幸雄 高橋
嘉英 加藤
敏和 桜谷
徹也 藤井
匡伸 増川
康明 大森
憲一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIZUSHIMA GOKINTETSU KK
JFE Steel Corp
Original Assignee
MIZUSHIMA GOKINTETSU KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIZUSHIMA GOKINTETSU KK, Kawasaki Steel Corp filed Critical MIZUSHIMA GOKINTETSU KK
Priority to JP63320497A priority Critical patent/JPH0621318B2/en
Publication of JPH02166256A publication Critical patent/JPH02166256A/en
Publication of JPH0621318B2 publication Critical patent/JPH0621318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融させた高炭素フェロマンガン(HCFe
Mn)から、中炭素フェロマンガン(MCFeMn)或
いは低炭素フェロマンガン(LCFeMn)まで炭素
(C)を除去して、より利用価値の高い製品、すなわち
中、低炭素フェロマンガンの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to molten high carbon ferromanganese (HCFe).
(Mn) to medium carbon ferromanganese (MCFeMn) or low carbon ferromanganese (LCFeMn) to remove carbon (C), and to a product having a higher utility value, that is, a method for producing medium and low carbon ferromanganese. .

〔従来の技術〕[Conventional technology]

鉄鋼製品の合金成分として有用であるマンガン(Mn)
は、高炉溶銑を主原料とする転炉吹錬の終了時点で、ま
たスクラップを主原料とする電気炉製鋼法の場合には溶
鋼作業後に、何れもFe−Mn合金(FeMn)の形で
添加されるのが一般的である。
Manganese (Mn) useful as an alloying component of steel products
Is added in the form of Fe-Mn alloy (FeMn) at the end of converter blowing using blast furnace hot metal as the main raw material, and in the case of the electric furnace steelmaking method using scrap as the main raw material after the molten steel working. It is generally done.

このFeMnは、その炭素濃度によってHCFeMn、
MCFeMn、LCFeMnに分類され、日本工業規格
(JIS)で定められている成分値を転記すれば第1表
の通りである。
This FeMn has HCFeMn,
Table 1 shows the component values classified into MCFeMn and LCFeMn and defined by Japanese Industrial Standards (JIS).

HCFeMnはC濃度が高く、融点が低いので製造は比
較的容易でかつ経済的であるが、MCFeMnやLCF
eMnは、高価なSi−Mn合金と多量の電力を使用し
て製造するので、HCFeMnに比しはるかに高価な合
金鉄である。
Since HCFeMn has a high C concentration and a low melting point, it is relatively easy and economical to produce, but MCFeMn and LCF
Since eMn is manufactured using an expensive Si-Mn alloy and a large amount of electric power, it is a ferroalloy which is much more expensive than HCFeMn.

MCFeMnの製造法として、電気炉による場合のほか
溶融HCFeMnを酸素ガス(O)により脱炭する方
法も提案され、例えば特公昭57−27166号、特開
昭54−97521号各公報に記載されている方法は、
いずれも溶融HCFeMnを転炉状の反応容器に装入
し、炉底の羽口より純OもしくはOと水蒸気の混合
ガスを吹込み6.5〜7.5%のCを1〜1.3%程度
まで脱炭する方法であって、炉底の羽口は2重管構造と
し、Oを吹込むことによる羽口の溶損を防ぐために炉
底羽口の周囲に冷却用のガスを流すことを必要としてい
る。
As a method for producing MCFeMn, a method of decarburizing molten HCFeMn with oxygen gas (O 2 ) is proposed in addition to the case of using an electric furnace, and is described in, for example, Japanese Patent Publication No. 57-27166 and JP-A No. 54-97521. The way you are
In each case, molten HCFeMn was charged in a converter-like reaction vessel, pure O 2 or a mixed gas of O 2 and steam was blown from the tuyere of the furnace bottom to inject 6.5 to 7.5% of C to 1 to 1. The method is to decarburize to about 3%, and the tuyere at the bottom of the furnace has a double tube structure, and to prevent melting of the tuyere due to blowing of O 2 , cooling is performed around the bottom of the tuyere. You need to flush the gas.

また、特開昭60−56051号公報には反応容器の炉
底羽口から非酸化性ガスを吹込み攪拌すると同時に、上
吹ランスから純Oを吹付ける方法が開示されている。
Further, JP-A-60-56051 discloses a method in which a non-oxidizing gas is blown from a tuyere at the bottom of a reaction vessel to stir, and at the same time, pure O 2 is blown from a top blowing lance.

溶融HCFeMnを酸化性ガスによって脱炭する方法で
は、CをMnよりも優先的に酸化するために1700℃
以上といった高温で吹錬を行うことが必要であるが、耐
火物の溶損を防止するために溶湯の温度を制御する技術
が重要である。
In the method of decarburizing the molten HCFeMn with an oxidizing gas, in order to oxidize C preferentially over Mn, 1700 ° C.
Although it is necessary to perform the blowing at the high temperature as described above, a technique for controlling the temperature of the molten metal is important in order to prevent melting damage of the refractory.

CあるいはMnの酸化は大きな発熱反応であり、溶湯の
温度を一定に保つためには冷材を用いるなどして溶湯を
冷却しなけばならない。従来の方法では高、中あるいは
低炭素のFeMnや精錬用のフラックスを冷材として用
いるほか、Oの供給速度を調整することにより温度の
制御を行っていた。
Oxidation of C or Mn is a large exothermic reaction, and in order to keep the temperature of the molten metal constant, it is necessary to cool the molten metal by using a cooling material. In the conventional method, high-, medium- or low-carbon FeMn or a flux for refining is used as a cooling material, and the temperature is controlled by adjusting the supply rate of O 2 .

冷材のうちHCFeMnや精錬用のフラックスは原料と
して有用なものであるが、多量のHCFeMnを加える
ことは脱炭のさまたげとなり、また精錬反応上必要な程
度のフラックス量では冷却効果は小さい。また中、低炭
素FeMnなどの高価な合金を冷材として多量に用いる
ことは製品コストを高め経済的に不利である。
Among the cold materials, HCFeMn and the flux for refining are useful as raw materials, but addition of a large amount of HCFeMn impedes decarburization, and the cooling effect is small with the amount of flux necessary for refining reaction. In addition, it is economically disadvantageous to use a large amount of an expensive alloy such as low carbon FeMn as a cooling material because it increases the product cost.

他の冷材としてはマンガン鉱石やフェロマンガンスラグ
などが考えられ、これらに含まれる酸化マンガンを溶湯
中のCにより還元回収できれば余剰の熱を有効に利用す
る経済的な方法となる。しかし、スラグ中のマンガンを
回収するためにはスラグを滓化させるために非常な高温
で吹錬を行う必要があり、またスラグ量が増加するとフ
ォーミング、スロッピングなどにより操業が阻害される
ため、現実的な方法とはいえない。
Other cooling materials include manganese ore and ferromanganese slag. If manganese oxide contained in these materials can be reduced and recovered by C in the molten metal, it is an economical method for effectively utilizing the surplus heat. However, in order to recover manganese in the slag, it is necessary to perform blowing at an extremely high temperature in order to slag the slag, and when the amount of slag increases, the operation is hindered due to forming, sloping, etc. Not a realistic method.

以上のような安値で効率的な冷材の利用量はごく限られ
ているため、Oの供給速度を小さくして冷材投入量を
少なく抑えることもできる。また設備上の制約から冷材
の投入速度が小さい場合にも、Oの供給速度を小さく
して発熱を抑える方法がとられる。しかしOの供給損
度を小さくすると操業時間が延長することになり経済的
に不利なだけでなく、耐火物の保護の点でも好ましくな
い。さらに高温吹錬時間にはMnの蒸発が大きいため、
高温期の吹錬時間が長くなることはMn濃度の低下につ
ながる。
Since the use amount of the cold material that is low and efficient as described above is very limited, it is possible to reduce the amount of the supplied cold material by reducing the O 2 supply rate. Further, even if the cooling material charging speed is low due to facility restrictions, a method of suppressing heat generation by reducing the O 2 supply speed is adopted. However, if the O 2 supply loss is reduced, the operation time is extended, which is not economically disadvantageous, and it is not preferable in terms of protection of the refractory. Furthermore, since the evaporation of Mn is large during the high temperature blowing time,
Prolonged blowing time in the high temperature period leads to a decrease in Mn concentration.

また、OあるいはOと水蒸気の混合ガスを炉底羽口
から吹込む方法では、反応容器に二重管構造の炉底羽口
を設置せねばならず、容器の構造が複雑となり、また溶
湯の漏洩を防止するために高度な操業技術が必要であっ
て、一般的に設備費、操業費も高額となる。加えて脱炭
反応末期にはO供給速度を低下しMnの酸化を制御す
ることが望まれるが、炉底羽口からのO供給では、O
供給量を溶湯の漏洩限界流量以下にはできずそのよう
な操業は不可能であった。また、炉底よりO、水蒸
気、炭酸ガスなどの酸化性ガスを供給する方法は、非酸
化性ガスを吹き込む場合と比べて羽口寿命が短く、耐火
物費用の点で不利である。
Further, in the method of blowing O 2 or a mixed gas of O 2 and steam from the bottom tuyere, the reaction vessel must be provided with the bottom tuyere having a double-pipe structure, which complicates the structure of the vessel, and Advanced operating technology is required to prevent leakage of molten metal, and equipment costs and operating costs are generally high. In addition although the decarburization reaction end it is desirable to control the oxidation of the reduced the O 2 feed rate Mn, O 2 supply from the furnace bottom tuyeres, O
2 The supply amount could not be made below the leakage limit flow rate of the molten metal, and such operation was impossible. Further, the method of supplying an oxidizing gas such as O 2 , steam or carbon dioxide gas from the bottom of the furnace has a shorter tuyere life than the case of blowing a non-oxidizing gas, and is disadvantageous in terms of refractory cost.

上記各方法の欠点を解決するために、上吹ランスから酸
化性ガスとして水蒸気とOを吹付ける方法を特開昭6
2−260038号において本発明者らの一部が提案し
ているが、水蒸気をガスとして吹付ける場合には、配管
途中での液化を防止するために配管を加熱・保温する必
要があり設備費が高額にならざるをえない。
In order to solve the drawbacks of the above respective methods, a method of spraying steam and O 2 as an oxidizing gas from a top blowing lance is disclosed in Japanese Patent Laid-Open No.
As proposed by some of the present inventors in No. 2-260038, when steam is sprayed as a gas, it is necessary to heat / heat the pipe in order to prevent liquefaction in the middle of the pipe. Is inevitably expensive.

さらに、脱炭を行うためには当然Oを含有する酸化性
ガスを必要とするが、一方、低炭域では酸化性ガスを吹
付けると溶湯中のCのみならずMnも酸化されてしま
う。Mnを酸化させずに脱炭のみを促進させる手段が最
も望ましい。
Furthermore, in order to carry out decarburization, an oxidizing gas containing O 2 is naturally required, but on the other hand, when the oxidizing gas is sprayed, not only C in the molten metal but also Mn is oxidized when the oxidizing gas is sprayed. . The most desirable means is to accelerate decarburization without oxidizing Mn.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、HCFeMnの溶湯浴面上に酸化性ガスを吹
付けて脱炭し中炭素または低炭素フェロマンガンを製造
するに際し、溶湯の温度を一定に保つため、従来行って
いた冷材を用いる方法、Oの供給速度を小さくする方
法、炉底羽口から酸化性ガスを吹き込む方法、あるいは
上吹ランスから酸化性ガスとしてOと水蒸気を吹付け
る方法には、前述のような問題点があるので、溶湯温度
の制御が容易で迅速に脱炭を行うことができ、かつMn
の酸化を防止して脱炭を行い高Mn歩留りである、HC
FeMnの脱炭による中、低炭素フェロマンガンの溶製
方法を提供するためになされたものである。
The present invention uses a cold material which has been conventionally used in order to keep the temperature of the molten metal constant when decarburizing by blowing an oxidizing gas onto the surface of the molten bath of HCFeMn to produce medium carbon or low carbon ferromanganese. The method, the method of reducing the supply rate of O 2 , the method of blowing an oxidizing gas from the tuyere of the furnace bottom, or the method of blowing O 2 and steam as the oxidizing gas from the top blowing lance have the above-mentioned problems. Therefore, the molten metal temperature can be easily controlled, decarburization can be performed quickly, and Mn
HC which has a high Mn yield by preventing the oxidation of carbon and decarburizing
This is done in order to provide a method for melting medium- and low-carbon ferromanganese by decarburizing FeMn.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、溶融HCFeMnのO吹錬における経
済的かつ効率的な溶湯温度の制御について鋭意研究を重
ねた結果、溶湯温度が1600℃以上に保たれている
少なくとも一部の期間、酸化性ガスに霧状の水を含有さ
せて浴面上に衝突させる 溶湯温度が1600℃以上に保たれている少なくとも
一部の期間、酸化性ガスに霧状の水を含有させて浴面上
に衝突させる。
As a result of earnest studies on the control of the molten metal temperature in the O 2 blowing of molten HCFeMn, the inventors of the present invention have found that the molten metal is oxidized for at least a part of the period when the molten metal temperature is maintained at 1600 ° C. or higher. Mist water contained in mist-like water and impinge on the bath surface. At least part of the period when the molten metal temperature is maintained at 1600 ° C or more Collide.

溶湯温度が1600℃以上に保たれている少なくとも
一部の期間、酸化性ガスを非酸化性ガスに切替え、さら
に霧状の水を含有させて浴面上に衝突させる 溶湯温度が1600℃以上に保たれている少なくとも
一部の期間、酸化性ガスに霧状の水を含有させて溶湯浴
面上に吹きつけるとともに、その後酸化性ガスを非酸化
性ガスに切り換えて浴面上に衝突させる いずれかの方法により脱炭吹錬を行えば、FeMnの脱
炭を促進させかつ溶湯温度が制御可能なことを見出し、
本発明をなすに至った。
At least part of the period when the temperature of the molten metal is kept at 1600 ° C or higher, the oxidizing gas is switched to the non-oxidizing gas, and atomized water is further added to collide with the bath surface. For at least a part of the period of being kept, the oxidizing gas is made to contain mist-like water and sprayed onto the surface of the molten metal, and then the oxidizing gas is changed to a non-oxidizing gas to collide with the surface of the bath. It was found that if decarburization blowing is performed by this method, the decarburization of FeMn can be promoted and the molten metal temperature can be controlled,
The present invention has been completed.

すなわち本発明は、高炭素フェロマンガンの溶湯を該溶
湯を収納した炉体の揺動または炉底羽口からのガス吹込
みにより攪拌しつつ、該溶湯浴面上に酸化性ガスを吹付
けて該溶湯を脱炭し、中炭素または低炭素のフェロマン
ガンを製造するに際し、少なくとも、溶湯炭素濃度が2
%以下の期間に、溶湯温度を1600℃以上の温度に保
持すると共に酸化性ガスに霧状の水を含有させて溶湯浴
面上に吹付けることを特徴とする中・低炭素フェロマン
ガンの溶製方法である。
That is, the present invention, by stirring the molten metal of high-carbon ferromanganese by rocking the furnace body containing the molten metal or by blowing gas from the bottom tuyere, blowing an oxidizing gas onto the molten metal bath surface. At the time of decarburizing the molten metal to produce medium carbon or low carbon ferromanganese, the molten carbon concentration is at least 2%.
%, The temperature of the molten metal is maintained at 1600 ° C. or higher, and the oxidizing gas is mixed with atomized water and sprayed onto the surface of the molten metal. It is a manufacturing method.

また、本発明の他の中・低炭素フェロマンガンの溶製方
法は、高炭素フェロマンガンの溶湯を該溶湯を収納した
炉体の揺動または炉底羽口からのガス吹込みにより攪拌
しつつ、該溶湯浴面上に酸化性ガスを吹付けて該溶湯を
脱炭し、中炭素または低炭素のフェロマンガンを製造す
るに際し、少なくとも、溶湯炭素濃度が2%以下の期間
に、溶湯温度を1600℃以上の温度に保持すると共
に、前記酸化性ガスの吹付けに代えて、非酸化性ガスに
霧状の水を含有させて溶湯浴面上に吹付けることを特徴
とする中・低炭素フェロマンガンの溶製方法である。
In addition, another method for melting medium-low carbon ferromanganese according to the present invention is to stir the molten metal of high carbon ferromanganese by shaking the furnace body containing the molten metal or by blowing gas from the bottom tuyere. When producing an intermediate carbon or low carbon ferromanganese by blowing an oxidizing gas onto the surface of the molten metal to produce ferro-manganese of medium carbon or low carbon, the molten metal temperature is kept at least during a period of 2% or less. Medium / low carbon, which is maintained at a temperature of 1600 ° C. or higher, and is sprayed on the surface of the molten metal bath by spraying non-oxidizing gas with atomized water instead of spraying the oxidizing gas. It is a method for manufacturing ferromanganese.

また、本発明のもう一つの中・低炭素フェロマンガンの
溶製方法は、高炭素フェロマンガンの溶湯を該溶湯を収
納した炉体の揺動または炉底羽口からのガス吹込みによ
り攪拌しつつ、該溶湯浴面上に酸化性ガスを吹付けて該
溶湯を脱炭し、中炭素または低炭素のフェロマンガンを
製造するに際し、少なくとも、溶湯炭素濃度が2%以下
の期間に、溶湯温度を1600℃以上の温度に保持する
と共に酸化性ガスに霧状の水を含有させて溶湯浴面上に
吹付け、この吹付け途中で酸化性ガスの吹付けを止めて
非酸化性ガスに霧状の水を含有させて溶湯浴面上に吹付
けることを特徴とする中・低炭素フェロマンガンの溶製
方法である。
In addition, another method of melting medium-low carbon ferromanganese of the present invention is to stir the molten metal of high carbon ferromanganese by shaking the furnace body containing the molten metal or by blowing gas from the bottom tuyere. Meanwhile, when an oxidizing gas is blown onto the surface of the molten metal to decarburize the molten metal to produce medium carbon or low carbon ferromanganese, the molten metal temperature is at least at a period of 2% or less. Is maintained at a temperature of 1600 ° C or higher, and the oxidizing gas contains mist-like water and is sprayed onto the surface of the molten metal. During this spraying, the spraying of the oxidizing gas is stopped and the non-oxidizing gas is sprayed. It is a method for melting medium / low carbon ferromanganese, characterized in that it is sprayed onto the surface of the molten metal containing water in the form of water.

〔作用〕[Action]

本発明では溶湯温度が1600℃以上の温度範囲に保た
れている少なくとも一部の期間に酸化性ガスまたは非酸
化性ガスに水を混合して霧(アトマイズ)状に吹付ける
ことにより、水により溶湯中炭素を酸化する反応が起こ
る際に吸熱、比較的比熱の大きい水の顕熱および水の蒸
発熱を利用して溶湯の温度を制御するものである。
In the present invention, by mixing water with an oxidizing gas or a non-oxidizing gas and spraying it in a mist (atomized) form at least in a part of the period when the molten metal temperature is kept in the temperature range of 1600 ° C. or higher, When the reaction of oxidizing carbon in the molten metal occurs, the temperature of the molten metal is controlled by utilizing the heat absorption, the sensible heat of water having a relatively large specific heat, and the heat of vaporization of water.

この際、酸化性ガスまたは非酸化性ガスと霧状水の混合
気流は、設備および操業上の負荷の小さな上吹き手段に
より吹付けることとし、底吹きによるOの供給は行わ
ない。その代わりに炉体を揺動するか、またはアルゴ
ン、あるいは窒素などの非酸化性ガスを底吹きガスとし
て適量だけ簡便な構造の羽口から溶湯中に供給すれば、
十分な攪拌効果が得られ脱炭は円滑に進行する。
At this time, the mixed gas flow of the oxidizing gas or the non-oxidizing gas and the mist-like water is blown by the top blowing means which has a small load on equipment and operation, and O 2 is not supplied by bottom blowing. Instead, rock the furnace or supply non-oxidizing gas such as argon or nitrogen as a bottom blowing gas into the molten metal from the tuyere of a simple structure by an appropriate amount.
A sufficient stirring effect is obtained and decarburization proceeds smoothly.

本発明の方法により霧状水の顕熱、蒸発熱および反応熱
による火点の冷却効果によりMnの蒸発は抑制され、M
nの歩留りも向上する。
By the method of the present invention, the evaporation of Mn is suppressed by the effect of cooling the hot spot by the sensible heat, the heat of evaporation and the heat of reaction of the mist water,
The yield of n is also improved.

従来のOと非酸化性ガスの混合ガスを上吹きランスよ
り吹付ける方法(特開昭61−291947号公報)と
比較すると、本発明の方法ではガスの顕熱だけでなく、
水の顕熱、蒸発熱および反応熱も利用しているために火
点の冷却によるMnの蒸発制御の効果が大きい。
Compared with the conventional method of spraying a mixed gas of O 2 and a non-oxidizing gas from an upper blowing lance (JP-A-61-291947), not only the sensible heat of gas but also the method of the present invention
Since the sensible heat of water, the heat of evaporation, and the heat of reaction are also used, the effect of controlling the evaporation of Mn by cooling the hot spot is great.

また水蒸気およびOの混合ガスの吹付けおよび/また
は吹込み方法に比較すると、本発明方法は特殊な水蒸気
用の保温・加熱配管を必要としないため、安価な設備費
で実施でき、さらに霧状水を用いているので水の顕熱お
よび蒸発熱も利用できるため、水蒸気よりも大きな冷却
効果が期待できる。
Further, as compared with the method of spraying and / or injecting a mixed gas of steam and O 2, the method of the present invention does not require a special heat-retaining / heating pipe for steam, so that it can be carried out at a low equipment cost, Since sensible water is used, the sensible heat and evaporation heat of water can also be used, so a greater cooling effect than steam can be expected.

また本発明の方法では、特にMnの酸化が大きい低炭域
で酸化性ガスの吹付けを中止し、非酸化性ガスと水の混
合気流を用いることにより、従来法に比してはるかにC
O分圧の低減を図ることが可能となり、その結果Mnの
酸化を抑制しながら脱炭を促進させることが可能とな
る。
Further, in the method of the present invention, the spraying of the oxidizing gas is stopped and the mixed gas flow of the non-oxidizing gas and water is used particularly in the low coal region where the Mn oxidation is large, so that the C
The partial pressure of O can be reduced, and as a result, decarburization can be promoted while suppressing the oxidation of Mn.

本発明の方法を実施するのに適切な設備の一例を第1図
に示し、図に従ってHCFeMnの脱炭吹錬を、酸化性
ガスとしてOを、非酸化性ガスとしてアルゴン(A
r)を、上吹きランスより吹付ける場合を例にし説明す
る。
An example of equipment suitable for carrying out the method of the present invention is shown in FIG. 1, and according to the drawing, decarburization blowing of HCFeMn, O 2 as an oxidizing gas, and argon (A
The case of spraying r) from the upper blowing lance will be described as an example.

図中1は溶湯浴面下に攪拌用ガスの供給ができるような
反応容器(図示例では上底吹転炉)であり、2は溶融H
CFeMn、4は溶湯浴面上からOまたはArを霧状
水と共に吹付けるランス、5は浴面下に底吹ガスを導く
羽口、6は羽口5へ底吹ガスを導くガス配管、7はO
配管、8はAr配管、9は水配管、10は流量調節弁で
ある。
In the figure, 1 is a reaction vessel (upper-bottom blowing converter in the illustrated example) capable of supplying a stirring gas below the surface of the molten metal, and 2 is molten H
CFeMn, 4 is a lance for spraying O 2 or Ar with mist water from above the surface of the molten metal, 5 is a tuyere that guides the bottom blowing gas below the bath surface, 6 is a gas pipe that leads the bottom blowing gas to the tuyere 5, 7 is O 2
A pipe, 8 is an Ar pipe, 9 is a water pipe, and 10 is a flow control valve.

HCFeMnの溶湯を最初に反応容器1内に装入する
が、この装入以前から羽口5を経て底吹不活性ガスを適
当量流しておく。
The molten HCFeMn is initially charged into the reaction vessel 1. Before this charging, an appropriate amount of bottom blowing inert gas is flown through the tuyere 5.

次にランス4を上方より下降し、浴面上のある適切な位
置でO配管7を経由して送給されるOを吹付け始め
る。その後溶湯温度が1600℃以上のとき、Oの吹
付けを継続したまま、またはOの吹付けを停止しAr
配管8を経由してArの吹付けを行いつつ、水配管10
を経由して水を上吹ガスに混入し始め、上吹ガスに対す
る水の混合比率を調節して溶湯を適当な温度範囲に保ち
つつ脱炭を行う。
Then lowering the lance 4 from above, it starts blowing O 2 fed through the O 2 pipe 7 at an appropriate position on the bath surface. After that, when the molten metal temperature is 1600 ° C. or higher, the O 2 spraying is continued, or the O 2 spraying is stopped and Ar is stopped.
While spraying Ar through the pipe 8, the water pipe 10
Water starts to be mixed into the top blowing gas via the, and decarburization is performed while adjusting the mixing ratio of water to the top blowing gas to keep the molten metal in an appropriate temperature range.

溶湯を一定の温度範囲に保つにあたって、少量の精錬用
フラックスあるいは利用できるFeMnの破砕屑があれ
ばそれらを冷材として併用してもよい。
In order to keep the molten metal in a certain temperature range, if there is a small amount of refining flux or usable FeMn crushed scraps, these may be used together as a cooling material.

しかしながらこれ等の冷材は脱炭酸素効率を低下させ、
Mnの酸化量を増化させるために使用しないことが望ま
しい。
However, these cooling materials reduce the efficiency of decarbonation,
It is desirable not to use it to increase the amount of Mn oxidation.

目標濃度まで脱炭が終了したらランス4を上昇し、上吹
ガスと水の吹付けを停止する。目標濃度まで脱炭が進行
したかどうかは、転炉での銑鉄精錬で用いるようなサブ
ランスを用い、そのサブランスを適宜浴湯中に浸漬して
取出し、サブランス先端に組み込まれた普通鋼製容器内
に採取された凝固した溶湯サンプルを、周知の発光分光
分析法や赤外線吸収法を用いて分析することによって約
30秒〜1分間で判定できる。ただし、羽口5の保護の
ために羽口5からのガスは流したままにする。
When decarburization is completed to the target concentration, the lance 4 is raised and the spraying of the top gas and water is stopped. Whether decarburization has progressed to the target concentration is determined by using a sublance as used in pig iron refining in a converter, dipping the sublance in bath water as needed, and removing it in a plain steel container installed at the tip of the sublance. The solidified molten metal sample collected in Step 1 can be determined in about 30 seconds to 1 minute by analyzing it using a well-known optical emission spectroscopy or infrared absorption method. However, the gas from the tuyere 5 is kept flowing to protect the tuyere 5.

羽口5は、簡単な構造の一般的な羽口でよく、例えば小
径の鋼製パイプを1本あるいは複数本容器1の底壁に設
置する。ランス4は、転炉製鋼法に使用されるランスと
同様のものでよい。
The tuyere 5 may be a general tuyere having a simple structure. For example, one or a plurality of small-diameter steel pipes are installed on the bottom wall of the container 1. The lance 4 may be the same as the lance used in the converter steelmaking method.

羽口5から供給するガスの流量は、HCFeMn溶湯の
攪拌をするのに十分でかつ必要最低量が望ましい。
It is desirable that the flow rate of the gas supplied from the tuyere 5 be sufficient to stir the molten HCFeMn and the necessary minimum amount.

また、ランス上昇後、底吹ガスや反応容器の揺動によっ
て溶湯を攪拌しながら、フェロシリコンやシリコンマン
ガンなどの還元材を添加してスラグ中の酸化Mnを還元
回収したり、あるいはFeMnの粉砕屑を冷材として添
加するような操業を行ってもよい。
After the lance is raised, a reducing agent such as ferrosilicon or silicon manganese is added to reduce and recover Mn oxide in the slag, or FeMn is pulverized while stirring the molten metal by bottom blowing gas and rocking of the reaction vessel. Operations such as adding scraps as cold material may be performed.

本発明は、HCFeMnの脱炭吹錬において、Oある
いはArと霧状の水を上吹きすることにより、水の顕
熱、蒸発熱、および反応熱を利用して溶湯を脱炭に適し
た一定の温度範囲に制御すると同時に、特に火点を冷却
することによりMnの蒸発損失を抑制することができ
る。
INDUSTRIAL APPLICABILITY In the decarburization blowing of HCFeMn, the present invention is suitable for decarburizing the molten metal by utilizing the sensible heat of water, the heat of vaporization, and the heat of reaction by upwardly blowing O 2 or Ar and mist-like water. The evaporation loss of Mn can be suppressed by controlling the temperature to a constant temperature range and, at the same time, cooling the fire point.

従来は酸化性ガス(特にO)を用いて脱炭する方法が
行われていたが、本発明では脱炭効率が低下する低炭素
濃度域ではMnの酸化がある程度は回避できないために
必然的に過大な発熱反応が生じることに着目し、従来、
冷却効果が大きいため転炉内での脱炭に用いられなかっ
た水と酸素の混合ガスあるいは水とアルゴンの混合ガス
を用いることが可能であり、これにより従来のフェロマ
ンガンの脱炭法よりも良好な特性を得られることを見出
したのである。
Conventionally, a method of decarburizing by using an oxidizing gas (particularly O 2 ) has been performed, but in the present invention, oxidation of Mn cannot be avoided to some extent in a low carbon concentration region where decarburizing efficiency decreases. Focusing on the fact that an excessive exothermic reaction occurs,
It is possible to use a mixed gas of water and oxygen or a mixed gas of water and argon that has not been used for decarburization in the converter because of its large cooling effect, and this makes it possible to use a mixed gas of water and argon compared to the conventional decarburization method for ferromanganese It was found that good characteristics can be obtained.

溶湯温度の制御はOまたはArと水の供給速度を調節
することにより容易に実施でき、冷材との併用も可能で
ある。これらのガスおよび水の供給速度の選択は、溶湯
中の炭素濃度や吹錬温度、溶湯量、炉形状、冷材使用
量、スラグ性状などで異なり、また設備上の制約や操業
時間の問題もあるので一概には規定できない。
The temperature of the molten metal can be easily controlled by adjusting the supply rate of O 2 or Ar and water, and can be used in combination with a cooling material. The selection of these gas and water supply rates differs depending on the carbon concentration in the molten metal, the blowing temperature, the amount of molten metal, the furnace shape, the amount of cold material used, the slag properties, etc. Since it is, it cannot be specified unconditionally.

HCFeMnを脱炭し炭素濃度1.5%以下のMCFe
Mnを製造するに際し生じる製品1t当りの排ガス中ダ
ストへのMn損失量と、OまたはArlNm3当りの水
の混合比率の関係を見ると、第2図(O)、第3図
(Ar)に示したように、水を上吹ガスに混合すること
によりダスト中へのMn損失は著しく減少する。これは
水の顕熱、蒸発熱および反応熱のために火点温度が低下
してMnの蒸発量が減少しているためで、上吹ガス1N
m3当りの水の混合量を、Oにおいては0.2kg以上
とすれば約2.0%の、Arについては0.1kg以上
とすれば約3.0%のMn歩留りの向上が得られる。
MCFe with a carbon concentration of 1.5% or less after decarburizing HCFeMn
Looking at the relationship between the amount of Mn loss to the dust in the exhaust gas per ton of product produced during the production of Mn and the mixing ratio of water per O 2 or ArlNm 3 , FIG. 2 (O 2 ) and FIG. 3 (Ar ), Mixing Mn with water into the top gas significantly reduces the Mn loss in the dust. This is because the sensible heat of water, the heat of evaporation, and the heat of reaction lower the flash point temperature, and the evaporation amount of Mn decreases.
If the mixing amount of water per m 3 is 0.2 kg or more for O 2 , it is about 2.0%, and if Ar is 0.1 kg or more, the Mn yield is improved by about 3.0%. To be

また、第1図に示すように、本発明は酸化性または非酸
化性ガス配管に水配管を合流させ水量を調整するだけで
簡易な設備で実施させることができるが、浴面上にガス
ジェットとして吹きつけないと水は浴面に到達する前に
蒸発してしまい冷却効果を有しない。そこで上記ガスと
共にアトマイズ状に吹きつけるために条件を変えて変化
させたところ、20kg/Nm3ガス以下に抑制しなけれ
ばならないことがわかった。すなわち、20kg/Nm3
ガスを越えると、アトマイズ状に安定して水を含有する
ガスを吹きつけることができなくなる。
Further, as shown in FIG. 1, the present invention can be carried out with simple equipment by simply joining a water pipe to an oxidizing or non-oxidizing gas pipe and adjusting the amount of water. If not sprayed, the water has no cooling effect because it evaporates before reaching the bath surface. Therefore, when the conditions were changed and changed to atomize with the above gas, it was found that the amount of gas should be suppressed to 20 kg / Nm 3 gas or less. That is, 20 kg / Nm 3
When it exceeds the gas, it becomes impossible to spray the gas containing water stably in an atomized state.

水の酸素への混合比率の下限および水のアルゴンへの混
合比率の下限は第2図、第3図から明らかなように、そ
れぞれ0.2kg/Nm3および0.1kg/Nm3
rで希釈ガスの効果および火点の冷却効果の上で有効で
ある。ここに示した上限、下限の中で水のガスに対する
混合比率は操業条件に合わせて適宜選べばよい。
The lower limit of the mixing ratio of the lower and water argon mixing ratio of oxygen to water Figure 2, as is clear from FIG. 3, respectively 0.2 kg / Nm 3 O 2, and 0.1 kg / Nm 3 A
At r, it is effective on the effect of the diluent gas and the cooling effect of the fire point. Among the upper and lower limits shown here, the mixing ratio of water to gas may be appropriately selected according to the operating conditions.

以上の説明で溶湯の攪拌のために不活性ガスを底吹羽口
から吹込む方法を説明したが、不活性ガス吹込法に代え
て、溶湯を含めた炉体を揺動させるいわゆるシェーキン
グコンバーター法を用いてもその効果が発揮されること
は明らかである。
In the above description, the method of blowing the inert gas from the bottom blowing port to stir the molten metal has been explained. It is clear that the effect is exhibited even if the method is used.

なお、酸化性ガスとしてはOを含有するガスは当然含
まれると共にCOなどの酸化性ガスも含み、非酸化性
ガスとしては、OやCOなどのいわゆる酸化性ガス
を除くガスを示すが、NやAr等の不活性ガスが、工
業的に安価に使用可能で本発明に適する。
It should be noted that as the oxidizing gas, a gas containing O 2 is naturally included and also including an oxidizing gas such as CO 2, and as the non-oxidizing gas, a gas excluding a so-called oxidizing gas such as O 2 or CO 2 is included. As shown, an inert gas such as N 2 or Ar can be industrially used at low cost and is suitable for the present invention.

本発明においては、霧状水を含んだ酸化性または非酸化
性ガスを溶湯温度が1600℃以上の期間に吹付ける。
In the present invention, an oxidizing or non-oxidizing gas containing atomized water is sprayed during a period in which the molten metal temperature is 1600 ° C or higher.

その理由は第4図(酸素上吹き吹錬)に示す通り、16
00℃未満では急激に脱炭酸素効率が低下するため、溶
湯温度は1600℃以上に保つことが必要であり、冷却
能力を有する霧状水を含むガスを吹きつけることは不利
となる。溶湯温度の上限は特に限定されず操業可能な温
度となる。
The reason is 16 as shown in Fig. 4 (blown oxygen blowing).
If the temperature is lower than 00 ° C., the efficiency of decarboxylation decreases sharply. Therefore, it is necessary to keep the temperature of the molten metal at 1600 ° C. or higher, and it is disadvantageous to spray a gas containing atomized water having a cooling capacity. The upper limit of the molten metal temperature is not particularly limited, and it is a temperature at which operation is possible.

また、第5図(O+水)および第6図(Ar+水)に
示すように、水の混合は従来の純酸素上吹き吹錬で脱炭
効率が低下する溶湯炭素濃度(〔%C〕)が2%以下と
なる時期に行うことが、CO分圧を低下させ脱炭を優先
進行させる上で有効である。また、第5図および第6図
に示される脱炭酸素効率が低下する〔%C〕が2%以下
となる時期では、Mnが酸化するため発熱が特に大きく
なる。そのため従来法では冷材を必要としていたが、本
発明では低炭域に水を含む上吹ガスを吹付けるので冷却
効果が高く、かつ脱炭を優先進行させる希釈ガスとして
の効果があるため有効である。
Further, as shown in FIG. 5 (O 2 + water) and FIG. 6 (Ar + water), when water is mixed, the molten carbon concentration ([% C ]) Is less than 2%, it is effective to lower the CO partial pressure and preferentially advance decarburization. Further, at the time shown in FIGS. 5 and 6 in which the decarboxylation efficiency decreases [% C] to 2% or less, Mn is oxidized, so that heat generation becomes particularly large. Therefore, in the conventional method, a cooling material was required, but in the present invention, since the upper blowing gas containing water is blown to the low coal area, the cooling effect is high, and it is effective as a diluent gas that preferentially advances decarburization. Is.

なお、水を吹きつけるガスとして酸素を含有するガスN
またはアルゴンなどの不活性ガスのいずれを用いるこ
とも本発明の範畴にあるが、第2図と第3図あるいは第
5図と第6図を比較して明らかなように非酸化性ガスと
してアルゴンなどを用いた場合のほうがダスト発生低減
や低炭素域での脱炭効果向上により効果的である。
A gas N containing oxygen as a gas for spraying water
It is within the scope of the present invention to use either 2 or an inert gas such as argon, but as is clear by comparing FIG. 2 and FIG. 3 or FIG. 5 and FIG. The use of argon or the like is more effective in reducing dust generation and improving the decarburizing effect in the low carbon region.

ただしその反面冷却効果が大きいので、Mnの酸化が少
ない(脱炭効率の高い)高・中炭域では使用できない。
このため本発明で酸素あるいはアルゴンのいずれを用い
るかは、転炉の炉容、炉形状などに起因する放散熱の大
きさの違いやMnの濃度の違いなどに起因する脱炭効率
の違いなどに合わせてそれぞれのガスを用いて実施すれ
ばよい。
However, on the other hand, since it has a large cooling effect, it cannot be used in the high / medium coal region where Mn oxidation is small (high decarburization efficiency).
Therefore, whether oxygen or argon is used in the present invention depends on the difference in the amount of heat released due to the furnace volume and shape of the converter, the difference in decarburization efficiency due to the difference in Mn concentration, etc. It may be carried out by using each gas according to the above.

すなわち高炭域では純酸素により脱炭を行い、中・低炭
域で酸素と水を吹きつけてもよいし、低炭域にアルゴン
と水を吹きつけてもよいし、あるいは温度の上昇に合わ
せて初めに酸素と水を吹きつけた後にアルゴンと水を吹
きつけるといった方法でもよい。
That is, decarburization may be performed with pure oxygen in the high-carbon region, and oxygen and water may be blown in the medium / low-carbon region, or argon and water may be blown in the low-carbon region, or the temperature may rise. Alternatively, a method of first blowing oxygen and water and then blowing argon and water may be used.

また〔%C〕<1.0のLCFeMeを溶製する場合は
希釈ガスを用いても脱炭酸素効率がさらに低下する。
Further, in the case where LCFeMe of [% C] <1.0 is produced, even if a diluting gas is used, the decarboxylation efficiency is further reduced.

そのため従来法(例えば特開昭60−56051号)で
は、1800〜1850℃という超高温で吹錬を行いL
CFeMnを溶製していた。これは高温で操業を行えば
脱炭が優先的に行えるためであるが、その反面耐火物の
溶損が大きくなる。
Therefore, in the conventional method (for example, Japanese Patent Laid-Open No. 60-56051), blowing is performed at an ultrahigh temperature of 1800 to 1850 ° C.
CFeMn was melted. This is because decarburization can be preferentially performed when operating at high temperatures, but on the other hand, melting loss of refractory materials becomes large.

また、従来法ではこの様な低炭域では特にMnの酸化熱
により高温となるため多くの冷材を必要としていたが、
本発明者らは実験によりこれらの冷材はMnの酸化を増
大させ、脱炭酸素効率の低減を促進させることを見出し
た。
Further, in the conventional method, particularly in such a low coal area, a large amount of cold material is required because the temperature becomes high due to the heat of oxidation of Mn,
The present inventors have experimentally found that these cooling materials increase the oxidation of Mn and promote the reduction of decarboxylation efficiency.

そこで実験により工夫を重ねたところ、水を含むガスに
よる上吹きを行えば、第7図(O+水)、第8図(A
r+水)に示すように、従来法に比べて50℃低い17
50〜1800℃でLCFeMnを溶製できた。
So it was repeated devised by experiment, by performing blow over by a gas containing water, FIG. 7 (O 2 + water), Figure 8 (A
r + water), which is 50 ° C lower than the conventional method 17
LCFeMn could be melted at 50 to 1800 ° C.

その理由は水の反応によるC0分圧の希釈効果と、冷材
を投入しないため過剰なMn酸化がなく、その結果、冷
材を使用する従来法に比して脱炭酸素効率が向上する。
その結果1750〜1800℃の温度で操業が可能とな
る。
The reason is that the C0 partial pressure is diluted by the reaction of water and excessive Mn oxidation does not occur because the cooling material is not added. As a result, the decarboxylation efficiency is improved as compared with the conventional method using the cooling material.
As a result, it becomes possible to operate at a temperature of 1750 to 1800 ° C.

〔実施例〕〔Example〕

実施例1 10t規模の上底吹転炉を用いて実施した操業例を以下
に示す。
Example 1 An example of operation performed using a 10 ton scale top-bottom blowing converter is shown below.

第2表に示す成分のHCFeMnの1350℃の溶湯1
1.0tを上記転炉に装入し、底吹羽口よりArを1.
0Nm3/minの供給速度で吹込み溶湯を攪拌しつつ、
上吹ランスよりOを吹付け、1700℃となった段階
よりOと水の混合気流を吹付けながら1700℃に保
持して脱炭吹錬を行った。上吹きするOおよび水の供
給速度の変更パターンを第9図に、溶湯温度の推移を第
10図に示す。
1350 ° C. molten metal of HCFeMn, which is the component shown in Table 2,
1.0 t was charged into the converter, and Ar from the bottom blowhole was 1.
While stirring the blown molten metal at a supply rate of 0 Nm 3 / min,
Decarburization blowing was performed by blowing O 2 from the upper blowing lance and maintaining the temperature at 1700 ° C. while blowing a mixed air stream of O 2 and water from the stage when the temperature reached 1700 ° C. The change pattern of the supply rate of O 2 and water to be sprayed upward is shown in FIG. 9, and the transition of the melt temperature is shown in FIG.

吹錬中は冷材は使用しなかつた。Cold material was not used during blowing.

吹錬終了後の製品MCFeMnの成分値を第2表に併記
した。
Table 2 also shows the component values of the product MCFeMn after the completion of blowing.

溶湯の攪拌を炉体揺動で行っても同様な結果が得られ
た。
Similar results were obtained even when the molten metal was stirred by rocking the furnace body.

実施例2 実施例1と同様な転炉およびHCFeMnを用い、実施
例1と同様に処理し、1700℃となった段階より送酸
速度を徐々に低下させた。溶湯の〔%C〕が1.7とな
った段階でOの供給を停止し、同時にArと霧状水の
混合気流を溶湯に吹付けた。その間、溶湯温度が一定と
なるように水の混合比率を上昇させた。
Example 2 Using the same converter and HCFeMn as in Example 1, the same treatment as in Example 1 was carried out, and the acid transfer rate was gradually reduced from the stage when the temperature reached 1700 ° C. When the [% C] of the molten metal reached 1.7, the supply of O 2 was stopped, and at the same time, a mixed air stream of Ar and atomized water was sprayed onto the molten metal. During that time, the mixing ratio of water was increased so that the molten metal temperature was constant.

、Ar、および水の供給速度を第11図に、吹錬時
の溶湯温度の推移を第12図に示す。
FIG. 11 shows the supply rates of O 2 , Ar, and water, and FIG. 12 shows the transition of the molten metal temperature during blowing.

吹錬中は冷材は使用しなかった。No cold wood was used during the blowing.

吹錬終了後のLCFeMnの成分値を第2表に併記し
た。
The component values of LCFeMn after the completion of blowing are also shown in Table 2.

溶湯の攪拌を炉体揺動で行っても同様な結果が得られ
た。
Similar results were obtained even when the molten metal was stirred by rocking the furnace body.

実施例3 実施例1と同様の転炉およびHCFeMnを用いて、実
施例1と同様に処理し、1700℃となった段階より送
酸速度を徐々に低下させ、1750℃となった段階より
と水の混合気流を吹付ながら脱炭吹錬を行い、さら
に吹錬後半ではOをArに代えて水と共に吹きこん
だ。上吹きするO、Arおよび水の供給速度を第13
図に、溶湯温度の推移を第14図に示す。
Example 3 Using the same converter and HCFeMn as in Example 1, the same treatment as in Example 1 was carried out, and the acid transfer rate was gradually reduced from the stage of 1700 ° C., and O from the stage of 1750 ° C. Decarburization blowing was performed while spraying a mixed air stream of 2 and water, and in the latter half of the blowing, O 2 was replaced with Ar and blown with water. The supply rate of O 2 , Ar and water to be sprayed upward is set to 13th.
FIG. 14 shows the transition of the molten metal temperature.

吹錬中は冷材は使用しなかった。No cold wood was used during the blowing.

吹錬終了後の製品LCFeMnの成分を第2表に併記し
た。
Table 2 also shows the components of the product LCFeMn after the completion of blowing.

〔発明の効果〕 本発明法によればHCFeMnからMCFeMnあるい
はLCFeMnを製造するに際し、冷材を用いなくとも
溶湯温度の制御が容易に行え、冷材を用いないために過
剰なMnの酸化がなくなるので、従来法より低温で操業
ができ、貴重な電気エネルギーの消費を低く抑えること
ができ、また反応容器も長時間使用できるので作業能率
が大幅に向上すると共に、設備が簡単なので、製造コス
トが大幅に削減される。
[Effects of the Invention] According to the method of the present invention, when MCFeMn or LCFeMn is produced from HCFeMn, the melt temperature can be easily controlled without using a cold material, and excessive Mn oxidation is eliminated because no cold material is used. Therefore, it is possible to operate at a lower temperature than the conventional method, it is possible to suppress the consumption of valuable electric energy to a low level, and the reaction vessel can be used for a long time, which greatly improves the work efficiency and the equipment is simple, so the manufacturing cost is low. Significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施に用いられる装置の説明図、第2
図及び第3図は上吹ガスへの水の混合比率とダスト中へ
のMn損失との関係を示す図、第4図は通常吹錬におけ
る溶湯温度と脱炭酸素効率との関係を示す図、第5図及
び第6図は溶湯炭素濃度と脱炭酸素効率との関係を示す
図、第7図及び第8図は溶湯温度と脱炭酸素効率との関
係を示す図、第9図は実施例1における吹錬時間と酸素
及び水の供給速度との関係を示す図、第10図は実施例
1における吹錬時間と溶湯温度との関係を示す図、第1
1図は実施例2における吹錬時間と酸素、アルゴンおよ
び水の供給速度との関係を示す図、第12図は実施例2
における吹錬時間と溶湯温度との関係を示す図、第13
図は実施例3における吹錬時間と酸素、アルゴンおよび
水の供給速度との関係を示す図、第14図は実施例3に
おける吹錬時間と溶湯温度との関係を示す図である。 1……反応容器、2……溶融HCFeMn 4……ランス、5……羽口 6……攪拌ガス配管、7……O配管 8……Ar配管、9……水配管 10……流量調節弁
FIG. 1 is an explanatory view of an apparatus used for carrying out the present invention, and FIG.
Figures and 3 show the relationship between the mixing ratio of water to top blowing gas and Mn loss in dust, and Figure 4 shows the relationship between molten metal temperature and decarboxylation efficiency in normal blowing. 5 and 6 are diagrams showing the relationship between the molten carbon concentration and the decarboxylation efficiency, FIGS. 7 and 8 are diagrams showing the relationship between the melt temperature and the decarboxylation efficiency, and FIG. 9 is The figure which shows the relationship between the blowing time and the supply rate of oxygen and water in Example 1, and FIG. 10 is the figure which shows the relationship between the blowing time and molten metal temperature in Example 1.
FIG. 1 is a diagram showing the relationship between the blowing time and the supply rates of oxygen, argon and water in Example 2, and FIG. 12 is Example 2
Showing the relationship between the blowing time and the molten metal temperature in FIG.
FIG. 14 is a diagram showing the relationship between the blowing time and the supply rates of oxygen, argon and water in Example 3, and FIG. 14 is a diagram showing the relationship between the blowing time and molten metal temperature in Example 3. 1 ... Reaction container, 2 ... Molten HCFeMn 4 ... Lance, 5 ... Tuyere 6 ... Stirring gas pipe, 7 ... O 2 pipe 8 ... Ar pipe, 9 ... Water pipe 10 ... Flow rate adjustment valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 嘉英 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 桜谷 敏和 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 藤井 徹也 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 増川 匡伸 岡山県倉敷市水島川崎通1丁目1番地 水 島合金鉄株式会社内 (72)発明者 大森 康明 岡山県倉敷市水島川崎通1丁目1番地 水 島合金鉄株式会社内 (72)発明者 金子 憲一 岡山県倉敷市水島川崎通1丁目1番地 水 島合金鉄株式会社内 (56)参考文献 特開 昭62−260038(JP,A) 特開 昭61−159245(JP,A) 特開 昭62−230953(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihide Kato 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Toshikazu Sakuraya Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. In the Research Headquarters (72) Inventor Tetsuya Fujii 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Center (72) Innovator Masanobu Masukawa 1-chome, Mizushima Kawasaki-dori, Kurashiki, Okayama Mizushima Gokin Co. (72) Inventor Yasuaki Omori 1-1, Mizushima Kawasaki Dori, Kurashiki City, Okayama Prefecture Mizushima Alloy Iron Co., Ltd. (72) Inventor Kenichi Kaneko 1-1 1-1 Mizushima Kawasaki Dori, Kurashiki City, Okayama Prefecture Mizushima Alloy Iron Co., Ltd. (56) Reference JP 62-260038 (JP, A) JP 61-159245 (JP, A) JP 62-230953 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】高炭素フェロマンガンの溶湯を該溶湯を収
納した炉体の揺動または炉底羽口からのガス吹込みによ
り攪拌しつつ、該溶湯浴面上に酸化性ガスを吹付けて該
溶湯を脱炭し、中炭素または低炭素のフェロマンガンを
製造するに際し、少なくとも、溶湯炭素濃度が2%以下
の期間に、溶湯温度を1600℃以上の温度に保持する
と共に酸化性ガスに霧状の水を含有させて溶湯浴面上に
吹付けることを特徴とする中・低炭素フェロマンガンの
溶製方法。
1. An oxidizing gas is sprayed onto the surface of the molten metal while stirring the molten high carbon ferromanganese by shaking the furnace body containing the molten metal or by blowing gas from the tuyere of the furnace bottom. When decarburizing the molten metal to produce medium carbon or low carbon ferromanganese, the molten metal temperature is maintained at 1600 ° C. or higher and atomized with an oxidizing gas at least during the period when the molten carbon concentration is 2% or less. A method for producing medium- and low-carbon ferromanganese, which comprises spraying water-like water onto the surface of the molten metal.
【請求項2】酸化性ガスが酸素を含有するガスであって
水との混合比率が0.2〜20kg水/Nm3ガスである
請求項1記載の中・低炭素フェロマンガンの溶製方法。
2. The method for producing medium / low carbon ferromanganese according to claim 1, wherein the oxidizing gas is a gas containing oxygen and the mixing ratio with water is 0.2 to 20 kg water / Nm 3 gas. .
【請求項3】高炭素フェロマンガンの溶湯を該溶湯を収
納した炉体の揺動または炉底羽口からのガス吹込みによ
り攪拌しつつ、該溶湯浴面上に酸化性ガスを吹付けて該
溶湯を脱炭し、中炭素または低炭素のフェロマンガンを
製造するに際し、少なくとも、溶湯炭素濃度が2%以下
の期間に、溶湯温度を1600℃以上の温度に保持する
と共に、前記酸化性ガスの吹付けを止めて、非酸化性ガ
スに霧状の水を含有させて溶湯浴面上に吹付けることを
特徴とする中・低炭素フェロマンガンの溶製方法。
3. An oxidizing gas is sprayed onto the surface of the molten metal while stirring the molten metal of high carbon ferromanganese by shaking the furnace body containing the molten metal or by blowing gas from the tuyere of the furnace bottom. When decarburizing the molten metal to produce medium carbon or low carbon ferromanganese, the molten metal temperature is maintained at a temperature of 1600 ° C. or higher at least during the period when the molten carbon concentration is 2% or lower, and the oxidizing gas is used. The method for producing medium / low carbon ferromanganese is characterized in that the spraying is stopped and the non-oxidizing gas is mixed with atomized water and sprayed onto the surface of the molten metal bath.
【請求項4】高炭素フェロマンガンの溶湯を該溶湯を収
納した炉体の揺動または炉底羽口からのガス吹込みによ
り攪拌しつつ、該溶湯浴面上に酸化性ガスを吹付けて該
溶湯を脱炭し、中炭素または低炭素のフェロマンガンを
製造するに際し、少なくとも、溶湯炭素濃度が2%以下
の期間に、溶湯温度を1600℃以上の温度に保持する
と共に酸化性ガスに霧状の水を含有させて溶湯浴面上に
吹付け、この吹付け途中で酸化性ガスの吹付けを止めて
非酸化性ガスに霧状の水を含有させて溶湯浴面上に吹付
けることを特徴とする中・低炭素フェロマンガンの溶製
方法。
4. An oxidizing gas is sprayed onto the surface of the molten metal while stirring the molten high carbon ferromanganese by rocking the furnace body containing the molten metal or by blowing gas from the tuyere of the furnace bottom. When decarburizing the molten metal to produce medium carbon or low carbon ferromanganese, the molten metal temperature is maintained at 1600 ° C. or higher and atomized with an oxidizing gas at least during the period when the molten carbon concentration is 2% or less. -Like water is sprayed onto the surface of the molten metal, and the spraying of oxidizing gas is stopped during this spraying, and non-oxidizing gas is mixed with atomized water and sprayed onto the surface of the molten metal. A method for melting medium- and low-carbon ferromanganese characterized by:
【請求項5】非酸化性ガスが窒素またはアルゴンであっ
て水との混合比率が0.1〜20kg水/Nm3ガスであ
る請求項3または4記載の中・低炭素フェロマンガンの
溶製方法。
5. The production of medium / low carbon ferromanganese according to claim 3 or 4, wherein the non-oxidizing gas is nitrogen or argon and the mixing ratio with water is 0.1 to 20 kg water / Nm 3 gas. Method.
【請求項6】酸化性ガスまたは非酸化性ガスと水との混
合比率を調整して溶湯温度を制御する請求項1、2、
3、4または5記載の中・低炭素フェロマンガンの溶製
方法。
6. The molten metal temperature is controlled by adjusting the mixing ratio of oxidizing gas or non-oxidizing gas and water.
3. A method for producing medium- and low-carbon ferromanganese according to 3, 4 or 5.
JP63320497A 1988-12-21 1988-12-21 Melting method of medium / low carbon ferromanganese Expired - Fee Related JPH0621318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320497A JPH0621318B2 (en) 1988-12-21 1988-12-21 Melting method of medium / low carbon ferromanganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320497A JPH0621318B2 (en) 1988-12-21 1988-12-21 Melting method of medium / low carbon ferromanganese

Publications (2)

Publication Number Publication Date
JPH02166256A JPH02166256A (en) 1990-06-26
JPH0621318B2 true JPH0621318B2 (en) 1994-03-23

Family

ID=18122110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320497A Expired - Fee Related JPH0621318B2 (en) 1988-12-21 1988-12-21 Melting method of medium / low carbon ferromanganese

Country Status (1)

Country Link
JP (1) JPH0621318B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683487B2 (en) * 1993-05-18 1997-11-26 水島合金鉄株式会社 Manufacturing method and manufacturing apparatus for medium / low carbon ferromanganese
UA82962C2 (en) * 2005-12-02 2008-05-26 Sms Demag Ag Method and smelting unit for obtaining steel with high manganese and low carbon content
US20230167518A1 (en) 2020-03-06 2023-06-01 Jfe Steel Corporation Method for producing low-carbon ferromanganese
CN114574641B (en) * 2022-03-02 2022-11-01 北京科技大学 Method for smelting medium-low carbon ferromanganese

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159245A (en) * 1984-12-29 1986-07-18 Nippon Steel Corp Production of casting pig
JPS62230953A (en) * 1986-03-31 1987-10-09 Kobe Steel Ltd Manufacture of medium-or low-carbon ferromanganese
JPS62260038A (en) * 1986-05-07 1987-11-12 Kawasaki Steel Corp Refining method for ferroalloy

Also Published As

Publication number Publication date
JPH02166256A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
CA2010356C (en) Method for manufacturing molten metal containing ni and cr
AU2009236006A1 (en) Refining ferroalloys
JP6962934B2 (en) Method for producing medium-low carbon ferromanganese and medium-low carbon ferromanganese
JPH0621318B2 (en) Melting method of medium / low carbon ferromanganese
US5885323A (en) Foamy slag process using multi-circuit lance
JP6726777B1 (en) Method for producing low carbon ferromanganese
JPS63290242A (en) Method, converter and lance for producing low carbon/low silicon ferromanganese
JP2005089839A (en) Method for refining molten steel
WO2019102705A1 (en) Low/medium-carbon ferromanganese production method
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JP7036993B2 (en) Method for producing low carbon ferromanganese
JPH0355538B2 (en)
RU2107737C1 (en) Method of steel melting in converter
JP4513340B2 (en) Hot metal dephosphorization method
JPH01316437A (en) Manufacture of medium-low carbon ferromanganese
JP3509128B2 (en) Operating method of converter type smelting reduction furnace and oxygen blowing lance
JPH03274216A (en) Dephosphorize pre-treating method for molten iron
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JP2001032009A (en) Method for refining molten steel containing chromium
JP2002256324A (en) Method for melting high carbon and high chromium steel
KR840002047B1 (en) Converter steel making process
JPH062922B2 (en) Method for producing carbon unsaturated high manganese iron alloy
JPH0136546B2 (en)
JPH11293332A (en) Decarburize-refining of molten ferro-manganese
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees