JPH055952A - Lighting device and projection type display device - Google Patents

Lighting device and projection type display device

Info

Publication number
JPH055952A
JPH055952A JP3156420A JP15642091A JPH055952A JP H055952 A JPH055952 A JP H055952A JP 3156420 A JP3156420 A JP 3156420A JP 15642091 A JP15642091 A JP 15642091A JP H055952 A JPH055952 A JP H055952A
Authority
JP
Japan
Prior art keywords
light source
light
face
point
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3156420A
Other languages
Japanese (ja)
Inventor
Tadaaki Nakayama
唯哲 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3156420A priority Critical patent/JPH055952A/en
Publication of JPH055952A publication Critical patent/JPH055952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

PURPOSE:To display an image with high brightness and high quality by constituting this projection type display device of a reflector having a shape obtained by rotating an elliptic curve in which a light source like a point and a major axis are inclined from an optical axis around the optical axis and setting up the reflector so that all light beams reflected by the reflector are made incident upon a face to be irradiated. CONSTITUTION:One of the cross sections of the reflector 12 is a curve on an ellipse 15 set up so that a point arranged in the vicinity of the light source on the optical axis 14 is the 1st focus 16 and an end point on the face 13 to be irradiated is the 2nd focus 17a. The other cross section is also a curve on an ellipse 15 constituted of the 1st focus 16 and the 2nd focus 17b to be the end point of the face 13 to be irradiated. Light flux reflected by a fine reflecting face contacting with a point (a) plots an image 18a of a discharge arc on the face 13, contacts with the frame of the face 13, plots the images 18b, 18c of discharge arcs reflected by a fine reflecting face contacting with points (b), (c), and then contacts with the frame of the face 13. Thereby all light beams reflected by the reflector 12 are made incident upon the inside of the face 13 to be irradiated and illuminance around the frame becomes the highest available illuminance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、店舗照明等に用いる照
明装置と投射型表示装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a configuration of a lighting device and a projection type display device used for shop lighting or the like.

【0002】[0002]

【従来の技術】ライトバルブの映像を拡大表示する投射
型表示装置には、ほぼ平行な白色光束を出射する照明装
置を用いる。従来、この照明装置では、光源ランプの放
射光束を回転放物鏡により平行化するというものが一般
的である。この照明装置の構成を図2(A)に示す。点
光源に近い光源ランプ21から放射される光束は、光源
位置を焦点とする回転放物鏡22により反射されて、ほ
ぼ平行な反射光束23となる。この反射光束23は集光
レンズ24を経て液晶ライトバルブ25で変調され投射
レンズ26に効率よく入射する。
2. Description of the Related Art A projection type display device for enlarging and displaying an image of a light valve uses an illuminating device for emitting a substantially parallel white light flux. Conventionally, in this illuminating device, it is general that the radiation flux of the light source lamp is collimated by a rotating parabolic mirror. The structure of this lighting device is shown in FIG. The light flux emitted from the light source lamp 21 close to the point light source is reflected by the rotating parabolic mirror 22 whose focal point is the light source position, and becomes a substantially parallel reflected light flux 23. The reflected light flux 23 is modulated by the liquid crystal light valve 25 via the condenser lens 24 and efficiently enters the projection lens 26.

【0003】[0003]

【発明が解決しようとする課題】しかし前述の従来技術
では、ライトバルブ25上の照度分布が図2(B)に示
すように、中心ほど高照度となり、従って、図2(A)
のスクリーン27上においても中心が明るく周辺が暗い
映像となり、不自然な感じになる。また、ライトバルブ
の端部照度と中心照度の比(以下、照度比と略す)を1
に近づけようとするとライトバルブから外れる光束が増
し、利用効率が低くなる。
However, in the above-mentioned conventional technique, the illuminance distribution on the light valve 25 becomes higher toward the center, as shown in FIG.
An image with a bright center and a dark periphery is also displayed on the screen 27, which gives an unnatural feeling. Also, the ratio of the edge illuminance to the central illuminance of the light valve (hereinafter, abbreviated as illuminance ratio) is 1
If you try to get closer to, the luminous flux out of the light valve will increase and the utilization efficiency will decrease.

【0004】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、ライトバルブに
できるだけ高照度比で光束を入射させ、しかも利用効率
の高い照明装置を提供することにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide a lighting device which allows a light beam to enter a light valve at a high illuminance ratio as high as possible and has high utilization efficiency. It is in.

【0005】[0005]

【課題を解決するための手段】本発明の照明装置は、点
光源に近い光源ランプと該光源ランプからの放射光束を
被照射面へ反射する反射鏡を備えてなる照明装置であ
り、前記被照射面はその中心と光源の中心を結ぶ光軸に
対し垂直な円形被照射面であって、前記反射鏡が、光源
近傍にある光軸上の点を第1焦点とし円形被照射面上の
任意の端点を第2焦点とする楕円曲線を光軸の回りに回
転させた形状の、回転傾楕円鏡であることを特徴とす
る。
An illuminating device of the present invention is a illuminating device comprising a light source lamp close to a point light source and a reflecting mirror for reflecting a light beam emitted from the light source lamp to an illuminated surface. The irradiation surface is a circular irradiation surface that is perpendicular to the optical axis connecting the center of the irradiation surface to the center of the light source, and the reflecting mirror has a point on the optical axis near the light source as the first focal point on the circular irradiation surface. It is characterized in that the elliptic curve having an arbitrary end point as the second focal point is rotated around the optical axis to form a rotationally tilted elliptical mirror.

【0006】また前記光源ランプと前記被照射面の間に
光束を透過散乱させる板状部材を配していることを特徴
とする。この実施例として、透過散乱性の板状部材が高
分子分散型液晶であることを特徴とする。
Further, a plate-like member which transmits and scatters a light beam is arranged between the light source lamp and the illuminated surface. This embodiment is characterized in that the transmission-scattering plate-like member is a polymer-dispersed liquid crystal.

【0007】また前記光源ランプと前記被照射面の間に
非球面レンズを配していることを特徴とする。
An aspherical lens is arranged between the light source lamp and the illuminated surface.

【0008】本発明による投射型表示装置は、白色光源
を含む照明装置と、該照明装置からの光束を変調するラ
イトバルブと、変調光束を投射する投射レンズにより構
成され、前記照明装置が上に述べた照明装置であって、
また前記ライトバルブが円形被照射面に内接する様に配
されていることを特徴とする。
The projection type display device according to the present invention comprises an illuminating device including a white light source, a light valve for modulating a light beam from the illuminating device, and a projection lens for projecting the modulated light beam. A lighting device as described above,
Further, the light valve is arranged so as to be inscribed on the circular irradiation surface.

【0009】[0009]

【実施例】以下、本発明による照明装置について、図面
に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An illumination device according to the present invention will be described below in detail with reference to the drawings.

【0010】図1(A)は、本発明の照明装置に用いる
反射鏡の形状を示す断面模式図である。反射鏡12の断
面のうちの一方、例えば本図における上側の断面は、光
源11の近傍にある光軸14上の点を第1焦点16と
し、被照射面13上の端点を第2焦点17aとする楕円
15上の曲線となっている。またもう一方の断面も同様
に同じ第1焦点16と被照射面の端点を第2焦点17b
とする楕円15上の曲線である。即ち本反射鏡は、長軸
が光軸14に対して傾いた楕円15の一部を光軸14の
回りに回転させた形状(以下、この形状を回転傾楕円面
と呼ぶ)をもっている。
FIG. 1A is a schematic sectional view showing the shape of a reflecting mirror used in the illuminating device of the present invention. One of the cross sections of the reflecting mirror 12, for example, the cross section on the upper side in this figure, has a point on the optical axis 14 near the light source 11 as the first focus 16 and an end point on the illuminated surface 13 as the second focus 17a. Is a curve on the ellipse 15. Similarly, for the other cross-section, the same first focal point 16 and the end point of the illuminated surface are set to the second focal point 17b.
Is a curve on the ellipse 15. That is, the present reflecting mirror has a shape in which a part of the ellipse 15 whose major axis is tilted with respect to the optical axis 14 is rotated around the optical axis 14 (hereinafter, this shape is referred to as a rotational tilt ellipsoidal surface).

【0011】この様な反射鏡12に対して光源11はそ
の端部が第1焦点16にほぼ接する様に被照射面側に配
置される。光源11としては、キセノンランプ,メタル
ハライドランプ,ハロゲンランプなどが用いられ、例え
ばメタルハライドランプではその放電アークの形状が円
筒形状で近似されるので、その底面の中心をほぼ第1焦
点16に接する様に、また光軸に対して対称に配置す
る。
With respect to such a reflecting mirror 12, the light source 11 is arranged on the irradiated surface side so that its end portion is substantially in contact with the first focal point 16. As the light source 11, a xenon lamp, a metal halide lamp, a halogen lamp, or the like is used. For example, in a metal halide lamp, the shape of the discharge arc is approximated by a cylindrical shape, so that the center of the bottom surface of the lamp is in contact with the first focal point 16. , And are arranged symmetrically with respect to the optical axis.

【0012】この時、被照射面がどの様に照明されるか
を図1(B)で説明する。図1(A)に示したa点に接
する微小反射面で反射された光束は、被照射面13上に
放電アークの像18aを描き、被照射面13の枠に接し
ている。同様にb点,c点に接する微小反射面による放
電アークの像18b,18cを描き、やはり被照射面1
3の枠に接する。従って放射光束のうち反射鏡12で反
射された光束は特別な場合を除いてすべて被照射面内に
入射し、枠付近の照度は可能な中では最も高照度であ
る。被照射面13内での照度分布は、光源11の形状,
反射鏡12の開口径,楕円曲線15の長軸長と短軸長,
被照射面13までの距離,被照射面の半径など、多くの
パラメータによって変化する。そこで各パラメータを適
当に変化させることによって、照度分布をほぼ一定に選
ぶことが出来るので、この様な照明系では、高利用率で
ほぼ均一な理想照明を実現できる。
At this time, how the illuminated surface is illuminated will be described with reference to FIG. The light flux reflected by the minute reflecting surface in contact with the point a shown in FIG. 1A draws an image 18 a of the discharge arc on the illuminated surface 13 and is in contact with the frame of the illuminated surface 13. Similarly, images 18b and 18c of the discharge arc by the minute reflecting surfaces in contact with the points b and c are drawn, and the irradiated surface 1 is also shown.
Touch the frame of 3. Therefore, of the radiated luminous flux, all the luminous flux reflected by the reflecting mirror 12 is incident on the surface to be illuminated except for a special case, and the illuminance near the frame is the highest illuminance possible. The illuminance distribution within the illuminated surface 13 is determined by the shape of the light source 11,
The aperture diameter of the reflecting mirror 12, the major axis length and the minor axis length of the elliptic curve 15,
It depends on many parameters such as the distance to the irradiated surface 13 and the radius of the irradiated surface. Therefore, by appropriately changing each parameter, the illuminance distribution can be selected to be almost constant, and thus such an illumination system can realize ideal illumination with high utilization.

【0013】ところが、投射型表示装置に応用しようと
すると、各パラメータは自ずと決まる場合が多く、被照
射面の中心照度が最も高くなりやすい。一般に照度比が
40%程度であれば、さほど表示品質を悪化させないと
言われるが、許容範囲を超えて中心照度が高い場合にお
いては、図3に示すように、反射鏡12と液晶ライトバ
ルブ25の間に、光束を透過散乱させる板状部材31を
配すればよい。この板状部材31には、例えば中心部を
梨地状にしたガラス板を用いる。そうすると液晶ライト
バルブ25の周辺部に向かう光束はそのまま透過し、中
心部に向かう光束は透過散乱部32によって、ガラス板
の凹凸度合に応じた散乱状態となって透過する。したが
って、中心部へ向かう光束の一部は周辺に振り分けら
れ、あるいは投射レンズに呑込まれないほど角度がつい
てしまうので、結果として照度比が高くなる。
However, when it is applied to a projection type display device, each parameter is often determined by itself, and the central illuminance of the illuminated surface tends to be the highest. Generally, if the illuminance ratio is about 40%, it is said that the display quality is not so deteriorated. However, when the illuminance ratio exceeds the allowable range and the central illuminance is high, as shown in FIG. A plate-like member 31 that transmits and scatters the light flux may be disposed between the two. The plate-shaped member 31 is, for example, a glass plate having a satin-finished central portion. Then, the light flux toward the peripheral portion of the liquid crystal light valve 25 is transmitted as it is, and the light flux toward the center portion is transmitted by the transmission / scattering unit 32 in a scattering state according to the degree of unevenness of the glass plate. Therefore, a part of the light flux heading to the central portion is distributed to the periphery or is angled so as not to be swallowed by the projection lens, resulting in a high illuminance ratio.

【0014】照度比を可変とするには、光束を透過散乱
させる板状部材31として、高分子分散型液晶(以下、
PDLCと略す)を用いればよい。PDLCを用いれ
ば、その透過散乱度合を、電圧によって変化させること
が出来るので、それに伴って照度比が変化する。
In order to make the illuminance ratio variable, a polymer dispersion type liquid crystal (hereinafter
(Abbreviated as PDLC) may be used. If PDLC is used, the degree of transmission and scattering can be changed by the voltage, so that the illuminance ratio changes accordingly.

【0015】また図4の様に、反射鏡12と液晶ライト
バルブ25の間に非球面レンズ41を配してもよい。こ
の場合は液晶ライトバルブ25の中心部に入射しようと
する光束が周辺部に広げられるので、最適な形状にすれ
ば照度分布をかなり均一にすることが出来る。本発明に
おける回転傾楕円鏡の形状を数式を用いて定義してお
く。図5に示すように、第1焦点16と被照射面13間
の距離をl、被照射面の半径をd、楕円15の長軸長を
2a、短軸長を2b、長軸と光軸14間の角度をθとす
るとき、xyz座標系(z軸は第1焦点16を通り紙面
に垂直)において、反射鏡12上の任意の点(x1
1,z1)は、 F(x,y,z) ≡b2{xcosθ+√(y2+z2)sinθ−c} +a2(−xsinθ+√(y2+z2)cosθ}2−a22 =0 を満たしている。ここで、cは第1焦点16と第2焦点
17aの距離の1/2で、 c=0.5√(l2+d2)=√(a2−b2) と表わせる。また、 sinθ=d/√(l2+d2) cosθ=l/√(l2+d2) である。
As shown in FIG. 4, an aspherical lens 41 may be arranged between the reflecting mirror 12 and the liquid crystal light valve 25. In this case, since the light flux that is about to enter the central portion of the liquid crystal light valve 25 is spread to the peripheral portion, it is possible to make the illuminance distribution fairly uniform by using an optimum shape. The shape of the rotary ellipsoidal mirror in the present invention is defined by using mathematical expressions. As shown in FIG. 5, the distance between the first focus 16 and the illuminated surface 13 is 1, the radius of the illuminated surface is d, the major axis length of the ellipse 15 is 2a, the minor axis length is 2b, and the major axis and the optical axis. When the angle between 14 is θ, in the xyz coordinate system (the z-axis passes through the first focal point 16 and is perpendicular to the paper surface), an arbitrary point (x 1 ,
y 1 , z 1 ) is F (x, y, z) ≡b 2 {xcos θ + √ (y 2 + z 2 ) sin θ−c} + a 2 (−xsin θ + √ (y 2 + z 2 ) cos θ} 2 −a 2 b 2 = 0 is satisfied, where c is ½ of the distance between the first focus 16 and the second focus 17a, and c = 0.5√ (l 2 + d 2 ) = √ (a 2 −b 2 ) and sin θ = d / √ (l 2 + d 2 ) cos θ = l / √ (l 2 + d 2 ).

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、回転
傾楕円鏡を用いてライトバルブを照射するので、ライト
バルブの四隅が可能な限り高照度で照明され、しかも光
束の利用効率が極めて高い。従って、映像が隅々まで明
るく高品位な投射型表示装置を実現できる。
As described above, according to the present invention, since the light valve is illuminated by using the rotary ellipsoidal mirror, the four corners of the light valve are illuminated with the highest possible illuminance, and the utilization efficiency of the luminous flux is improved. Extremely high. Therefore, it is possible to realize a high-quality projection display device in which the image is bright in every corner.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)本発明の照明装置における反射鏡の形状
を示す断面模式図。 (B)本発明による反射鏡の照明原理を示した図。
FIG. 1A is a schematic cross-sectional view showing the shape of a reflecting mirror in a lighting device of the present invention. (B) The figure which showed the illumination principle of the reflecting mirror by this invention.

【図2】(A)従来の投射型表示装置に用いられた照明
装置の構成を示す図。 (B)従来構成における、ライトバルブ上の照度分布を
示す図。
FIG. 2A is a diagram showing a configuration of an illumination device used in a conventional projection display device. (B) A diagram showing an illuminance distribution on a light valve in a conventional configuration.

【図3】本発明を投射型表示装置に用いた場合の構成例
を示す図。
FIG. 3 is a diagram showing a configuration example when the present invention is applied to a projection type display device.

【図4】本発明を投射型表示装置に用いた場合の構成例
を示す図。
FIG. 4 is a diagram showing a configuration example when the present invention is applied to a projection type display device.

【図5】本発明における反射鏡の形状を数式で定義する
ための図。
FIG. 5 is a diagram for defining the shape of a reflecting mirror in the present invention by a mathematical expression.

【符号の説明】[Explanation of symbols]

11 光源 12 反射鏡 13 被照射面 14 光軸 15 楕円 16 第1焦点 17a,17b 第2焦点 18a,18b,18c 微小反射面による放電アーク
の像 21 光源ランプ 22 回転放物鏡 23 反射光束 24 集光レンズ 25 液晶ライトバルブ 26 投射レンズ 27 スクリーン 31 透過散乱性板状部材 32 透過散乱部 41 非球面レンズ
11 Light Source 12 Reflecting Mirror 13 Irradiated Surface 14 Optical Axis 15 Ellipse 16 First Focus 17a, 17b Second Focus 18a, 18b, 18c Image of Discharge Arc by Micro Reflecting Surface 21 Light Source Lamp 22 Rotating Parabolic Mirror 23 Reflected Luminous Flux 24 Focused Lens 25 Liquid crystal light valve 26 Projection lens 27 Screen 31 Transmission / scattering plate member 32 Transmission / scattering part 41 Aspherical lens

Claims (1)

【特許請求の範囲】 【請求項1】 点光源に近い光源ランプと該光源ランプ
からの放射光束を被照射面へ反射する反射鏡を備えてな
る照明装置において、前記被照射面はその中心と光源の
中心を結ぶ光軸に対し垂直な円形被照射面であり、前記
反射鏡が、光源近傍にある光軸上の点を第1焦点とし円
形被照射面上の任意の端点を第2焦点とする楕円曲線を
光軸の回りに回転させた形状の、回転傾楕円鏡であるこ
とを特徴とする照明装置。 【請求項2】 前記光源ランプと前記被照射面の間に光
束を透過散乱させる板状部材を配していることを特徴と
する請求項1に記載の照明装置。 【請求項3】 前記光束を透過散乱させる板状部材が高
分子分散型液晶であることを特徴とする請求項2に記載
の照明装置。 【請求項4】 前記光源ランプと前記被照射面の間に非
球面レンズを配していることを特徴とする請求項1に記
載の照明装置。 【請求項5】 白色光源を含む照明装置と、該照明装置
からの光束を変調するライトバルブと、変調光束を投射
する投射レンズにより構成される投射型表示装置におい
て、前記照明装置が、請求項1,2,3または4に記載
の照明装置であり、また前記ライトバルブが前記円形被
照射面に内接する様に配されていることを特徴とする投
射型表示装置。
Claim: What is claimed is: 1. An illumination device comprising a light source lamp close to a point light source and a reflecting mirror for reflecting a luminous flux emitted from the light source lamp to a surface to be irradiated, wherein the surface to be irradiated is the center thereof. A circular illuminated surface that is perpendicular to the optical axis connecting the centers of the light sources, and the reflecting mirror has a point on the optical axis near the light source as a first focal point and an arbitrary end point on the circular illuminated surface as a second focal point. An illuminating device characterized by being a rotating tilt ellipsoidal mirror having a shape obtained by rotating an elliptic curve around the optical axis. 2. The illumination device according to claim 1, further comprising a plate-shaped member that transmits and scatters a light flux between the light source lamp and the illuminated surface. 3. The illumination device according to claim 2, wherein the plate-shaped member that transmits and scatters the light flux is a polymer-dispersed liquid crystal. 4. The illuminating device according to claim 1, further comprising an aspherical lens disposed between the light source lamp and the illuminated surface. 5. A projection type display device comprising a lighting device including a white light source, a light valve for modulating a light flux from the lighting device, and a projection lens for projecting the modulated light flux, wherein the lighting device comprises: 5. The projection display device according to any one of 1, 2, 3 and 4, wherein the light valve is arranged so as to be inscribed in the circular illuminated surface.
JP3156420A 1991-06-27 1991-06-27 Lighting device and projection type display device Pending JPH055952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3156420A JPH055952A (en) 1991-06-27 1991-06-27 Lighting device and projection type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3156420A JPH055952A (en) 1991-06-27 1991-06-27 Lighting device and projection type display device

Publications (1)

Publication Number Publication Date
JPH055952A true JPH055952A (en) 1993-01-14

Family

ID=15627366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156420A Pending JPH055952A (en) 1991-06-27 1991-06-27 Lighting device and projection type display device

Country Status (1)

Country Link
JP (1) JPH055952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303931A (en) * 2000-12-20 2002-10-18 Seiko Epson Corp Illuminator and projector using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303931A (en) * 2000-12-20 2002-10-18 Seiko Epson Corp Illuminator and projector using the same

Similar Documents

Publication Publication Date Title
EP0805995B1 (en) Collection system for a projector
WO2006095855A1 (en) Image projector
JPWO2005083493A1 (en) Illumination light source and two-dimensional image display apparatus using the same
EP1180719A2 (en) Light source device
US5607229A (en) Illumination system including an asymmetrical projection reflector
WO2006098281A1 (en) Image projector
JP2000206455A (en) Projection type display device
US6307601B1 (en) Projection type liquid crystal display device
JP3641979B2 (en) Projection display
JP2961807B2 (en) Projection display device
US20060126031A1 (en) Illumination optical system of projection apparatus
JP2000028963A (en) Illumination device and projection type display device using it
JPH07270791A (en) Projector
US20200026170A1 (en) Illumination system with high intensity projection mechanism and method of operation thereof
JPH055952A (en) Lighting device and projection type display device
JPH05323258A (en) Projection type display device
JP3309286B2 (en) Condensing illumination method and condensing illumination device
KR0132137B1 (en) Circuit arc illumination apparatus
KR100352974B1 (en) Projector Using a Color Drum
JP3191801B2 (en) Illumination device and projection display device using the same
JP2004021198A (en) Projector
JP3130747B2 (en) Lighting equipment
JPH06273758A (en) Liquid crystal projector
JP2004038086A (en) Projector
JPH05313005A (en) Converging reflector