JPH06129405A - Variable method for actuator relative speed - Google Patents

Variable method for actuator relative speed

Info

Publication number
JPH06129405A
JPH06129405A JP5520993A JP5520993A JPH06129405A JP H06129405 A JPH06129405 A JP H06129405A JP 5520993 A JP5520993 A JP 5520993A JP 5520993 A JP5520993 A JP 5520993A JP H06129405 A JPH06129405 A JP H06129405A
Authority
JP
Japan
Prior art keywords
hydraulic
pilot
pressure
switching valve
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5520993A
Other languages
Japanese (ja)
Inventor
Satoshi Miyaoka
諭 宮岡
Toshihiro Nishimoto
利弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Yutani Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutani Heavy Industries Ltd filed Critical Yutani Heavy Industries Ltd
Priority to JP5520993A priority Critical patent/JPH06129405A/en
Publication of JPH06129405A publication Critical patent/JPH06129405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To improve operabiity by providing means to limit by means of outside signals the movement stroke of the spool of a changeover valve connected to a low load pressure actuator in the same hydraulic changeover valve group, in the case of the actuator hydraulic circut of a hydraulic shovel or the like. CONSTITUTION:In case where a boom ascent movement and a turning movement are simultaneously carried out by operating operation levers 38, 38' simultaneously, a switch 45 is closed by means of the hydraulic signal of a pilot oil passage 30, and electrification is made to a variable electric current switch 44 from a power source 48. By this, the electric current of a set value adjusted/set at the variable electric current switch 44 is impressed at the receiving portion of a solenoid proportional pressure reducing valve 32 provided at pilot oil passages 46, 47. By this, the hydraulic signals of the pilot oil passages connected to the pilot oil chamber of a hydraulic changeover valve 14 are controlled without being controlled by the pilot pressure of pilot valves 16, 16'. Accordingly, the movement stroke of the spool of the hydraulic changeover valve 14 is limited, and after the positions of boom hydraulic changeover valves 9, 6 are moved to D positions, the position of the changeover valve 14 becomes a middle position, and a turning motor 12 is operated. Accordingly, desired operation can be accomplished without operating operation levers delicately, and complex operation handling becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば油圧ショベル
のブーム上昇と旋回のアクチュエータの如く、並列回路
接続の同一油圧切換弁に属する油圧切換弁を操作して作
動時負荷圧力の異なるアクチュエータを同時に作動せし
めるときに、両者の関係速度を良好に、選択、調整する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention operates hydraulic switching valves belonging to the same hydraulic switching valve connected in parallel circuit, such as an actuator for raising and turning a boom of a hydraulic excavator, to simultaneously operate actuators having different load pressures during operation. The present invention relates to a method for satisfactorily selecting and adjusting the relationship speed between the two when they are operated.

【0002】[0002]

【従来の技術】従来の一般的な油圧回路として、油圧シ
ョベルの場合を例にとり説明すると、同一油圧切換弁群
内の油圧切換弁は、並列回路構成となっており、この切
換弁によりそれぞれのアクチュエータへ、所望の量の圧
油を分配するには油圧切換弁のスプール移動量を人為的
に加減しながら運転していた。以下、従来技術の実施例
を図5に示す油圧ショベルの油圧回路図により、ブーム
上昇第2速(実施例において詳述する)と旋回とを同時
に作動せしめた場合について説明する。
2. Description of the Related Art As a conventional general hydraulic circuit, a hydraulic excavator will be described as an example. The hydraulic switching valves in the same hydraulic switching valve group have a parallel circuit configuration. In order to distribute a desired amount of pressure oil to the actuator, the operation was performed while artificially adjusting the spool movement amount of the hydraulic switching valve. Hereinafter, an embodiment of the prior art will be described with reference to the hydraulic circuit diagram of the hydraulic excavator shown in FIG. 5, in which the boom second speed (described in detail in the embodiment) and the turning are simultaneously actuated.

【0003】図5のブーム用操作レバ38を操作して、
パイロット弁15を最大に作動させると、パイロット油
圧信号は、パイロット油路30、31を経て油圧切換弁
9のパイロット油室に達し、該油圧切換弁9のスプール
をD位置に移動させると同時に、パイロット油路30の
延長油路は油圧切換弁6のパイロット油室にも通じてい
るので、該油圧切換弁6のスプールをもD位置に移動さ
せる。この結果、第2油圧ポンプ3の吐出油は油路2
4、油圧切換弁9のD位置通路、油路39、40を通
り、ブームシリンダ13の伸長側油室へ、また第1油圧
ポンプ2の吐出油は油路23、油圧切換弁6のD位置通
路、油路41を通り上述の油路40に合流してブームシ
リンダ13へと流入する。この状態で、操作レバ38’
を操作してパイロット弁16または16’の作用により
油圧切換弁6と同一油圧切換弁群Aに属する油圧切換弁
14を切換え、そのスプール位置がDまたはEに移動す
ると、油路23の圧油は油路34に分流し、油圧切換弁
14のDまたはE位置通路を通って旋回モータ12に流
入する。このとき、油圧切換弁6、14は共に油路23
に並列的に配置されているので、第1油圧ポンプ2の圧
油は、ブームシリンダ13、旋回モータ12の何れか負
荷圧力の低い方へ大量に流入し、そのアクチュエータを
主として作動させる。従って、ブーム上昇速度と旋回速
度との関係速度を好ましい状態にするには、回路設計時
点においてブームシリダン13の負荷圧力と旋回モータ
12の負荷圧力特性を予め算出し、或る一定の作業負荷
と作業条件とを勘案して油圧回路を構成するが、このこ
とは、あくまでも標準作業条件の下において稼働せしめ
る場合にのみ有効となるだけであり、しかも一般的には
回路効率の低下をきたすものである。
By operating the boom operation lever 38 shown in FIG.
When the pilot valve 15 is actuated to the maximum, the pilot oil pressure signal reaches the pilot oil chamber of the oil pressure switching valve 9 via the pilot oil passages 30 and 31, and at the same time moves the spool of the oil pressure switching valve 9 to the D position. Since the extension oil passage of the pilot oil passage 30 also communicates with the pilot oil chamber of the hydraulic pressure switching valve 6, the spool of the hydraulic pressure switching valve 6 is also moved to the D position. As a result, the oil discharged from the second hydraulic pump 3 is transferred to the oil passage 2
4, through the D position passage of the hydraulic switching valve 9 and the oil passages 39 and 40 to the extension side oil chamber of the boom cylinder 13, and the oil discharged from the first hydraulic pump 2 is the oil passage 23 and the D position of the hydraulic switching valve 6. It passes through the passage and the oil passage 41, merges with the above-mentioned oil passage 40, and flows into the boom cylinder 13. In this state, the operating lever 38 '
Is operated to switch the hydraulic pressure switching valve 14 belonging to the same hydraulic pressure switching valve group A as the hydraulic pressure switching valve 6 by the action of the pilot valve 16 or 16 ', and when the spool position moves to D or E, the pressure oil in the oil passage 23 is changed. Flows into the oil passage 34 and flows into the turning motor 12 through the D or E position passage of the hydraulic pressure switching valve 14. At this time, the hydraulic pressure switching valves 6 and 14 are both in the oil passage 23.
Since they are arranged in parallel with each other, a large amount of pressure oil of the first hydraulic pump 2 flows into one of the boom cylinder 13 and the swing motor 12, whichever has a lower load pressure, and mainly operates its actuator. Therefore, in order to make the relationship speed between the boom rising speed and the turning speed into a preferable state, the load pressure characteristics of the boom silidan 13 and the turning motor 12 are calculated in advance at the time of circuit design, and a certain work load and work The hydraulic circuit is configured in consideration of the conditions, but this is only effective only when the hydraulic circuit is operated under the standard working conditions, and generally, the circuit efficiency is lowered. .

【0004】例えば、標準バックホウアタッチメントを
装備した標準機のフロントアタッチメントを取かえて図
6に示すように自重の大なる特殊クラムシェルを装備し
たときには、当然ブームシリンダ13に加わる定常的な
負荷圧力は増大し、上述のブーム上昇、旋回の同時操作
をすると、第1油圧ポンプ2の圧油の殆んどは旋回モー
タ12にのみ流入する。
For example, when the front attachment of a standard machine equipped with a standard backhoe attachment is replaced with a special clamshell having a large self-weight as shown in FIG. 6, the steady load pressure naturally applied to the boom cylinder 13 is If the boom is increased and the above-described boom raising and turning operations are simultaneously performed, most of the pressure oil of the first hydraulic pump 2 flows into only the turning motor 12.

【0005】また図7はブーム上昇、旋回同時の操作に
よりバケット49に満載した作業対象物を、運搬車Tx
またはTyまで移動させるときのブーム上昇高さHと旋
回の展開角度θの関係を示す図であり、掘削終了点Oを
原点とすると、作業対象物を運搬車TxまたはTyまで
移動させる最短距離は、ブームを上昇させながら旋回を
し、バケット49の移動軌跡が直線xまたはyとなる必
要があり、最終的にはブーム上昇高さHxのとき旋回角
度はθx,或いはそれぞれHy,θyとならなければ作
業能率の向上とはならないが、図において明らかなよう
に、バケット49の移動軌跡が直線x,yとなるために
は、同じ旋回角度θxに対してブーム上昇高さは、直線
xではHx,直線y上ではH’yとなり、また同じブー
ム上昇高さHyに対して旋回の所要角度は、直線y上で
はθyとなるが直線xではθ’xでよいこととなる。
Further, FIG. 7 shows that the work object loaded in the bucket 49 is operated by the truck Tx when the boom is raised and turned simultaneously.
It is a diagram showing the relationship between the boom rising height H and the turning deployment angle θ when moving to Ty, and when the excavation end point O is the origin, the shortest distance to move the work object to the transport vehicle Tx or Ty is , It is necessary to turn while raising the boom, and the movement path of the bucket 49 should be a straight line x or y. Finally, when the boom rise height is Hx, the turning angle must be θx, or Hy and θy, respectively. Although the work efficiency is not improved, as is clear from the figure, in order for the movement trajectory of the bucket 49 to be the straight lines x and y, the boom rising height is Hx on the straight line x for the same turning angle θx. , H'y on the straight line y, and the required turning angle for the same boom rise height Hy is θy on the straight line y, but θ'x for the straight line x.

【0006】[0006]

【発明が解決しようとする課題】実作業をするにあた
り、バケット49に加わる作業対象物の重量は一定作業
の反復であり、大きい変化はないが、作業条件、作業機
の立地条件、運搬車Tx,Tyの配置条件は多様であ
り、従来機では、運転者がこれに対応するためには、長
期間の熟練と感によりブーム上昇用操作レバ、旋回操作
レバを交互に、微妙に調整し、効率を向上させることが
要求させていた。また、前記のブーム上昇、旋回の関係
速度を改善する目的で図5の油路34または41を固定
的な絞り油路とすることを従来機で樹脂したものもある
が、前述の如く単独作動時の回路効率の低下をもたらす
原因となっていた。本発明では、上記ブーム上昇、旋回
の如き同時操作時においても、作業条件に最も適した両
者の関係速度を、不馴れな運転者にも容易に得られるよ
うにし、能率のよい作業を実現し、しかも単独作動時の
効率低下のない油圧回路を実現することを課題とするも
のである。
In actual work, the weight of the work object added to the bucket 49 is a constant repetition of work, and although there is no great change, the work conditions, the location conditions of the work machine, and the transport vehicle Tx. , Ty have various arrangement conditions. In the conventional machine, in order for the driver to cope with this, the boom raising operation lever and the turning operation lever are alternately and subtly adjusted depending on long-term skill and feeling. It demanded to improve efficiency. Further, there is a resin in which the oil passage 34 or 41 shown in FIG. 5 is made to be a fixed throttle oil passage by a conventional machine for the purpose of improving the above-mentioned boom-raising and turning-related speed. This was a cause of a decrease in circuit efficiency. In the present invention, even at the time of simultaneous operations such as boom raising and turning, the relational speed of the two that is most suitable for the working conditions can be easily obtained by an unfamiliar driver, and efficient work is realized. Moreover, it is an object of the present invention to realize a hydraulic circuit in which the efficiency does not decrease when operated independently.

【0007】[0007]

【課題を解決するための手段】パイロット弁からの油圧
信号の大小に比例するスプールの移動ストロークで切換
わり、並列回路で接続される複数の油圧切換弁から構成
した油圧切換弁群内の各切換弁に連なるアクチュエータ
を作動させる如くした油圧作動回路において、同時に作
動させようとするアクチュエータのうち、負荷圧力の低
いアクチュエータ用のパイロット圧油信号を発生させる
操作系管路上に、外部から任意に調整可能の可変電流ス
イッチの如き調整手段からの信号と、負荷圧力の高いア
クチュエータ用油圧切換弁の操作を検出する検出手段か
らの信号とが受信部に入力されると、電磁比例減圧弁の
如く上記調整手段からの信号に比例する圧油を下流側へ
流出するストローク制限手段を設ける。
Each switching in a hydraulic switching valve group composed of a plurality of hydraulic switching valves which are switched by a stroke of movement of a spool proportional to the magnitude of a hydraulic signal from a pilot valve and which are connected in a parallel circuit. In the hydraulic circuit that operates the actuators connected to the valve, among the actuators that are to be operated at the same time, it is possible to externally adjust the operation system pipeline that generates the pilot pressure oil signal for the actuator with a low load pressure. When the signal from the adjusting means such as the variable current switch and the signal from the detecting means for detecting the operation of the hydraulic pressure switching valve for the actuator having a high load pressure are input to the receiving portion, the above-mentioned adjustment is performed like an electromagnetic proportional pressure reducing valve. Stroke limiting means is provided for discharging the pressure oil proportional to the signal from the means to the downstream side.

【0008】[0008]

【作用】運転に際して、調整手段である可変電流スイッ
チを所望の位置に設定し、負荷圧力の高いアクチュエー
タ用と低いアクチュエータ用の操作レバを同時に操作す
ると、負荷圧力の低いアクチュエータ用油圧切換弁のパ
イロット油室には最大値がストローク制限手段で減圧さ
れたパイロット圧が作用するので、その油圧切換弁は中
間開度となり、両方のアクチュエータにそれぞれ適量の
圧油が供給される。また、アクチュエータの相対速度を
変更するとき、または負荷変動のあるときは、上記可変
電流スイッチを調整して電磁比例減圧弁からの制限圧力
を変更する。
In operation, when the variable current switch, which is the adjusting means, is set to a desired position and the operating levers for the actuator with high load pressure and the actuator for low load pressure are operated simultaneously, the pilot of the hydraulic switching valve for the actuator with low load pressure is operated. Since the pilot pressure whose maximum value has been reduced by the stroke limiting means acts on the oil chamber, the hydraulic switching valve has an intermediate opening, and an appropriate amount of pressure oil is supplied to both actuators. Further, when the relative speed of the actuator is changed, or when there is a load change, the variable current switch is adjusted to change the limiting pressure from the electromagnetic proportional pressure reducing valve.

【0009】[0009]

【実施例】この発明の実施例を、図面を参照しながら説
明する。図1は、この発明を油圧リモートコントロール
方式の油圧ショベルに適用したときの電気・油圧回路図
を一部省略して示す。1は第1油圧ポンプ2、第2油圧
ポンプ3、パイロットポンプ4を駆動するエンジンで、
第1油圧ポンプ2はタンク21からサクションストレー
ナ19を経て油を吸入し、吐出油はリリーフ弁18で調
圧され油路23を通って左走行用の油圧切換弁7、ブー
ム上昇第2速用の油圧切換弁6、アーム第1速用の油圧
切換弁5、旋回モータ12用の油圧切換弁14などから
構成される第1油圧切換弁群Aに流入してゆき、第2油
圧ポンプ3の吐出油はリリーフ弁20で調圧され油路2
4を通り右走行用の油圧切換弁8、ブーム上昇、下降第
1速用の油圧切換弁9、バケット用の油圧切換弁10、
アーム第2速用の油圧切換弁11から構成される第2油
圧切換弁群Bへと流入する。第1、第2油圧切換弁群
A,Bに属する各油圧切換弁は、各群毎に並列油圧回路
となっており、それぞれの油圧切換弁が中立位置、すな
わち、操作されないときには、各アクチュエータへの油
路は閉止されるが、油路23または24を通って送油さ
れる圧油は、内部の中立時バイパス油路を通って、それ
ぞれ油路35,36に入り、合流油路25となり、オイ
ルクーラ26、リターンフィルタ27を経てタンク21
に戻る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partially omitted electric / hydraulic circuit diagram when the present invention is applied to a hydraulic excavator of a hydraulic remote control system. Reference numeral 1 denotes an engine that drives a first hydraulic pump 2, a second hydraulic pump 3, and a pilot pump 4,
The first hydraulic pump 2 sucks oil from the tank 21 through the suction strainer 19, and the discharge oil is regulated by the relief valve 18 and passes through the oil passage 23 to the hydraulic switching valve 7 for left traveling, the boom ascending second speed. Of the second hydraulic pump 3 and the first hydraulic pressure switching valve 6 for the first arm, the hydraulic pressure switching valve 14 for the swing motor 12, and the like. The discharge oil is regulated by the relief valve 20 and the oil passage 2
4, a hydraulic switching valve 8 for right traveling, a boom up / down hydraulic switching valve 9 for first speed, a hydraulic switching valve 10 for bucket,
It flows into the second hydraulic pressure switching valve group B including the hydraulic pressure switching valve 11 for the second arm. The hydraulic pressure switching valves belonging to the first and second hydraulic pressure switching valve groups A and B are parallel hydraulic circuits for each group, and when the respective hydraulic pressure switching valves are in the neutral position, that is, when they are not operated, they are connected to the respective actuators. However, the pressure oil sent through the oil passages 23 or 24 enters the oil passages 35 and 36 through the internal neutral bypass oil passages to become the confluent oil passage 25. After passing through the oil cooler 26 and the return filter 27, the tank 21
Return to.

【0010】また、操作レバ38により作動するパイロ
ット弁15の二次側であるパイロット圧出口ポートに接
続したパイロット油路30およびその分岐パイロット油
路31は油圧切換弁6、9のスプールを、ブームシリン
ダ13が伸長する側に移動させるパイロット油室に通
じ、パイロット弁15’のパイロット圧出口ポートに接
続したパイロット油路33は油圧切換弁9のスプール
を、ブームシリンダ13が縮小する側に移動させるパイ
ロット油室に通じ、操作レバ38’により作動するパイ
ロット弁16、16’の二次側ポートであるパイロット
圧出口ポートに接続したパイロット油路46、47は旋
回用油圧切換弁14のパイロット油室に通じている。そ
の他の油圧切換弁、すなわち、第1油圧切換弁群Aに属
する油圧切換弁5、7および第2油圧切換弁群Bに属す
る油圧切換弁8、10、11などは従来の油圧ショベル
における切換弁と同様、それぞれ専用のパイロット弁
(図示せず)からの油圧信号により、第1油圧ポンプ
2、第2油圧ポンプ3の圧油を切換えて、各アクチュエ
ータに供給し、作動させる。また、パイロットポンプ4
の吐出油は、油圧切換弁5、6、7、8、9、10、1
1、14など操作系の油圧源となるものであり、ライン
フィルタ28を通り、リリーフ弁22により調圧され、
操作系の油圧源管路である油路29を通ってパイロット
弁15、15’、16、16’およびその他の油圧切換
弁用パイロット弁などへの一次側の油圧源として供給さ
れる。そうして、同一油圧切換弁群Aに属し、同時に操
作される機会が多く、また負荷圧力の低い方のアクチュ
エータ用の油圧切換弁例えば旋回用油圧切換弁14を操
作するパイロット弁16、16’の二次側から前記切換
弁のパイロット油室へと通じる操作系管であるパイロッ
ト油路46,47の途中に電磁比例減圧弁32、32を
設け、該電磁比例減圧弁32、32の励磁部には、任意
に調整可能の調整手段である可変電流スイッチ44、ス
イッチ45を介して、電源48が通じるように信号回路
が設けてある。また、上記スイッチ45は、その受信部
にパイロット弁15、すなわち、負荷圧力の高いアクチ
ュエータ用油圧切換弁の切換操作をするパイロット弁の
パイロット油圧信号が作用すると閉路して電源48が信
号回路を経て可変電流スイッチ44に通ずる機能を有す
る切換操作の検出手段となっている。
The pilot oil passage 30 connected to the pilot pressure outlet port on the secondary side of the pilot valve 15 operated by the operation lever 38 and its branch pilot oil passage 31 connect the spools of the hydraulic pressure switching valves 6 and 9 to the boom. The pilot oil passage 33, which communicates with the pilot oil chamber for moving the cylinder 13 to the extending side and is connected to the pilot pressure outlet port of the pilot valve 15 ′, moves the spool of the hydraulic pressure switching valve 9 to the side where the boom cylinder 13 contracts. Pilot oil passages 46 and 47 connected to the pilot pressure outlet port, which is the secondary side port of the pilot valves 16 and 16 ′ that communicates with the pilot oil chamber and is operated by the operation lever 38 ′, are pilot oil chambers of the turning hydraulic switching valve 14. It leads to. The other hydraulic switching valves, that is, the hydraulic switching valves 5, 7 belonging to the first hydraulic switching valve group A and the hydraulic switching valves 8, 10, 11 belonging to the second hydraulic switching valve group B are the switching valves in the conventional hydraulic excavator. In the same manner as above, the pressure oils of the first hydraulic pump 2 and the second hydraulic pump 3 are switched by hydraulic signals from respective dedicated pilot valves (not shown) to supply and operate each actuator. In addition, pilot pump 4
The discharge oil of is the oil pressure switching valve 5, 6, 7, 8, 9, 10, 1.
1, 14 and the like serve as a hydraulic pressure source for the operation system, pass through the line filter 28, and are regulated by the relief valve 22.
It is supplied as a primary hydraulic power source to the pilot valves 15, 15 ', 16, 16' and other pilot valves for hydraulic pressure switching valves through an oil passage 29 which is a hydraulic pressure source pipeline of the operation system. Then, pilot valves 16 and 16 'for operating the hydraulic switching valves for the actuators belonging to the same hydraulic switching valve group A, which are often operated at the same time and have a lower load pressure, for example, the swing hydraulic switching valve 14. Electromagnetic proportional pressure reducing valves 32, 32 are provided in the middle of pilot oil passages 46, 47, which are operation system pipes leading from the secondary side to the pilot oil chamber of the switching valve, and the exciting portions of the electromagnetic proportional pressure reducing valves 32, 32 are provided. Is provided with a signal circuit so that a power source 48 is connected through a variable current switch 44 and a switch 45, which are adjusting means that can be arbitrarily adjusted. Further, the switch 45 is closed when a pilot hydraulic pressure signal of the pilot valve 15, that is, a pilot valve for switching the hydraulic pressure switching valve for an actuator having a high load pressure, acts on its receiving portion, and the power source 48 passes through a signal circuit. It is a switching operation detecting means having a function of communicating with the variable current switch 44.

【0011】次に、以上の電気・油圧回路における作動
について説明する。最初に、ブームシリンダ13の伸縮
動作のみの単独操作をしたときを説明する。一般に油圧
ショベルのブームには大きい負荷が加わり、強大な力が
要求されると共に、上昇時の作動速度も要求されるの
で、上昇時には2個の油圧ポンプの吐出油を同時にブー
ムシリンダの伸長側油室に供給し、下降時には縮小側油
室に1個の油圧ポンプの吐出油を導く方式がとられてい
る。図1における操作レバ38をブーム上昇側に操作す
ると、パイロット弁15のパイロット油圧信号は、操作
系管路であるパイロット油路30、31を通り、油圧切
換弁9のパイロット油室に作用し、スプール位置をC位
置からD位置に移動させるので油路24の圧油は、該油
圧切換弁9のD位置通路、油路39、40を通ってブー
ムシリンダ13の伸長側油室に流入し、ブームを上昇せ
しめると同時に、パイロット油路30は油圧切換弁6の
パイロット油室にも通じているので、該切換弁6のスプ
ールをC位置からD位置に切換えようとするが、一般的
には、ブームシリンダ13の伸長速度を第1速と第2速
と使い分けする目的でパイロット圧が比較的低圧のと
き、油圧切換弁9側のスプールが先行移動し、更にパイ
ロット圧が上昇すると油圧切換弁9のスプール位置はD
に移動したまま、油圧切換弁6のスプールがD位置に移
動するようにしてあるので、操作レバ38を全操作して
パイロット弁15からより高圧のパイロット油圧信号が
油路30に送り込まれなければ油圧切換弁6は作動しな
い。高圧のパイロット油圧信号により、やがて、切換弁
6のスプールもD位置に移動すると、油路23からの圧
油は該切換弁6のD位置通路、油路41を通り、該油路
41に設けた圧油逆流防止用のチェック弁17を押開
き、油路39に合流し、油路40を通ってブームシリン
ダ13の伸長側油室に流入する。従って、ブームシリン
ダ13の伸長側油室へは、操作レバ38の操作初期では
第2油圧ポンプ3からの圧油のみが、また操作後期では
第1油圧ポンプ2と第2油圧ポンプ3との圧油が合流し
て流入する。
Next, the operation of the above electric / hydraulic circuit will be described. First, a case will be described in which the boom cylinder 13 is independently operated by only expanding and contracting. Generally, a large load is applied to the boom of a hydraulic excavator, a large force is required, and an operating speed at the time of ascent is also required. Therefore, at the time of ascent, the discharge oil of two hydraulic pumps is simultaneously supplied to the oil on the extension side of the boom cylinder. A system is adopted in which the oil is supplied to the chamber and the discharge oil of one hydraulic pump is guided to the reduction-side oil chamber when descending. When the operation lever 38 in FIG. 1 is operated to the boom raising side, the pilot hydraulic pressure signal of the pilot valve 15 passes through the pilot oil passages 30 and 31 which are the operation system pipelines, and acts on the pilot oil chamber of the hydraulic pressure switching valve 9. Since the spool position is moved from the C position to the D position, the pressure oil in the oil passage 24 flows into the extension side oil chamber of the boom cylinder 13 through the D position passage of the hydraulic switching valve 9 and the oil passages 39 and 40. At the same time when the boom is raised, the pilot oil passage 30 also communicates with the pilot oil chamber of the hydraulic pressure switching valve 6, so the spool of the switching valve 6 is tried to be switched from the C position to the D position. When the pilot pressure is relatively low for the purpose of selectively using the extension speed of the boom cylinder 13 between the first speed and the second speed, the spool on the hydraulic pressure switching valve 9 side moves forward, and when the pilot pressure further increases, the oil pressure increases. Spool position of the switching valve 9 D
Since the spool of the hydraulic pressure switching valve 6 is moved to the D position while still moving to, the operating lever 38 must be fully operated to send a higher pilot hydraulic pressure signal from the pilot valve 15 to the oil passage 30. The hydraulic pressure switching valve 6 does not operate. When the spool of the switching valve 6 is also moved to the D position due to the high pilot hydraulic pressure signal, the pressure oil from the oil passage 23 passes through the D position passage of the switching valve 6 and the oil passage 41, and is provided in the oil passage 41. The check valve 17 for preventing pressure oil backflow is pushed open, merges with the oil passage 39, and flows into the extension side oil chamber of the boom cylinder 13 through the oil passage 40. Therefore, only the pressure oil from the second hydraulic pump 3 is supplied to the extension side oil chamber of the boom cylinder 13 in the initial operation of the operation lever 38, and the pressure of the first hydraulic pump 2 and the second hydraulic pump 3 is increased in the latter operation. The oil merges and flows in.

【0012】次いで操作レバ38を逆方向に操作し、パ
イロット弁15’の二次側のパイロット圧出口ポートに
接続された操作系管路であるパイロット油路33の油圧
信号が上昇し、油圧切換弁9のブームシリンダ13縮小
側のパイロット油室に流入すると、該油圧切換弁9のス
プールはE位置に移動し、油路24の圧油は該油圧切換
弁9のE位置通路、油路42、43を通り、ブームシリ
ンダ13の縮小側油室へ流入しブームを下降せしめる。
Next, the operating lever 38 is operated in the reverse direction, the hydraulic signal of the pilot oil passage 33, which is the operation system conduit connected to the pilot pressure outlet port on the secondary side of the pilot valve 15 ', rises, and the hydraulic pressure is switched. When the spool of the hydraulic pressure switching valve 9 moves to the E position when it flows into the pilot oil chamber on the contraction side of the boom cylinder 13 of the valve 9, the pressure oil in the oil passage 24 moves to the E position passage of the hydraulic switching valve 9, the oil passage 42. , 43 into the reduction-side oil chamber of the boom cylinder 13 to lower the boom.

【0013】次に、旋回モータ12を単独に作動させる
場合について述べる。旋回用操作レバ38’を操作する
と、これに連動するパイロット弁16または16’の油
圧信号が操作系管路の1つであるパイロット油路46ま
たは47を通って油圧切換弁14のパイロット油室に作
用し、スプールをDまたはE位置に切換えるので、油路
23の分岐油路からの圧油は、該油圧切換弁14のDま
たはE位置通路を経て、ブレーキバルブ37の保護の下
に、旋回モータ12を正転または逆転させる。従って旋
回モータ12を単独で作動せしめるときは、第1ポンプ
2の吐出油が全量旋回モータ12に流入することとな
る。
Next, the case where the turning motor 12 is independently operated will be described. When the turning operation lever 38 ′ is operated, the hydraulic signal of the pilot valve 16 or 16 ′ interlocked with the turning operation lever 38 ′ passes through the pilot oil passage 46 or 47 which is one of the operation system pipelines and the pilot oil chamber of the hydraulic pressure switching valve 14. And the spool is switched to the D or E position, the pressure oil from the branch oil passage of the oil passage 23 passes through the D or E position passage of the hydraulic switching valve 14 and under the protection of the brake valve 37. The turning motor 12 is rotated normally or reversely. Therefore, when the swing motor 12 is operated independently, all the discharge oil of the first pump 2 flows into the swing motor 12.

【0014】次に、図1の油圧回路の油圧ショベルにお
いて、図6の如くブームシリンダ13に大きな負荷が常
時加わっているときや、図7の如く旋回作動角度が僅か
の間にブーム上昇作動を大きく得る必要があるとき、し
かも旋回動作、ブーム上昇動作を同時に行う場合につい
て説明する。ブームを上昇せしめるため、操作レバ38
を全傾し、パイロット弁15からの高いパイロット油圧
信号がパイロット油路30に流入すると、上述の如く、
油圧切換弁9、6のスプールは共にD位置に移動し,第
1ポンプ2、第2ポンプ3の圧油は共にブームシリンダ
13に流入しようとするが、同時に、旋回モータ作動用
操作レバ38’を操作していると、油圧切換弁14のス
プールもDまたはE位置に移動しているので、第1ポン
プ2の圧油は油圧切換弁6、14のそれぞれに連なるア
クチュエータの負荷圧力に逆比例して分散、流入する筈
であるが、本発明では、回路図に示す如く、パイロット
油路30に油圧信号が発生すると、スイッチ45の回路
は閉じ、電源48から可変電流スイッチ44に通電され
る。従って、予め該可変電流スイッチ44を調整してお
くことにより、その設定値が、パイロット油路46,4
7上に設けた電磁比例減圧弁32、32の受信部に作用
し、その二次側ポートに発生する油圧信号、すなわち、
油圧切換弁14のパイロット油室に通じるパイロット油
路側の油圧信号の大きさは、パイロット弁16,16’
の二次側ポートに発生するパイロット圧に左右されるこ
となく、上記電磁比例減圧弁32、32で制限されるか
ら、該油圧切換弁14のスプールの移動ストロークは制
限されることから、上述の如く、パイロット油室に通じ
る操作系油路に電磁比例減圧弁を設けることにより、ス
プールの移動量を制限するストローク制限手段が構成さ
れる。
Next, in the hydraulic excavator of the hydraulic circuit of FIG. 1, when a large load is constantly applied to the boom cylinder 13 as shown in FIG. 6 or when the swing operation angle is slightly small as shown in FIG. A case will be described where it is necessary to obtain a large amount, and moreover, the turning operation and the boom raising operation are simultaneously performed. In order to raise the boom, the operation lever 38
And the high pilot hydraulic pressure signal from the pilot valve 15 flows into the pilot oil passage 30, as described above,
The spools of the hydraulic pressure switching valves 9 and 6 both move to the D position, and the pressure oils of the first pump 2 and the second pump 3 both try to flow into the boom cylinder 13, but at the same time, the operating lever 38 'for operating the swing motor. Is operated, the spool of the hydraulic switching valve 14 is also moved to the D or E position. Therefore, the pressure oil of the first pump 2 is inversely proportional to the load pressure of the actuators connected to the hydraulic switching valves 6 and 14, respectively. However, in the present invention, as shown in the circuit diagram, when a hydraulic signal is generated in the pilot oil passage 30, the circuit of the switch 45 is closed and the variable current switch 44 is energized from the power source 48. . Therefore, by adjusting the variable current switch 44 in advance, the set value is set to the pilot oil passages 46, 4
7, a hydraulic signal that acts on the receiving portion of the electromagnetic proportional pressure reducing valves 32, 32 provided on the secondary side port, that is,
The magnitude of the hydraulic signal on the pilot oil passage side communicating with the pilot oil chamber of the hydraulic switching valve 14 is determined by the pilot valves 16 and 16 ′.
Since it is limited by the electromagnetic proportional pressure reducing valves 32, 32 without being influenced by the pilot pressure generated in the secondary side port of the hydraulic pressure switching valve 14, the moving stroke of the spool of the hydraulic pressure switching valve 14 is limited. As described above, by providing the electromagnetic proportional pressure reducing valve in the operation system oil passage leading to the pilot oil chamber, the stroke limiting means for limiting the movement amount of the spool is configured.

【0015】その結果、ブーム用油圧切換弁9、6が完
全にD位置に切換わったときも、旋回用油圧切換弁14
はC位置からDまたはE位置への切換わり中間位置とな
り、絞り通路を経由して旋回モータ12を作動させるこ
ととなる。このときのパイロット圧と油圧切換弁14の
スプール移動ストロークとの関係を図によって詳記す
る。図3,4はともに、横軸には油圧切換弁のスプール
が中立のときを原点としてストロークSをとり、パイロ
ット油室に作用するパイロット圧を縦軸にとった図であ
るが、図3は、パイロット弁に供給されるパイロット圧
が電磁比例減圧弁32,32などで減圧されないときの
関係示す図であり、パイロット圧PがO〜P1 のときは
スプールは移動しないか、または開口しない、いわゆる
不感帯であり、P1 からP3 に昇圧するにしたがい、ス
トロークSはS1 から最大ストロークS3 となり、内部
通路の開度は最大となる。更にパイロット圧がP4 まで
昇圧してもストロークS3 を保持し続ける。一方図4は
パイロット弁の一次側油路に供給される操作系の油圧源
を減圧弁によりP1 とP3 の中間圧力P2 に減圧したと
きの状況を示すが、このときの中間圧力P2 の最大値は
減圧後の圧力以下であり、ストロークSの最大値はS1
とS3 の中間値S2 となり、油圧切換弁の内部通路の開
度は半開となるので絞り通路を形成し通過抵抗が付加さ
れる。
As a result, even when the boom hydraulic pressure switching valves 9 and 6 are completely switched to the D position, the swing hydraulic pressure switching valve 14 is turned on.
Becomes an intermediate position by switching from the C position to the D or E position, and the turning motor 12 is operated via the throttle passage. The relationship between the pilot pressure and the spool movement stroke of the hydraulic pressure switching valve 14 at this time will be described in detail with reference to the drawings. 3 and 4 are diagrams in which the horizontal axis represents the stroke S with the origin of the spool of the hydraulic pressure switching valve as the origin, and the vertical axis represents the pilot pressure acting on the pilot oil chamber. FIG. 3 is a diagram showing a relationship when the pilot pressure supplied to the pilot valve is not reduced by the electromagnetic proportional pressure reducing valves 32, 32, etc. When the pilot pressure P is O to P1, the spool does not move or does not open, that is, It is a dead zone, and as the pressure is increased from P1 to P3, the stroke S changes from S1 to the maximum stroke S3, and the opening of the internal passage becomes maximum. Even if the pilot pressure is increased to P4, the stroke S3 is maintained. On the other hand, FIG. 4 shows the situation when the hydraulic pressure source of the operation system supplied to the primary side oil passage of the pilot valve is reduced to the intermediate pressure P2 between P1 and P3 by the pressure reducing valve. The maximum value of the intermediate pressure P2 at this time is shown. Is less than the pressure after decompression, and the maximum value of stroke S is S1
And S3 have an intermediate value S2, and the opening of the internal passage of the hydraulic switching valve is half open, so that a throttle passage is formed and passage resistance is added.

【0016】従って、前記油圧切換弁14のDまたはE
位置通路に絞り抵抗を与えるべく、可変電流スイッチ4
4の設定値を、ブームシリンダ13に加わる付加圧力や
作業状況に適した旋回角度になるように調整しておくこ
とにより、ブーム上昇、旋回時において操作レバを微調
整することなく計画的な関係速度にすることができる。
なお、ブーム上昇操作以外の操作のときは、スイッチ4
5が作動せず、電磁比例減圧弁32、32には通電され
ないので、パイロット弁16,16’からのパイロット
油圧信号は減圧されず、通常の油圧ショベルの運転操作
と何等変化はない。
Therefore, D or E of the hydraulic switching valve 14
Variable current switch 4 to add throttle resistance to the position passage
By adjusting the set value of 4 so that the turning angle is suitable for the additional pressure applied to the boom cylinder 13 and the working condition, a planned relationship can be achieved without finely adjusting the operating lever when the boom is raised or turned. Can be speed.
In addition, when operating other than boom raising operation, switch 4
Since the solenoid valve 5 does not operate and the electromagnetic proportional pressure reducing valves 32, 32 are not energized, the pilot hydraulic pressure signals from the pilot valves 16, 16 'are not reduced, and there is no change from the normal operation of the hydraulic excavator.

【0017】図2は本発明の第2実施例を示す油圧・電
気回路図であり、第1実施例では電磁比例減圧弁32に
より減圧し操作系管路を介して、パイロット弁16、1
6’への一次側油圧源として供給したが、第2実施例で
は該一次側の油圧源は他のパイロット弁と同一であり、
パイロット弁16、16’と油圧切換弁14のパイロッ
ト油室とを連通するパイロット油路46、47の中間に
比例電磁減圧弁32、32’を配置したものであるが、
その作用効果は第1実施例と全く同様である。
FIG. 2 is a hydraulic / electrical circuit diagram showing a second embodiment of the present invention. In the first embodiment, the pressure is reduced by the electromagnetic proportional pressure reducing valve 32, and the pilot valves 16 and 1 are operated via the operation system pipeline.
6'is supplied as the primary hydraulic pressure source, but in the second embodiment, the primary hydraulic pressure source is the same as the other pilot valve,
Proportional electromagnetic pressure reducing valves 32 and 32 'are arranged in the middle of pilot oil passages 46 and 47 that connect the pilot valves 16 and 16' to the pilot oil chamber of the hydraulic pressure switching valve 14.
The function and effect are exactly the same as in the first embodiment.

【0018】[0018]

【発明の効果】本発明にかかる油圧ならびに電気回路を
有するアクチュエータ相度速度の可変方法を採用してお
くと、例えば油圧ショベルにおけるブーム上昇、旋回の
如く、並列回路で構成された同一の油圧切換弁群内の油
圧切換弁を同時に操作をし所定の複合運転をする場合、
作業対象物やアクチュエータの種類による負荷圧力の変
化、作業条件の変化による作動経路の要求の異なるよう
なときにおいても、予め、可変電流スイッチを調整した
うえで運転をすれば、従来の如く操作レバを微妙に操作
する必要もなく所望の作動が得られるので作業能率が上
り、また初心者にも容易な複合運転操作ができる。
EFFECTS OF THE INVENTION When the method of varying the actuator phase speed having the hydraulic and electric circuits according to the present invention is adopted, the same hydraulic switching constituted by parallel circuits, such as boom raising and turning in a hydraulic excavator, is adopted. When operating the hydraulic switching valves in the valve group at the same time to perform the specified combined operation,
Even when the load pressure changes due to the type of work object or actuator, and the demands on the operating path differ due to changes in the working conditions, the variable current switch can be adjusted in advance to start operation, and the operation level will change as before. Since a desired operation can be obtained without the need for delicate operation, work efficiency is improved, and even a beginner can easily perform a combined driving operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す油圧・電気回路図であ
る。
FIG. 1 is a hydraulic / electrical circuit diagram showing an embodiment of the present invention.

【図2】本発明の第2の実施例を示す油圧・電気回路図
である。
FIG. 2 is a hydraulic / electrical circuit diagram showing a second embodiment of the present invention.

【図3】油圧切換弁のパイロット油室に作用するパイロ
ット圧とスプールの移動ストロークとの関係を示す線図
である。
FIG. 3 is a diagram showing a relationship between a pilot pressure acting on a pilot oil chamber of a hydraulic pressure switching valve and a moving stroke of a spool.

【図4】図3のパイロット圧が減圧されたときのスプー
ルの移動ストロークを比較した線図である。
FIG. 4 is a diagram comparing spool movement strokes when the pilot pressure in FIG. 3 is reduced.

【図5】従来の油圧ショベルの油圧回路図である。FIG. 5 is a hydraulic circuit diagram of a conventional hydraulic excavator.

【図6】特殊クラムシェル装備時の油圧ショベルの側面
図である。
FIG. 6 is a side view of a hydraulic excavator equipped with a special clamshell.

【図7】油圧ショベルのブーム上昇高さと旋回角度の関
係を示す図である。
FIG. 7 is a diagram showing a relationship between a boom rising height and a turning angle of the hydraulic excavator.

【符号の説明】[Explanation of symbols]

12 旋回モータ 13 ブームシリンダ 15、15’、16、16’ パイロット弁 32 電磁比例減圧弁 44 可変電流スイッチ 45 スイッチ 12 swing motor 13 boom cylinder 15, 15 ', 16, 16' pilot valve 32 electromagnetic proportional pressure reducing valve 44 variable current switch 45 switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パイロット油室に作用する油圧信号の大
小に比例するスプールの移動ストロークで切換わり、並
列回路で接続された複数の油圧切換弁から構成される油
圧切換弁群のそれぞれの油圧切換弁に連なるアクチュエ
ータを作動させる油圧回路において、同一油圧切換弁群
内の負荷圧力の低いアクチュエータに連なる油圧切換弁
のスプールの移動ストロークを、外部からの信号に比例
して制限するストローク制限手段を設け、該ストローク
制限手段の受信部には外部から任意に調整可能の調整手
段と負荷圧力の高いアクチュエータ用油圧切換弁の操作
がなされたことを検出する検出手段からの信号を接続し
たことを特徴とするアクチュエータ相対速度の可変方
法。
1. A hydraulic pressure switching valve group, each hydraulic pressure switching valve including a plurality of hydraulic pressure switching valves connected in a parallel circuit is switched by a moving stroke of a spool proportional to the magnitude of a hydraulic pressure signal acting on a pilot oil chamber. In the hydraulic circuit that operates the actuators connected to the valves, a stroke limiting means is provided to limit the moving stroke of the spool of the hydraulic switching valves connected to the actuators with low load pressure in the same hydraulic switching valve group in proportion to the signal from the outside. A signal from an adjusting means that can be arbitrarily adjusted from the outside and a detecting means that detects that the hydraulic pressure switching valve for an actuator having a high load pressure is operated is connected to the receiving portion of the stroke limiting means. Actuator relative speed variable method.
JP5520993A 1993-02-18 1993-02-18 Variable method for actuator relative speed Pending JPH06129405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5520993A JPH06129405A (en) 1993-02-18 1993-02-18 Variable method for actuator relative speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5520993A JPH06129405A (en) 1993-02-18 1993-02-18 Variable method for actuator relative speed

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61042392A Division JPS62200005A (en) 1986-02-26 1986-02-26 Relative speed varying device for actuator

Publications (1)

Publication Number Publication Date
JPH06129405A true JPH06129405A (en) 1994-05-10

Family

ID=12992257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5520993A Pending JPH06129405A (en) 1993-02-18 1993-02-18 Variable method for actuator relative speed

Country Status (1)

Country Link
JP (1) JPH06129405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003285A (en) * 2016-06-27 2018-01-11 日立建機株式会社 Work machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628302A (en) * 1979-08-17 1981-03-19 Hitachi Constr Mach Co Ltd Speed control circuit of crane or the like
JPS60237204A (en) * 1984-05-09 1985-11-26 Toshiba Mach Co Ltd Oil pressure circuit to a plurality of actuators
JPS62165003A (en) * 1986-01-10 1987-07-21 Tech Res Assoc Openair Coal Min Mach Working oil distributing device in hydraulic circuit of hydraulic shovel or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628302A (en) * 1979-08-17 1981-03-19 Hitachi Constr Mach Co Ltd Speed control circuit of crane or the like
JPS60237204A (en) * 1984-05-09 1985-11-26 Toshiba Mach Co Ltd Oil pressure circuit to a plurality of actuators
JPS62165003A (en) * 1986-01-10 1987-07-21 Tech Res Assoc Openair Coal Min Mach Working oil distributing device in hydraulic circuit of hydraulic shovel or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003285A (en) * 2016-06-27 2018-01-11 日立建機株式会社 Work machine

Similar Documents

Publication Publication Date Title
US5873245A (en) Hydraulic drive system
JP3923242B2 (en) Actuator control device for hydraulic drive machine
US7597168B2 (en) Low engine speed steering performance
JP2009150553A (en) Hydraulic drive control device
JP3816893B2 (en) Hydraulic drive
JP4240075B2 (en) Hydraulic control circuit of excavator
JP2003004003A (en) Hydraulic control circuit of hydraulic shovel
US11692332B2 (en) Hydraulic control system
JP3625149B2 (en) Hydraulic control circuit for construction machinery
CN108884843B (en) Excavator and control valve for excavator
KR980009962A (en) Hydraulic oil supply
JP2017015130A (en) Fluid circuit
JP2010065511A (en) Hydraulic control device for working machine
JPH06129405A (en) Variable method for actuator relative speed
JP2799045B2 (en) Hydraulic circuit for crane
JP3006777B2 (en) Load sensing hydraulic circuit
JP3692009B2 (en) Control device for work machine
JP3511504B2 (en) Hydraulic circuit of construction machinery
JP2005140153A (en) Hydraulic control device for construction machine
JP2766371B2 (en) Hydraulic circuit of excavator
KR20200135275A (en) Hydraulic circuit of the working vehicle
JPH0352275Y2 (en)
JPH0577881B2 (en)
JP3248549B2 (en) Auto accelerator device
JP3321551B2 (en) Construction machine hydraulic circuit