JPH05203436A - Method for measuring shape of human body - Google Patents

Method for measuring shape of human body

Info

Publication number
JPH05203436A
JPH05203436A JP3712592A JP3712592A JPH05203436A JP H05203436 A JPH05203436 A JP H05203436A JP 3712592 A JP3712592 A JP 3712592A JP 3712592 A JP3712592 A JP 3712592A JP H05203436 A JPH05203436 A JP H05203436A
Authority
JP
Japan
Prior art keywords
human body
sound wave
reflected
receiver
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3712592A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ubusawa
佳弘 生沢
Yozo Yamada
陽三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3712592A priority Critical patent/JPH05203436A/en
Publication of JPH05203436A publication Critical patent/JPH05203436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To accurately measure the three-dimensional, shape or a human body by emitting specific acoustic waves upon the human body wearing clothes and subtracting components other than the reflected acoustic waves from the human body from a plurality of components of detected reflected interference acoustic-wave signals. CONSTITUTION:Acoustic waves of 10kHz are projected upon human body wearing clothes from an acoustic-wave oscillator and the reflected acoustic waves from the human body are found by detecting reflected acoustic waves by means of an acoustic-wave receiver and subtracting components other than the reflected waves from the human body from a plurality of components of reflected interference acoustic-wave signals by arithmetic operations. The distances from the oscillator and receiver to the surface of the human body are found from the reflected signals from the human body. At the time of finding the distances, a change in the phase difference between the oscillator and receiver is used as a distance parameter. When the oscillator and receiver are revolved around the human body, the change in the 'oscillator-human body-receiver' distance becomes several cm. Therefore, when acoustic waves having a long wavelength are used, the distance change becomes shorter than one wavelength and the absolute distance can be measured. When the acoustic-wave information obtained from various points on the surface of the human body are integrated, the shape of the whole human body can be found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人体形状を計測する人
体形状計測方法に関する。さらに詳しくは衣服を着た状
態(着装状態)の人体形状の計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a human body shape measuring method for measuring a human body shape. More specifically, the present invention relates to a method of measuring a human body shape in a state of wearing clothes (wearing state).

【0002】[0002]

【従来の技術】例えば人体形状データを必要とするテキ
スタイル分野では、背広、制服等の作製における採寸に
おいて人体に直接ものさしをあて、人体形状を近似的に
表現するのに最も適した代表値(首周り寸法、ウエウト
寸法等)で人体形状の一部のみを計測しているに過ぎな
い。人間による採寸と呼ばれる人体形状計測あるいは人
体形状の表記はその簡便さ、特別の技法を必要としない
という点において優れた方法であるが、その精度、繰り
返し測定の再現性の点において非常にあいまいである。
一方光学機械等を用いた人体形状の計測は人間による採
寸に比較すれば、繰り返し精度、再現性等の点で優れた
方法である。最近の試みとして光の直進性等を応用し人
体に光を照射し、その反射光を計測、演算処理を施すこ
とにより三次元人体形状計測を行なう試みが広くなされ
てきているが計測時間、測定精度、取扱いの点において
実用に至っていない。また医療の分野においてはX線、
NMR−CTスキャナーと呼ばれる高度な診断装置が存
在し、着服状態においても人体表面形状、さらには体内
の臓器の観測が可能である。さらに音響計測の分野にお
いては、魚群探知やパルスエコー診断装置や欠陥検出装
置等の物体、或いは媒体中に存在する特異点や特性の異
なる界面の検出のために音波が広く利用されている。
2. Description of the Related Art For example, in the field of textiles that requires human body shape data, a representative value (neck) that is most suitable for approximating the human body shape by directly placing a ruler on the human body in the measurement in the production of suits, uniforms, etc. Only a part of the human body shape is measured with the surrounding dimensions, weight dimensions, etc.). Measurement of human body shape or notation of human body shape called human measurement is an excellent method in that it is simple and does not require any special technique, but it is very ambiguous in terms of its accuracy and reproducibility of repeated measurement. is there.
On the other hand, measurement of the human body shape using an optical machine or the like is an excellent method in terms of repeatability, reproducibility, etc., as compared with human measurement. As a recent attempt, it has been widely attempted to apply the straightness of light to irradiate the human body with light, measure the reflected light, and perform arithmetic processing to measure the three-dimensional human body shape. It has not been put to practical use in terms of accuracy and handling. In the medical field, X-ray,
There is an advanced diagnostic device called an NMR-CT scanner, and it is possible to observe the surface shape of the human body and further the organs in the body even when the user is wearing the clothes. Further, in the field of acoustic measurement, sound waves are widely used for detection of objects such as fish finder, pulse echo diagnostic apparatus and defect detection apparatus, or singular points existing in a medium or interfaces having different characteristics.

【0003】[0003]

【発明が解決しようとする課題】テキスタイル分野にお
ける人間による採寸は人体形状の代表値を計測し、代表
計測値より全体を類推し衣服を製造する。従って個々の
人体形状に完全にフィットするようなオーダーメイドの
衣服は作り得ない。そこで仮縫い段階での寸法合わせで
個々の着装感をもとに衣服の寸法直しを計り、類推した
人体形状値の修正を行なう。修正はその時の個々のきま
ぐれな無意識な感性によって行われるため継続性のない
人体情報になる場合が多々起こり得る。さらにこのよう
な場合には、次回衣服製作時において継続性のない人体
情報により度重なる人体形状値の変更の可能性という欠
点をも内含するものである。光学機構を用いた三次元人
体形状計測装置においてはその技術の性格上、着衣の上
から人体形状を計測不可能であり、計測対象となった人
間は装置の前で着衣を脱いだ状態でTVカメラ等の前で
長時間姿勢を保つ必要があり、心理的な圧迫を被験者に
与え実用に共しない。医療の分野においてはX線、NM
R−CTスキャナーと呼ばれる高度な診断装置はその性
格上人体に対して無侵襲でなく、非常に高価な装置であ
りテキスタイル分野等の一般用途に広く用いられる可能
性はない。音響計測は広く普及した計測技術であるが、
音波をもちいて、人体の表面形状を求める試みは少な
く、音波を用いて着服状態の人体形状を計測する試みは
いまだなされていない。音響計測において最もポピュラ
ーで魚群探知等に用いられている手法はフライングパル
ス計測と呼ばれる計測方法である。このフライングパル
ス計測は対象物界面からの音波の反射時間を計測し距離
を求める方法である。すなわち音波パルスを発射しその
反射波が返って来るまでの時間をT、音波の気体中での
伝播速度をVとすると反射界面までの距離(片道)Lは 2L=VT と表わせる事より距離Lを求めるものである。音波パル
スの時間幅は使用する周波数とデバイス特性(Q値)で
決定され、音波パルス長は数波長以上となる。フライン
グパルス計測において、パルス音波を用いて着装状態の
人体を計測した場合、衣服と人体間の間隙は通常密着し
た間隙=0センチメートルの状態から大きくても数セン
チメートル足らずであるため、人体表面からの反射パル
スと衣服からの反射パルスが時間軸上で重複し、人体パ
ルスを判定できない。音波パルスの重複を避ける試みと
してパルス時間幅を短縮する事が考えられるが、このた
めには使用音波の高周波化が必要である。しかし音波の
周波数が高くなるにつれ、気体媒体内での減衰、衣服表
面での反射率が増大し、人体表面まで充分な強度を有す
る音波が届かず、人体表面からの情報を得ることができ
ず着装状態の人体計測は不可能である。また最近の試み
として衣服を着た人体に音波発生器より連続音波を照射
し、人体、衣服等からの複数の音波が干渉し、重ね合わ
され生じた音波を、音波受信器で検出し、検出された複
数成分の干渉音波信号より人体からの反射音波以外の成
分を演算により差し引き、人体からの音波反射成分のみ
を得ることにより衣服を着た人体の形状を算出する人体
形状計測装置が存在するが、計測所要時間の点において
実用に供しない欠点があった。本発明者らはかかる状況
に鑑み鋭意研究を重ねた結果、音波を用いて高速かつ着
装状態の人体形状計測が可能な方法として、次なる発明
に到達した。
In measuring textiles by humans, a representative value of a human body shape is measured, and by analogy with the representative measured value, a garment is manufactured. Therefore, it is impossible to make a custom-made garment that perfectly fits an individual human body shape. Therefore, the size of the garment is re-measured based on the individual wearing sensation during the sizing at the tentative stitching stage, and the human body shape value estimated by analogy is corrected. Since the correction is performed by the individual unconscious sensibilities at that time, there are many cases where the human body information does not have continuity. Further, in such a case, there is a drawback that the human body shape value may be repeatedly changed due to the non-continuous human body information at the time of the next clothes production. Due to the nature of the technology, the 3D human body shape measuring device using an optical mechanism cannot measure the human body shape from the top of the clothing, and the human being who is the target of measurement measures the TV with the clothes removed in front of the device. It is necessary to keep the posture for a long time in front of the camera, etc., and it imposes psychological pressure on the subject, which is not practical. X-ray, NM in the field of medical treatment
An advanced diagnostic device called an R-CT scanner is not non-invasive to the human body due to its character, is a very expensive device, and is not likely to be widely used in general applications such as textiles. Acoustic measurement is a widely used measurement technology,
There have been few attempts to obtain the surface shape of a human body using sound waves, and no attempt has been made to measure the shape of a human body in a wearing state using sound waves. The most popular method used for sound detection in acoustic measurement is a flying pulse measurement method. This flying pulse measurement is a method of measuring the reflection time of the sound wave from the interface of the object and obtaining the distance. That is, if the time until the reflected wave is emitted from the sound wave pulse is T and the propagation speed of the sound wave in the gas is V, the distance (one way) L to the reflection interface can be expressed as 2L = VT. This is to obtain L. The time width of the sound wave pulse is determined by the frequency used and the device characteristics (Q value), and the sound wave pulse length is several wavelengths or more. When measuring a wearing human body using pulsed sound waves in flying pulse measurement, the gap between the clothes and the human body is usually less than a few centimeters even if the gap between the clothes and the human body is 0 centimeters. The human body pulse cannot be determined because the reflected pulse from the and the reflected pulse from the clothes overlap on the time axis. It is possible to shorten the pulse time width as an attempt to avoid the duplication of the sound wave pulses, but for this purpose, it is necessary to increase the frequency of the sound waves used. However, as the frequency of the sound wave increases, the attenuation in the gas medium and the reflectance on the clothing surface increase, and the sound wave with sufficient strength does not reach the human body surface, and information from the human body surface cannot be obtained. It is impossible to measure the human body in the worn state. In addition, as a recent attempt, a human body wearing clothes is irradiated with continuous sound waves from a sound wave generator, and a plurality of sound waves from the human body, clothes, etc. interfere with each other, and the resulting sound waves are detected by a sound wave receiver and detected. There is a human body shape measuring device that calculates the shape of a human body wearing clothes by subtracting components other than the reflected sound wave from the human body from the interference sound signal of multiple components by calculation and obtaining only the sound wave reflection component from the human body. However, in terms of time required for measurement, there was a drawback that it was not put to practical use. As a result of earnest studies in view of such a situation, the present inventors have reached the next invention as a method capable of measuring a human body shape in a worn state at high speed using sound waves.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、衣服
を着用した人体に少なくとも1つ以上の音波発生器より
10KHz以下の周波数を有する音波を照射し、人体及
び衣服からの複数の音波が干渉して個々の振幅、位相成
分が重ね合わされ生じた音波を、少なくとも1つ以上の
音波受信器で検出し、検出された複数成分の干渉音波信
号より人体からの反射音波以外の成分を演算により差し
引き、人体からの音波反射成分のみを得ることにより衣
服を着た人体の形状を算出することを特徴とする人体形
状計測方法。
That is, according to the present invention, a human body wearing clothes is irradiated with sound waves having a frequency of 10 KHz or less from at least one sound wave generator, and a plurality of sound waves from the human body and clothes interfere with each other. Then, the sound waves generated by superimposing the individual amplitude and phase components are detected by at least one or more sound wave receivers, and the components other than the reflected sound waves from the human body are subtracted by calculation from the detected interfering sound wave signals. A human body shape measuring method characterized in that the shape of a human body wearing clothes is calculated by obtaining only sound wave reflection components from the human body.

【0005】本発明における被検者の着衣する布の素
材、編み方、色、音波透過率等は特に限定しないが使用
する音波周波数における音波の布における透過率が3%
以上である事が好ましい。さらに好ましくは使用する音
波周波数における音波の布における透過率が20%以上
であることが好ましい。
The material, knitting, color, and sound wave transmittance of the cloth to be worn by the subject in the present invention are not particularly limited, but the sound wave transmittance at the used sound wave frequency is 3%.
The above is preferable. More preferably, the transmittance of the sound wave at the used sound wave frequency in the cloth is preferably 20% or more.

【0006】本発明における音波の周波数は特に限定す
るものではないが、好ましくは10HZ−10KHZが
好ましい。さらに好ましくは20KHZ−40KHZの
周波数を有する音波を使用するのが良い。また音波波形
や音波周波数成分について特に限定するものではない
が、方形波、三角波、正弦波いずれも使用可能である。
好ましくは正弦波を用いるのが好ましい。
The frequency of the sound wave in the present invention is not particularly limited, but is preferably 10HZ-10KHZ. More preferably, a sound wave having a frequency of 20KHZ-40KHZ is used. The sound wave waveform and sound wave frequency component are not particularly limited, but any of a square wave, a triangular wave, and a sine wave can be used.
It is preferable to use a sine wave.

【0007】本発明における発信、受信用音波デバイス
は特に限定する物ではないが、圧電素子、電歪素子、磁
歪素子、音響スピーカ、マイク等を使用する事ができ
る。本発明のベクトル演算の実行手段はコンピュータ上
で行なう事が好ましい。位相情報の検出はFFTを用い
たネットワークアナライザ(アンリツ社 MS420K
等)やハード的な高速処理可能な位相、強度弁別装置を
利用する事が可能である。実際の場合には計測系におけ
る音の干渉、回折、散乱または音波の減衰、反射等を考
慮して厳密なる音波解析モデルを構築しておくべきであ
る。
The sound wave device for transmission and reception in the present invention is not particularly limited, but a piezoelectric element, an electrostrictive element, a magnetostrictive element, an acoustic speaker, a microphone or the like can be used. It is preferable to execute the vector operation executing means of the present invention on a computer. Phase information is detected by a network analyzer using FFT (MS420K, Anritsu)
Etc.) and a phase / intensity discriminating device capable of high-speed processing in hardware can be used. In an actual case, a strict sound wave analysis model should be constructed in consideration of sound interference, diffraction, scattering or sound wave attenuation and reflection in the measurement system.

【0008】[0008]

【作用】音波の本質的な特性として、物体等に音波を照
射した場合、媒体特性の異なる境界で音響インピーダン
ス差に応じた反射音波、透過音波となる。着装状態の人
体に音波を照射した場合、主に人体表面からの反射音波
(人体反射音波と呼ぶ)と衣服表面からの反射音波(衣
服反射音波と呼ぶ)を得る。主として人体と衣服からの
2成分の混在する正弦波音波を音波受信器により検出し
た時以下の等式が成立する。 音波受信信号=人体反射音波+衣服反射音波・・・ (式
1) 単一周波数の正弦音波を用いた場合、それぞれは 音波受信信号:E1cos(wt−A) 人体反射音波:E2cos(wt−B) 衣服反射音波:E3cos(wt−C)と表される。 (W:使用音波の周波数により一義的に定まる角速度) 式1より人体形状を求めるに必要な人体反射音波は 人体反射音波=音波受信信号−衣服反射音波・・・ (式
2) と表される。従って、人体形状は何等かの方法によって
衣服からの反射音波を求めることができれば(式2)に
よって求める事が可能である。衣服からの反射音波を求
める事は衣服反射音波の成分である振幅E3、位相C、
音波の角速度wを求める事と同義である。音波の角速度
wは発信音波の周波数より一義的に定まり音波発振、受
信器にて入出力される正弦波を周波数カウンタで求めれ
ばよい。位相Cは音波発振器より音波が発せられ衣服に
て一部が反射され、音波受信器に到達する音波の伝播距
離Dによってもとまり、伝播距離Dと衣服からの反射音
波の有する位相成分Cとの間には以下の等式が成立す
る。 C=D/音波波長*(−2π)・・・ (式3) 衣服反射音波の振幅成分であるE3は衣服における音波
の反射率によって一義的に求める事ができる。式2で示
すように、音波受信器によって得られたE1cos(w
t−A)と表わせる正弦波からフライングパルス計測等
で得られるE3cos(wt−C)と表わされる正弦波
を数学的な手法で差し引く事により人体からの情報であ
る人体反射音波 E2cos(wt−B)を求めること
が可能である。人体反射音波の位相成分Bより人体表面
と音波発振、受信器のなす距離、或いは変位量を算出す
ることが可能であるが、10KHZ以下の長波長の音波
を用いる事により音波発振器−人体−音波受信器間の絶
対距離変化を計測する事が可能である。こうして得られ
た人体表面各点からの音波情報を総合して人体全体の形
状を求めることができる。以下に実施例を示し、本発明
をさらに詳細に説明するが、本発明は以下の実施例にな
んら限定されない。
As an essential characteristic of a sound wave, when an object or the like is irradiated with the sound wave, it becomes a reflected sound wave or a transmitted sound wave depending on the acoustic impedance difference at the boundary where the medium characteristics are different. When a human body in a worn state is irradiated with a sound wave, a reflected sound wave from a human body surface (called a human body reflected sound wave) and a reflected sound wave from a clothing surface (called a clothing reflected sound wave) are mainly obtained. The following equation holds when a sine wave sound wave containing two components mainly from a human body and clothes is detected by a sound wave receiver. Sound wave reception signal = Human body reflected sound wave + Clothes reflected sound wave (Equation 1) When a single frequency sine sound wave is used, sound wave reception signal: E1cos (wt-A) Human body reflected sound wave: E2cos (wt-B) ) Clothes reflected sound wave: represented by E3cos (wt-C). (W: Angular velocity that is uniquely determined by the frequency of the sound wave used) The human body reflected sound wave required to obtain the human body shape from Expression 1 is expressed as: Human body reflected sound wave = Sound wave reception signal-Clothes reflected sound wave (Equation 2) .. Therefore, if the reflected sound wave from the clothes can be obtained by some method, the human body shape can be obtained by (Equation 2). Obtaining the reflected sound wave from the clothes includes the amplitude E3, the phase C, which are the components of the reflected sound wave of the clothes,
This is synonymous with obtaining the angular velocity w of a sound wave. The angular velocity w of the sound wave is uniquely determined from the frequency of the transmitted sound wave, and the sound wave is oscillated, and the sine wave input / output by the receiver may be obtained by the frequency counter. The phase C is determined by the propagation distance D of the sound wave that is emitted from the sound wave oscillator and partially reflected by the clothes and reaches the sound wave receiver. The propagation distance D and the phase component C of the reflected sound wave from the clothes are In between, the following equation holds. C = D / wavelength * (− 2π) (Equation 3) E3, which is the amplitude component of the clothes reflected sound wave, can be uniquely determined by the reflectance of the sound wave in the clothes. As shown in Equation 2, E1 cos (w obtained by the acoustic wave receiver
The human body reflected sound wave E2cos (wt-), which is information from the human body, is obtained by subtracting the sine wave represented by E3cos (wt-C) obtained by flying pulse measurement from the sine wave represented by t-A) by a mathematical method. B) can be obtained. It is possible to calculate the oscillating sound from the human body surface, the distance formed by the receiver, or the displacement amount from the phase component B of the reflected sound wave from the human body. However, by using a sound wave having a long wavelength of 10 KHZ or less, It is possible to measure absolute distance changes between receivers. The shape of the entire human body can be obtained by integrating the sound wave information obtained from each point on the surface of the human body thus obtained. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

【0009】[0009]

【実施例】【Example】

実施例−1 本発明により衣服に包まれた対象物の形状計測が可能で
ある事を証明するために円筒物体を衣服(布)で包、そ
の対向する位置に音波発振、受信器を配置し音波により
布で隠れて目視不可能な物体の形状計測を試みた。本発
明の計測方法は以下に示す複数の計測段階に分けること
が可能である。 a.布をまとった人体(物体)に連続音波を照射し、布
からと人体から反射してくる音波を検出し音波受振器信
号を求める(ステップ1)。 b.布反射音波を単独に求める(ステップ2)。 c.音波受振器信号から布反射音波を差し引き(ベルト
ル演算)人体反射信号を求める(ステップ3)。 d.人体反射信号より音波発振、受信器と人体表面との
間の距離の関係を求める(ステップ4)。 e.dで得られた距離情報から人体(物体)の表面形状
を求める(ステップ5)。 各a〜eの各方法についての実施例を、以下に示す。計
測システムのブロック図を図1に示す。 a(ステップ1) パターンジェネレータから送られる正弦波は、オーディ
オアンプによって約80ボルト(p−p)に増幅され、
音波発振器に送られ、音波発振器により、電気的エネル
ギーが音波エネルギーに変換され気体中に発射される。
連続した音波は気体中を伝播し、一部は人体表面で反射
され、また一部は衣服表面で反射され、音波受信器にて
2つの波が干渉した結果が検出される。この信号をパタ
ーンジェネレータ(WAVETEK MODEL23 )の信号を基準信
号としてネットワークアナライザ(アンリツ社 MS4
20)で分析し、式1における音波受信信号の振幅E1
と位相成分Aを求める。 b(ステップ2) 式1における衣服反射音波成分をもとめるために今回フ
ライングパルス計測を用いた。音波の特性はa.で用い
た連続音波と同一の周波数、強度を有する単独音波パル
スを用い、また音波発振、受信器やその設置されている
環境(位置、温度、湿度)も同一である。パーソナルコ
ンピュータ(PC9800 NEC社)からI/Oボードを通じて
発生したトリガパルス信号がゲート スイープ(GATED
SWEEP)状態に設定されたパターンジェネレータに入力さ
れると、トリガパルス時間の音波パルスが音波発振器よ
り出力される。今回の実験では空気中の音波パルス長は
約10cmである。音波パルスは気体中を伝播し、布や人
体等で反射し、音波受信器にて検出される。布からの反
射音波は、音波パルスが発射された時間を起点とすると
時間的に最も早期に音波受信器にて音波パルス信号とし
て検出される。今回の実施例においては、ウエーブメモ
リ(NF ERECTRONIC INSTRUMENTS 5822)に一旦、コンピ
ュータからのトリガパルスと音波パルス信号をストレー
ジし、トリガパルスを起点の時間として、音波パルス信
号の最初の立ち上がりまでの時間から布反射信号の位相
成分Cをもとめ、また立ち上がり(音波パルスの最初の
1波長)のピーク値より、布反射信号の振幅成分の表面
衣服E3を求めた。 c(ステップ3) a.,b.より式1における 音波受振信号:E1cos(wt−A) 衣服反射音波:E3cos(wt−C)が求められた。 人体(物体)形状を求めるに必要な人体反射音波(E2
cos(wt−B))の算出に以下の数式をパーソナル
コンピュータ(PC9800 NEC社)にて実行した。 音波受信信号=人体反射音波+衣服反射音波・・・ (式
1) =E2cos(wt−B)+E3cos(wt−C) =(α2 +β2 1/2 cos(wt+γ) =E1cos(wt−A) ただし α=E2cosB+E3cosC β=E2sinB+E3sinC γ=tan-1(A/B) 以上の式から以下の連立方程式が成立する。 tanγ=(A/B) E1=(α2 +β2 1/2 P=±(E12 /(1+tan(A))2 1/2 Q=P*tan(A) R=(Q−E3sin(C))/(P−E3sin
(C))とすると 位相成分B=tan-1(R) 振幅成分E2=(P−E3sin(C))/cos
(B) 以上のベクトル演算により人体反射音波を求める。 d(ステップ4) 人体反射信号より音波発振、受信器と人体表面との間の
距離の関係を求める。本実施例においては図2に示すよ
うな音波発振、受信器間の位相差の変化を距離パラメー
タとして用いた。すなわち、本実施例においては対象物
の変位計測であり、方向判別の手段として位相差の回転
方向より音波発信、受信器と対象物がなす距離が増大し
ているか、或いは減少しているかを判別した。図2にお
いて(A)から(B)への変化は位相差の回転はマイナ
ス方向へ1/4波長であることより、(A)から(B)
への変位量は1/4波長分であり、その方向は音波発
振、受信器と対象物がなす距離が増大していることが検
出できる。すなわち、本実施例において隣合う計測ポイ
ントの変位量が1波長である場合、音波発振、受信器間
の位相差の変化は0πとなり、音波発振、受信器と人体
表面との間の距離変動は0或いは、方向の区別のつかな
い整数波長に相当する移動量の可能性を有する事にな
る。しかし長波長の音波を用いた場合この可能性は激減
する。通常、人体形状は、球、円筒、楕円筒形状の集合
体であり、個人差はあっても人体輪郭は容易に推定可能
である。従って人体の周りに沿って音波発振、受信器を
回転させた場合、音波発振器−人体−音波受信器間の距
離変化は数cmとなる。従って、長波長の音波を用いた場
合、音波発振器−人体−音波受信器間の距離変化は1波
長以内の変化となる。すなわち、長波長の音波を用いた
場合、音波発振器−人体−音波受信器間の絶対距離を計
測可能である。絶対距離計測は変位量計測に対して、隣
合う計測ポイント間の関係を考慮する必要がなく、初期
絶対距離を求める必要もないため、高速な計測が可能と
成る。 e(ステップ5) 音波はその性格上、光等と比較すると非常に指向性が悪
く、また回折等の影響が大きい。そのため、音響レンズ
等を用いてエネルギーを一点に集中させる試みをして
も、波長の数倍程度にしか絞り込めない。従って、レー
ザ光のようなエネルギー密度の高い、ビーム形状は実現
できない。同様の理由で、超指向性マイクを用いて、特
定エリアからの音波だけを拾い集める事も難しい。すな
わち、布、人体に音波を照射し、反射音波を音波受信器
で拾うことは可能であるが、どこの地点からの反射音波
であるかを限定するに工夫が必要である。今回の実施例
は以上の問題を解決するために以下の方法を用いた。音
波の物質界面での反射は通常、光学における鏡面反射と
同じく、正反射し物質界面での入射角と出射角は等しく
なる。d.で求めた音波発振器−対象物−音波受信器間
距離を基に音波発振器、受信器から同一距離軌道を描く
とその軌跡は楕円球となる。この楕円球は音波が光学に
おける鏡面反射と同じく正反射し、物質界面での入射角
と出射角は等しい場合、計測対象に外接する。従って、
複数回の計測結果より複数の計測対象に外接する楕円球
を描く事で、人体形状が求める事ができる。以上a〜e
の手順を必要回数繰り返し行ない、対象物の形状計測を
行った。また、式1が成立するための環境として、音
波、或いは振動の形として音波発信器から直接音波受信
器に信号が入力しないように、音波発振器、受信器を吸
音材で包み込んだり、近くの壁、天井、床や測定機器に
吸音材を張り付け、振動対策として音波発振器と受信器
を固定する定板等を物理的に分離するなどの処置を行っ
た。本実施例に用いた実験装置の概略を図3に示す。測
定対象物として表面研磨した直径90mmのステンレス
の円筒を用いた。音波発振器、受信器として以下の市販
デバイスを用いた。 音波発振器:EFROWB40K2(松下電気) 音波受信器:ATM33R(オーディオテクニカ社) 用いた音波の発振周波数は5KHZの正弦波である。ス
テンレス円筒を包む衣服として、使用音波周波数におい
て透過率がそれぞれ5−100%である布を20種類用
意した。精度確認のため市販の光学式変位計との比較を
試みた。結果を図4に示す。 繰り返し精度:変位量の0.2%(σ) 絶対距離精度:変位量の0.1%(σ) 円筒の周方向計測所要時間:0.2秒/周 また本発明にて布にくるまれたステンレス円筒の周りに
沿って音波発振器と音波受信器を移動させながら、ステ
ンレス円筒検査対象を測定し、今回用意した20種類の
布地すべてにおいて布地を透して対象物の形状計測が可
能であることを確認した。形状計測に必要な演算及びグ
ラフィック処理時間10分の良好な結果を得た。
Example 1 In order to prove that it is possible to measure the shape of an object wrapped in clothes according to the present invention, a cylindrical object is wrapped in clothes (cloth), and sound wave oscillating and a receiver are arranged at opposite positions. An attempt was made to measure the shape of an invisible object hidden by a cloth due to sound waves. The measuring method of the present invention can be divided into a plurality of measuring steps shown below. a. A human body (object) wearing a cloth is irradiated with continuous sound waves, and sound waves reflected from the cloth and from the human body are detected to obtain a sound wave receiver signal (step 1). b. The cloth reflected sound waves are individually obtained (step 2). c. The cloth reflected sound wave is subtracted from the sound wave receiver signal (beltle calculation) to obtain a human body reflected signal (step 3). d. A sound wave is oscillated from the human body reflection signal, and the distance relationship between the receiver and the human body surface is obtained (step 4). e. The surface shape of the human body (object) is obtained from the distance information obtained in d (step 5). Examples of each method of a to e will be shown below. A block diagram of the measurement system is shown in FIG. a (Step 1) The sine wave sent from the pattern generator is amplified to about 80 volts (pp) by the audio amplifier,
It is sent to a sonic oscillator, and electrical energy is converted into sonic energy by the sonic oscillator and is emitted into the gas.
A continuous sound wave propagates in gas, part of which is reflected on the surface of the human body and part of which is reflected on the surface of clothes, and the result of the interference of the two waves is detected at the sound wave receiver. A network analyzer (MS4 of Anritsu Co., Ltd.) using this signal with the signal of the pattern generator (WAVETEK MODEL23) as a reference signal.
20), the amplitude E1 of the sound wave reception signal in Equation 1
And the phase component A is obtained. b (Step 2) Flying pulse measurement was used this time to find the clothes reflected sound wave component in the equation 1. The characteristics of sound waves are a. A single sound wave pulse having the same frequency and intensity as the continuous sound wave used in (3) is used, and the sound wave oscillation, the receiver and the environment (position, temperature, humidity) in which they are installed are also the same. The trigger pulse signal generated from the personal computer (PC9800 NEC Corporation) through the I / O board is the gate sweep (GATED
When input to the pattern generator set to the (SWEEP) state, the sound wave pulse of the trigger pulse time is output from the sound wave oscillator. In this experiment, the acoustic pulse length in air is about 10 cm. The sound wave pulse propagates in gas, is reflected by a cloth, a human body, or the like, and is detected by a sound wave receiver. The sound wave reflected from the cloth is detected as a sound wave pulse signal by the sound wave receiver earliest in time, starting from the time when the sound wave pulse is emitted. In the present embodiment, once the trigger pulse and the sound wave pulse signal from the computer are stored in the wave memory (NF ERECTRONIC INSTRUMENTS 5822), the trigger pulse is used as the starting point, and the time from the first rising of the sound wave pulse signal is changed. The phase component C of the cloth reflection signal was obtained, and the surface clothing E3 of the amplitude component of the cloth reflection signal was obtained from the peak value of the rising edge (the first wavelength of the sound wave pulse). c (step 3) a. , B. From the equation 1, the sound wave receiving signal: E1cos (wt-A) and the clothing reflected sound wave: E3cos (wt-C) were obtained. Human body reflected sound waves (E2) required to obtain the human body (object) shape
The following mathematical expression was executed by a personal computer (PC9800 NEC Corporation) for the calculation of cos (wt-B)). Sound wave reception signal = human body reflected sound wave + clothes reflected sound wave (Equation 1) = E2cos (wt-B) + E3cos (wt-C) = (α 2 + β 2 ) 1/2 cos (wt + γ) = E1 cos (wt- A) However, α = E2cosB + E3cosC β = E2sinB + E3sinC γ = tan −1 (A / B) From the above equations, the following simultaneous equations are established. tan γ = (A / B) E1 = (α 2 + β 2 ) 1/2 P = ± (E1 2 / (1 + tan (A)) 2 ) 1/2 Q = P * tan (A) R = (Q-E3sin ( C)) / (P-E3sin
(C)) Phase component B = tan −1 (R) Amplitude component E2 = (P−E3sin (C)) / cos
(B) The human body reflected sound wave is obtained by the above vector calculation. d (Step 4) The relationship between the sound wave oscillation and the distance between the receiver and the human body surface is obtained from the human body reflection signal. In this embodiment, the sound wave oscillation as shown in FIG. 2 and the change in the phase difference between the receivers were used as the distance parameter. That is, in the present embodiment, the displacement of the object is measured, and as a means for determining the direction, it is determined whether the distance between the acoustic wave transmission and the receiver and the object is increasing or decreasing from the rotation direction of the phase difference. did. In FIG. 2, the change from (A) to (B) is because the rotation of the phase difference is ¼ wavelength in the negative direction, so (A) to (B)
The amount of displacement is 1/4 wavelength, and it is possible to detect oscillating sound waves in that direction and increasing the distance between the receiver and the object. That is, in the present embodiment, when the displacement amount of the adjacent measurement points is 1 wavelength, the change in the phase difference between the sound wave oscillation and the receiver is 0π, and the sound wave oscillation and the distance change between the receiver and the human body surface are There is a possibility of 0 or a movement amount corresponding to an integral wavelength in which directions cannot be distinguished. However, this possibility is drastically reduced when using long wavelength sound waves. Usually, the human body shape is a collection of spheres, cylinders, and elliptic cylinder shapes, and the human body contour can be easily estimated even if there are individual differences. Therefore, when oscillating a sound wave around the human body and rotating the receiver, the change in distance between the sound wave oscillator, the human body and the sound wave receiver becomes several cm. Therefore, when a long-wavelength sound wave is used, the change in the distance between the sound wave oscillator, the human body, and the sound wave receiver is within one wavelength. That is, when a long wavelength sound wave is used, the absolute distance between the sound wave oscillator, the human body, and the sound wave receiver can be measured. The absolute distance measurement does not need to consider the relationship between the adjacent measurement points and does not need to obtain the initial absolute distance for the displacement amount measurement, which enables high-speed measurement. e (Step 5) Due to its nature, sound waves have a very poor directivity as compared with light and the like, and are greatly affected by diffraction and the like. Therefore, even if an attempt is made to concentrate the energy at one point by using an acoustic lens or the like, the energy can be narrowed down to only about several times the wavelength. Therefore, a beam shape with high energy density like that of laser light cannot be realized. For the same reason, it is difficult to collect only sound waves from a specific area using a super directional microphone. That is, it is possible to irradiate a cloth or a human body with a sound wave and pick up a reflected sound wave with a sound wave receiver, but it is necessary to devise to limit from which point the reflected sound wave comes. In this example, the following method was used to solve the above problems. The reflection of the sound wave at the material interface is normally specular reflection, similar to the specular reflection in optics, and the incident angle and the exit angle at the material interface become equal. d. When the same distance orbit is drawn from the sound wave oscillator and the receiver based on the distance between the sound wave oscillator, the object, and the sound wave receiver obtained in step 1, the locus becomes an elliptical sphere. This ellipsoid is a regular reflection of a sound wave, like specular reflection in optics, and circumscribes the object to be measured when the incident angle and the exit angle at the material interface are equal. Therefore,
By drawing an elliptical sphere circumscribing multiple measurement targets from the results of multiple measurements, the human body shape can be obtained. Above a to e
The above procedure was repeated as many times as necessary to measure the shape of the object. As an environment for the expression 1 to be satisfied, the sound wave oscillator and the receiver should be wrapped with a sound absorbing material or a nearby wall so that a signal is not directly input from the sound wave transmitter to the sound wave receiver in the form of sound wave or vibration. The sound absorbing material was attached to the ceiling, floor and measuring equipment, and as a measure against vibration, the sound wave oscillator and the fixed plate for fixing the receiver were physically separated. An outline of the experimental apparatus used in this example is shown in FIG. A surface-polished stainless steel cylinder having a diameter of 90 mm was used as an object to be measured. The following commercially available devices were used as the acoustic wave oscillator and the receiver. Sound wave oscillator: EFROWB40K2 (Matsushita Electric) Sound wave receiver: ATM33R (Audio Technica Co., Ltd.) The oscillation frequency of the sound wave used is a sine wave of 5 KHZ. As clothes for wrapping the stainless steel cylinder, 20 kinds of cloths each having a transmittance of 5 to 100% at a sound wave frequency used were prepared. In order to confirm the accuracy, we tried to compare it with a commercially available optical displacement meter. The results are shown in Fig. 4. Repeatability: 0.2% of displacement amount (σ) Absolute distance accuracy: 0.1% of displacement amount (σ) Time required for circumferential measurement of cylinder: 0.2 sec / circle While moving the sonic oscillator and the sonic receiver around the stainless steel cylinder, the stainless steel cylinder inspection object is measured, and the shape of the object can be measured through all the 20 kinds of cloths prepared this time through the cloth. It was confirmed. Good results were obtained for the calculation and graphic processing time of 10 minutes required for shape measurement.

【0010】実施例−2 実施例−1で述べたa〜eと同様の手順を繰り返し、着
装状態の人体形状計測を試みた。被検人体は26才の女
性である。高速計測のために複数の音波発信器、受信器
と複数の周波数を用いた。以下の市販デバイスを用い
た。 音波発振器:RBW−40K(松下電気) 20
個 音波受信器:RM−33(オーディオテクニカ社)20
個 使用音波の周波数帯は20〜40キロヘルツであり、使
用した音波発振器にそれぞれが約1キロヘルツ隔たっ
た、数+ヘルツの半値幅をゆうする単一周波数を持つ正
弦波を独立したパターンジェネレータから入力した。ま
た音波受信器もそれぞれの音波発振器の固有周波数に応
じたバンドパスフィルタを付加した。この結果、同時に
存在する複数の音波が互いに干渉することを電気的に排
除することが可能で高速な計測が可能である。使用した
計測器、コンピュータ等は実施例−1と同一である。被
検人体が着衣した衣服は、Tシャツ、男性ワイシャツ、
女性ブラウス各10種類であった。着装状態の人体各部
を巻き尺で計った値と音波を用いた本発明とで計測した
結果を示す。 繰り返し精度(σ):巻尺10mm、音波計測0.2m
m 計測時間(20箇所):巻尺10分、音波計測30秒 (比較検討回数 200回) 本発明にて被検者を測定し、アパレル等で行われる巻き
尺による採寸作業より、本発明が繰り返し精度、測定所
要時間等において優れている事が証明された。
Example-2 The procedure similar to a to e described in Example-1 was repeated to try to measure the human body shape in a worn state. The human body to be inspected is a female of 26 years old. Multiple acoustic wave transmitters, receivers and multiple frequencies were used for high speed measurement. The following commercial devices were used. Sound wave oscillator: RBW-40K (Matsushita Electric) 20
Individual sound wave receiver: RM-33 (Audio Technica) 20
The frequency band of each used sound wave is 20 to 40 kHz, and a sine wave having a single frequency with a half-value width of several + hertz, each separated by about 1 kHz to the used sound wave oscillator, is input from an independent pattern generator. did. The sound wave receiver also has a band pass filter according to the natural frequency of each sound wave oscillator. As a result, it is possible to electrically exclude interference between a plurality of sound waves that are present at the same time, and high-speed measurement is possible. The measuring instrument, computer, etc. used are the same as in Example-1. Clothes worn by the human body are T-shirts, men's shirts,
There were 10 female blouses each. The result of having measured each part of the human body in the wearing state with a tape measure and this invention using a sound wave is shown. Repeatability (σ): Tape measure 10 mm, sound wave measurement 0.2 m
m Measurement time (20 places): Tape measure 10 minutes, sound wave measurement 30 seconds (comparison frequency 200 times) The present invention is repeated accuracy from the measuring work by the tape measure performed in the present invention such as apparel. It was proved that the measurement time was excellent.

【0011】[0011]

【効果】本発明は弾性波を数%以上透過する物体の後方
に気体層を挟んで位置する物体の形状の三次元形状計測
を極めて正確に行なうことを可能とした。
[Effect] The present invention makes it possible to extremely accurately perform three-dimensional shape measurement of the shape of an object that is located behind an object that transmits several percent or more of elastic waves with a gas layer in between.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における計測システムのブロック図。FIG. 1 is a block diagram of a measurement system according to the present invention.

【図2】 本発明における弾性波発振、受信器間の位相
差の変化を示す模試図。
FIG. 2 is a model diagram showing changes in the phase difference between the elastic wave oscillation and the receiver in the present invention.

【図3】 本発明における実験装置の概略図。FIG. 3 is a schematic diagram of an experimental apparatus according to the present invention.

【図4】 本発明における音波計測値と変位計出力値と
の関係を示す図。
FIG. 4 is a diagram showing a relationship between a sound wave measurement value and a displacement meter output value in the present invention.

【符号の説明】[Explanation of symbols]

A:位相A B:位相B 1:音波発振器 2:音波受信器 3:布(衣服) 4:ステンレス円筒 5:変位計 A: Phase A B: Phase B 1: Sound wave oscillator 2: Sound wave receiver 3: Cloth (clothes) 4: Stainless steel cylinder 5: Displacement meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 衣服を着用した人体に少なくとも1つ以
上の音波発生器より10KHz以下の周波数を有する音
波を照射し、人体及び衣服からの複数の音波が干渉して
個々の振幅、位相成分が重ね合わされ生じた音波を、少
なくとも1つ以上の音波受信器で検出し、検出された複
数成分の干渉音波信号より人体からの反射音波以外の成
分を演算により差し引き、人体からの音波反射成分のみ
を得ることにより衣服を着た人体の形状を算出すること
を特徴とする人体形状計測方法。
1. A human body wearing clothes is irradiated with a sound wave having a frequency of 10 KHz or less from at least one sound wave generator, and a plurality of sound waves from the human body and clothes interfere with each other to generate individual amplitude and phase components. The superposed sound waves are detected by at least one or more sound wave receivers, and components other than the reflected sound waves from the human body are subtracted from the detected interference sound signal of multiple components by calculation, and only the sound wave reflected components from the human body are detected. A human body shape measuring method, characterized in that the shape of a human body wearing clothes is calculated by obtaining the shape.
JP3712592A 1992-01-27 1992-01-27 Method for measuring shape of human body Pending JPH05203436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3712592A JPH05203436A (en) 1992-01-27 1992-01-27 Method for measuring shape of human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3712592A JPH05203436A (en) 1992-01-27 1992-01-27 Method for measuring shape of human body

Publications (1)

Publication Number Publication Date
JPH05203436A true JPH05203436A (en) 1993-08-10

Family

ID=12488890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3712592A Pending JPH05203436A (en) 1992-01-27 1992-01-27 Method for measuring shape of human body

Country Status (1)

Country Link
JP (1) JPH05203436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009343C2 (en) * 1998-06-08 1999-12-10 Peter Johannes Wilhelmus Van H Method and device for contactless determination of the dimensions of objects.
WO2000055644A1 (en) * 1999-03-16 2000-09-21 De Montfort University Methods and apparatus for imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009343C2 (en) * 1998-06-08 1999-12-10 Peter Johannes Wilhelmus Van H Method and device for contactless determination of the dimensions of objects.
WO1999064889A1 (en) * 1998-06-08 1999-12-16 Heco Mode B V Method and device for determining the measurements of objects without making contact therewith
WO2000055644A1 (en) * 1999-03-16 2000-09-21 De Montfort University Methods and apparatus for imaging

Similar Documents

Publication Publication Date Title
US5938602A (en) Catheter tracking system and method
US9717471B2 (en) Method and apparatus for multiple-wave doppler velocity meter
US9462947B2 (en) Measurement method and arrangement utilizing electromagnetic waves
US20060169029A1 (en) Acoustic concealed item detector
US20050070791A1 (en) Signal processing using non-linear regression with a sinusoidal model
US4922467A (en) Acoustic detection apparatus
EP0120886A1 (en) Measurement of ultrasound velocity in tissue
KR20140084089A (en) A skeletal method and arrangement utilizing electromagnetic waves
Hickling et al. Finding the direction of a sound source using a vector sound‐intensity probe
JPH05203436A (en) Method for measuring shape of human body
JPH05223555A (en) Measuring method of shape of human body
JPH05203435A (en) Method for measuring shape of human body
JPH05203437A (en) Shape measuring method
JPH05223554A (en) Measuring method of shape of human body
JPH05203434A (en) Method for measuring shape of human body
CA1299727C (en) Acoustic detection apparatus
JPH05203438A (en) Method for measuring shape of human body
JPH05187853A (en) Shape measuring method
Silva et al. Stress field forming of sector array transducers for vibro-acoustography
Caron et al. Atypical applications for gas-coupled laser acoustic detection
Kramer et al. Characteristics of wide-band planar ultrasonic transducers using plane and edge wave contributions
KR20220030414A (en) Ultrasonic phantom device for performance evaluation of rotary ultrasonic probe
Gumienny et al. Ultrasonic setup for fingerprint patterns detection and evaluation
JPH0450750A (en) Method and instrument for pressure response measurement
JP7510697B2 (en) Non-invasive diffuse acoustic confocal 3D imaging