JPH05175911A - Omnidirectional light receiving device - Google Patents

Omnidirectional light receiving device

Info

Publication number
JPH05175911A
JPH05175911A JP3341374A JP34137491A JPH05175911A JP H05175911 A JPH05175911 A JP H05175911A JP 3341374 A JP3341374 A JP 3341374A JP 34137491 A JP34137491 A JP 34137491A JP H05175911 A JPH05175911 A JP H05175911A
Authority
JP
Japan
Prior art keywords
light receiving
omnidirectional
prism
receiving device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3341374A
Other languages
Japanese (ja)
Inventor
Kimio Maki
公雄 槙
Mayumi Nakamura
真由美 中村
Tomoyuki Kato
知之 加藤
Yasushi Noda
康 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3341374A priority Critical patent/JPH05175911A/en
Publication of JPH05175911A publication Critical patent/JPH05175911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To allow a light receiving element to receive a signal light efficiently in an omnidirectional light receiving device having an omnidirectional prism 20 and a light receiving element. CONSTITUTION:In the omnidirectional light receiving device having an omnidirectional prism 20 in which a conical recessed part is provided on the upper face 22 of a pillar and the conical face of the cone forms a reflecting face 30 and having a photodetector arranged to the lower side of the omnidirectional prism 20, the apex angle theta of the cone of the recessed part of the omnidirectional prism 20 is selected larger than 90 deg.. Thus, the signal light is received efficiently with the photodetector. Then the arrival range of the remote control signal is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばワイヤレスリモ
コンを備えたカメラ一体型ビデオテープレコーダの赤外
線受光装置に使用して好適な全方向受光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an omnidirectional light receiving device suitable for use in an infrared light receiving device of a camera-integrated video tape recorder equipped with a wireless remote controller.

【0002】[0002]

【従来の技術】図7は従来例による全方向受光装置を示
しており、斯かる全方向受光装置は受光部10とこの受
光部10の上面に装着された全方向プリズム20とを有
する。受光部10は図9に示すように、全方向プリズム
20からの光線を受け入れる受光面12を有する。
2. Description of the Related Art FIG. 7 shows a conventional omnidirectional light receiving device, which has a light receiving portion 10 and an omnidirectional prism 20 mounted on the upper surface of the light receiving portion 10. As shown in FIG. 9, the light receiving unit 10 has a light receiving surface 12 that receives a light beam from the omnidirectional prism 20.

【0003】受光面12にはホトダイオードの如き受光
素子が装着されており、全方向受光装置に入射された光
線のうち受光面12によって受光された光線が電気信号
に変換されることができる。
A light receiving element such as a photodiode is mounted on the light receiving surface 12, and among the light rays incident on the omnidirectional light receiving device, the light rays received by the light receiving surface 12 can be converted into electric signals.

【0004】全方向受光装置はワイヤレスリモコンの赤
外線受光装置に使用されてよく、入力信号である赤外線
を受光して図示しない端子より出力信号である電気信号
を出力することができるように構成される。
The omnidirectional light receiving device may be used for an infrared light receiving device of a wireless remote controller, and is constructed so that it can receive infrared rays as an input signal and output an electric signal as an output signal from a terminal (not shown). ..

【0005】図8に全方向プリズム20の一例の詳細を
示す。全方向プリズム20は例えば光透過性の樹脂から
なる角柱の上面に角錐体の凹部を形成して構成されてよ
く、図示の例では、上面22と側面24と底面26を有
する正八角柱の上面22に正八角錐の凹部を形成したも
のとして構成されている。
FIG. 8 shows details of an example of the omnidirectional prism 20. The omnidirectional prism 20 may be configured, for example, by forming a pyramidal recess on the upper surface of a prism that is made of a light-transmissive resin. In the illustrated example, the upper surface 22 is a regular octagonal prism having an upper surface 22, side surfaces 24, and a bottom surface 26. Is formed as a regular octagonal pyramid recess.

【0006】八角錐の錐面28は反射面30を構成して
おり、図8Bに示す如く八角錐の頂角θは90度をなし
ている。
The pyramidal surface 28 of the octagonal pyramid constitutes the reflecting surface 30, and the apex angle θ of the octagonal pyramid is 90 degrees as shown in FIG. 8B.

【0007】図9は全方向受光装置に入射した光線の経
路を示しており、全方向プリズム20の側面24に入射
された光線は反射面30にて反射され、受光部10装着
された受光面12に到る。
FIG. 9 shows the paths of light rays incident on the omnidirectional light receiving device. The light rays incident on the side surface 24 of the omnidirectional prism 20 are reflected by the reflecting surface 30 and are attached to the light receiving portion 10. Twelve.

【0008】図10は本発明者が提案している全方向受
光装置の例を示しており、この例は、図7に示す従来例
の全方向受光装置と比較して、屋根板40が装着されて
いる点が異なり受光部10と全方向プリズム20とは同
一のものが使用されてよい。
FIG. 10 shows an example of the omnidirectional light receiving device proposed by the present inventor. In this example, the roof plate 40 is mounted as compared with the conventional omnidirectional light receiving device shown in FIG. However, the light receiving unit 10 and the omnidirectional prism 20 may be the same.

【0009】図11は全方向受光装置の他の例を示して
おり、この例では、全方向プリズム20は、円柱の上面
に頂角が90度の円錐体の凹部を形成したものとして構
成されている。全方向プリズム20の凹部の錐面28は
全方向プリズム20の側面24に入射された光線に対す
る反射面30を構成している。
FIG. 11 shows another example of the omnidirectional light receiving device. In this example, the omnidirectional prism 20 is formed by forming a conical concave portion having an apex angle of 90 degrees on the upper surface of a cylinder. ing. The conical surface 28 of the concave portion of the omnidirectional prism 20 constitutes a reflecting surface 30 for a light ray incident on the side surface 24 of the omnidirectional prism 20.

【0010】図12は図10の例と同様、本発明者が提
案している全方向受光装置の例を示しており、図11の
全方向受光装置に屋根板40を装着したものとして構成
されている。
Similar to the example of FIG. 10, FIG. 12 shows an example of the omnidirectional light receiving device proposed by the present inventor, which is constructed by attaching the roof plate 40 to the omnidirectional light receiving device of FIG. ing.

【0011】全方向受光装置はワイヤレスリモコン装置
の赤外線受光装置として使用されてよく、太陽光線又は
照明装置の照明光の如き外光を遮断して赤外線発生装置
からの信号光線のみを受け入れるように構成されること
が望ましい。
The omnidirectional light receiving device may be used as an infrared light receiving device of a wireless remote control device, and is configured to block external light such as sunlight or illumination light of a lighting device and receive only a signal beam from the infrared generating device. It is desirable to be done.

【0012】全方向受光装置は上方からの太陽光線34
の入射を排除し側方からの信号光線32のみを受け入れ
るように、全方向プリズム20の凹部の内面を形成する
錐面28に銀色の被膜を装着してよい。
The omnidirectional light receiving device is provided with a sunbeam 34 from above.
A silver coating may be attached to the conical surface 28 forming the inner surface of the concave portion of the omnidirectional prism 20 so as to exclude the incident light and to receive only the signal light beam 32 from the side.

【0013】錐形の凹部の錐面28に被膜を装着するこ
とによって上方からの太陽光線の入射は排除され、赤外
線は全方向プリズム20の側面24のみから受け入れら
れることができる。
By mounting a coating on the conical surface 28 of the conical recess, sunlight rays from above are excluded, and infrared rays can be received only from the side surface 24 of the omnidirectional prism 20.

【0014】図10及び図12に示す本発明者が提案し
ている全方向受光装置は、全方向プリズム20の上面2
2に装着された屋根板40を有しており、屋根板40は
全方向プリズム20の径即ち上面22より大きな寸法を
有するためその周縁に鍔部42が形成され、この鍔部4
2が屋根の廂の如く上方からの外光を遮断する。従っ
て、斯かる全方向受光装置を有するワイヤレスリモコン
装置は屋外で使用するのに適している。
The omnidirectional light receiving device proposed by the inventor shown in FIGS. 10 and 12 is the upper surface 2 of the omnidirectional prism 20.
2 has a roof plate 40 attached to it, and since the roof plate 40 has a diameter larger than that of the omnidirectional prism 20, that is, a size larger than the upper surface 22, a flange portion 42 is formed on the periphery thereof.
2 blocks the outside light from above like the roof of the roof. Therefore, the wireless remote control device having such an omnidirectional light receiving device is suitable for outdoor use.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、受光部
10の上面に装着された受光面12は全方向プリズム2
0の径即ち底面26より小さな寸法を有する。従って、
図9に示す如く、全方向プリズム20の側面24より入
射された信号光線32A、32Bのうちの一部の光線3
2Bは反射面30にて反射されたのち受光面12の外側
に到達し、全方向プリズム20の側面24より入射され
た信号光線32A、32Bの全てが受光面12上に到達
するわけではない。
However, the light-receiving surface 12 mounted on the upper surface of the light-receiving portion 10 has the omnidirectional prism 2
It has a diameter of 0, ie, a dimension smaller than the bottom surface 26. Therefore,
As shown in FIG. 9, a part of the light rays 3 of the signal light rays 32A and 32B incident from the side surface 24 of the omnidirectional prism 20.
2B reaches the outside of the light receiving surface 12 after being reflected by the reflecting surface 30, and not all the signal light beams 32A and 32B incident from the side surface 24 of the omnidirectional prism 20 reach the light receiving surface 12.

【0016】本発明は、斯かる点に鑑み、全方向受光装
置において、全方向プリズム20の側面24より入射さ
れた信号光線が効率的に受光面12によって受光され、
それによってワイヤレスリモコン信号の到達距離を増大
させワイヤレスリモコン装置の操作可能範囲を増大させ
ることを目的とする。
In view of the above, the present invention is directed to an omnidirectional light receiving device in which a signal light beam incident from the side surface 24 of the omnidirectional prism 20 is efficiently received by the light receiving surface 12.
The purpose of this is to increase the reach of the wireless remote control signal and to increase the operable range of the wireless remote control device.

【0017】[0017]

【課題を解決するための手段】本発明によると、柱体の
上面22に逆錐体状の凹部を有し錐体の錐面28が柱体
の側面24より入射した光線に対する反射面30を構成
する全方向プリズム20と、全方向プリズム20の下端
部26に装着された受光素子とを有する全方向受光装置
8において、全方向プリズム20の凹部の錐体の頂角θ
が90度より大きく構成されている。
According to the present invention, the upper surface 22 of the columnar body has an inverted cone-shaped concave portion, and the conical surface 28 of the pyramid has a reflecting surface 30 for a light ray incident from the side surface 24 of the columnar body. In the omnidirectional light receiving device 8 having the omnidirectional prism 20 and the light receiving element mounted on the lower end portion 26 of the omnidirectional prism 20, the apex angle θ of the cone of the concave portion of the omnidirectional prism 20.
Is larger than 90 degrees.

【0018】本発明の全方向受光装置8において、全方
向プリズムの凹部の錐体の頂角は実質的に104度に構
成されている。
In the omnidirectional light receiving device 8 of the present invention, the apex angle of the cone of the concave portion of the omnidirectional prism is substantially 104 degrees.

【0019】[0019]

【作用】本発明による全方向受光装置8の全方向プリズ
ム20は、柱体の上面22に逆錐体状の凹部を有し、反
射面30を構成する凹部の錐体の頂角は90度より大き
く構成されている。
The omnidirectional prism 20 of the omnidirectional light receiving device 8 according to the present invention has an inverted cone-shaped recess on the upper surface 22 of the column, and the apex angle of the cone of the recess forming the reflecting surface 30 is 90 degrees. It is made larger.

【0020】全方向プリズム20の側面24より入射さ
れた信号光線は斯かる反射面30に反射して受光面12
によって受光されるように構成されているため、信号光
線を効率よく受光することができる。
The signal beam incident from the side surface 24 of the omnidirectional prism 20 is reflected by the reflecting surface 30 and is received by the light receiving surface 12.
Since it is configured to be received by, the signal light beam can be efficiently received.

【0021】全方向プリズム20の側面24方向からの
信号光線を効率良く受光することができるため、リモコ
ン信号の到達距離が増大する。
Since the signal beam from the side surface 24 of the omnidirectional prism 20 can be efficiently received, the reach distance of the remote control signal is increased.

【0022】[0022]

【実施例】以下図1〜図6を参照して本発明の実施例に
ついて詳細に説明する。尚、図1〜図6に於いて、図7
〜図12の対応する部分には同一の参照符号を付してそ
の詳細な説明は省略する。
Embodiments of the present invention will be described in detail below with reference to FIGS. In addition, in FIGS.
~ Corresponding parts in FIG. 12 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0023】図1は本例の全方向受光装置の例を示して
おり、全方向受光装置は受光部10と該受光部10の上
面に装着された全方向プリズム20とを有する。
FIG. 1 shows an example of the omnidirectional light receiving device of the present embodiment. The omnidirectional light receiving device has a light receiving portion 10 and an omnidirectional prism 20 mounted on the upper surface of the light receiving portion 10.

【0024】全方向プリズム20の上面22に形成され
た正八角錐形の凹部の頂角θは90度より大きく、好ま
しくは104度である。斯かる頂角θは全方向プリズム
20の径D、受光面12の径φ及び反射面30から受光
面12までの距離Hによって定められる。
The apex angle θ of the regular octagonal pyramidal recess formed on the upper surface 22 of the omnidirectional prism 20 is larger than 90 degrees, preferably 104 degrees. The apex angle θ is determined by the diameter D of the omnidirectional prism 20, the diameter φ of the light receiving surface 12, and the distance H from the reflecting surface 30 to the light receiving surface 12.

【0025】本例の全方向受光装置は、図7〜図12に
示す全方向受光装置と比較して、全方向プリズム20の
上面22に形成された錐形の凹部の頂角が90度より大
きい点が異なり受光部10は同一のものが使用されてよ
い。好ましくは、図10又は図12に示す如く屋根板4
0を装着したものが使用される。
In the omnidirectional light receiving device of this example, the apex angle of the conical concave portion formed on the upper surface 22 of the omnidirectional prism 20 is 90 degrees as compared with the omnidirectional light receiving device shown in FIGS. The same thing may be used for the light receiving part 10 except a big point. Preferably, the roof plate 4 as shown in FIG. 10 or FIG.
The one with 0 attached is used.

【0026】図2〜図3に、全方向プリズム20の上面
22に形成された正八角錐形の凹部の頂角を90度より
大きくすることによって信号光線が受光面12に効率的
に受光されることを示すために本発明者が実施したシミ
ュレーションの結果を示す。柱体の径Dが11ミリメー
トルの全方向プリズム20と径φが5ミリメートルの受
光面12を有する受光部10とからなる全方向受光装置
に入射した光線の経路についてシミュレーションを実施
した。
2 to 3, the signal beam is efficiently received by the light receiving surface 12 by making the apex angle of the regular octagonal pyramidal recess formed on the upper surface 22 of the omnidirectional prism 20 larger than 90 degrees. The result of the simulation performed by the present inventor is shown to show that. A simulation was carried out on the path of a light beam incident on an omnidirectional light receiving device including an omnidirectional prism 20 having a columnar diameter D of 11 mm and a light receiving unit 10 having a light receiving surface 12 having a diameter φ of 5 mm.

【0027】図2は正八角錐形の凹部の頂角θが104
度、反射面30から受光面12までの距離H(正八角錐
形の凹部の頂点から受光面12までの距離H)が6ミリ
メートルの場合、図3Aは正八角錐形の凹部の頂角θが
103度、反射面30から受光面12までの距離H(正
八角錐形の凹部の頂点から受光面12までの距離H)が
7ミリメートルの場合、図3Bは正八角錐形の凹部の頂
角θが106度、反射面30から受光面12までの距離
H(正八角錐形の凹部の頂点から受光面12までの距離
H)が5ミリメートルの場合、について光線の経路をシ
ミュレーションしたものである。
In FIG. 2, the apex angle θ of the regular octagonal pyramidal recess is 104.
If the distance H from the reflecting surface 30 to the light receiving surface 12 (the distance H from the apex of the regular octagonal pyramidal recess to the light receiving surface 12) is 6 mm, FIG. 3A shows that the apex angle θ of the regular octagonal pyramidal recess is 103. 3B, when the distance H from the reflecting surface 30 to the light receiving surface 12 (the distance H from the apex of the regular octagonal pyramidal recess to the light receiving surface 12) is 7 mm, the apex angle θ of the regular octagonal pyramidal recess is 106. In the case where the distance H from the reflecting surface 30 to the light receiving surface 12 (the distance H from the apex of the regular octagonal pyramidal recess to the light receiving surface 12) is 5 mm, the path of the light beam is simulated.

【0028】各図において、全方向プリズム20の左の
側面24より水平方向に入射し反射面30の上端部と下
端部にて反射した光線の経路と、右の側面24より水平
方向に対して上方より+30度、+20度、+10度、
0度、下方より−10度、−20度、−30度に傾斜し
た方向に入射し反射面30の上端部と下端部にて反射し
た光線の経路と、が示されている。
In each of the drawings, the paths of light rays that are incident horizontally from the left side surface 24 of the omnidirectional prism 20 and reflected at the upper and lower ends of the reflecting surface 30 and from the right side surface 24 with respect to the horizontal direction. From above +30 degrees, +20 degrees, +10 degrees,
The paths of light rays that are incident in the directions inclined at 0 degree, −10 degrees, −20 degrees, and −30 degrees from below and reflected at the upper end portion and the lower end portion of the reflecting surface 30 are shown.

【0029】図2〜図3を比較して明らかなように、図
2に示す如く正八角錐形の凹部の頂角θが104度の場
合に最も効率的に光線が受光面12に集光されることが
できる。
As is apparent from a comparison of FIGS. 2 and 3, when the apex angle θ of the regular octagonal pyramidal recess is 104 degrees as shown in FIG. You can

【0030】次に、全方向プリズム20の正八角錐形の
凹部の頂角θを90度より大きくすることによってリモ
コン信号の到達距離が増大することを示すために本発明
者が実施した実験方法及び実験結果を示す。
Next, an experimental method carried out by the present inventor to show that the reaching distance of the remote control signal is increased by increasing the apex angle θ of the regular octagonal pyramidal recess of the omnidirectional prism 20 to be larger than 90 degrees. The experimental results are shown.

【0031】図4は実験方法の概略を示す図であり、全
方向受光装置8はワイヤレスリモコンの赤外線受光装置
としてカメラ一体型ビデオテープレコーダ50に装着さ
れている。全方向受光装置8は、使用者Mによって操作
される赤外線発生装置52からの入力信号である赤外線
32を受け入れることができるように、好ましくは全方
向プリズム20の側面24が垂直に配置されるようにカ
メラ一体型ビデオテープレコーダ50の上側部に装着さ
れてよい。
FIG. 4 is a diagram showing the outline of the experimental method. The omnidirectional light-receiving device 8 is mounted on the camera-integrated video tape recorder 50 as an infrared light-receiving device of a wireless remote controller. The omnidirectional light receiving device 8 is preferably arranged such that the side surface 24 of the omnidirectional prism 20 is vertically arranged so as to receive the infrared ray 32 which is an input signal from the infrared ray generating device 52 operated by the user M. It may be mounted on the upper portion of the camera-integrated video tape recorder 50.

【0032】図5は実験に使用した全方向受光装置8を
示しており、全方向プリズム20の上面22には該全方
向プリズム20の断面形と同一形状且つ同一寸法の屋根
板40が装着されている。
FIG. 5 shows the omnidirectional light receiving device 8 used in the experiment, in which the roof 22 having the same shape and size as the sectional shape of the omnidirectional prism 20 is mounted on the upper surface 22 of the omnidirectional prism 20. ing.

【0033】斯かる全方向受光装置8と図4に示す装置
を使用し、赤外線32の入射方向及び入射角度を変化さ
せてリモコン信号である赤外線32の到達距離(メート
ル)を測定した。
The omnidirectional light receiving device 8 and the device shown in FIG. 4 were used to change the incident direction and the incident angle of the infrared rays 32 and measure the reaching distance (meters) of the infrared rays 32 as the remote control signal.

【0034】図6は、本実験で使用した全方向受光装置
8の詳細と全方向プリズム20に対するリモコン信号即
ち赤外線32の入射方向及び入射角度を示す。以下に、
赤外線32の入射方向は、図6Aに示す如く、同一水平
面内で、全方向プリズム20の側面24に垂直な方向に
対して左右方向に傾斜された角度αを意味し、赤外線3
2の入射角度は、図6Bに示す如く、同一垂直面内で、
水平方向に対して上下方向に傾斜された角度βを意味す
るものとする。
FIG. 6 shows the details of the omnidirectional light receiving device 8 used in this experiment and the incident direction and incident angle of the remote control signal, that is, the infrared rays 32, to the omnidirectional prism 20. less than,
As shown in FIG. 6A, the incident direction of the infrared ray 32 means an angle α inclined in the left-right direction with respect to the direction perpendicular to the side surface 24 of the omnidirectional prism 20 in the same horizontal plane.
The incident angle of 2 is, as shown in FIG. 6B, in the same vertical plane,
It means an angle β inclined vertically with respect to the horizontal direction.

【0035】図6Aに示す如く、同一水平面内に於ける
赤外線32の入射方向は、全方向プリズム20の側面2
4に垂直な方向(α=0°)の場合、斯かる方向に対し
て右側に傾斜した方向α=30°(R30°)、20°
(R20°)、10°(R10°)の場合、左側に傾斜
した方向α=30°(L30°)、20°(L20
°)、10°(L10°)の場合、全方向プリズム20
の側面24と側面24が交差する角部24Aの方向α=
22.5°(R22.5°、L22.5°)の場合であ
る。
As shown in FIG. 6A, the incident direction of the infrared rays 32 in the same horizontal plane is the side surface 2 of the omnidirectional prism 20.
In the case of the direction perpendicular to 4 (α = 0 °), the direction inclined to the right with respect to the direction α = 30 ° (R30 °), 20 °
In the case of (R20 °) and 10 ° (R10 °), the direction inclined to the left side α = 30 ° (L30 °), 20 ° (L20)
In case of 10 ° (L10 °), the omnidirectional prism 20
Direction of the corner portion 24A where the side face 24 and the side face 24 intersect α =
This is the case of 22.5 ° (R22.5 °, L22.5 °).

【0036】図6Bに示す如く、同一垂直面内に於ける
赤外線32の入射角度は、水平方向β=0°の場合、水
平方向に対して上方に傾斜したβ=+30°、+20
°、+10°の場合、水平方向に対して下方に傾斜した
β=−30°、−20°、−10°の場合、である。
As shown in FIG. 6B, when the incident angle of the infrared rays 32 in the same vertical plane is β = 0 ° in the horizontal direction, β = + 30 °, +20 inclined upward with respect to the horizontal direction.
In the case of ° and + 10 °, β = -30 °, −20 °, and −10 ° inclined downward with respect to the horizontal direction.

【0037】全方向プリズム20は正八角柱の上面に頂
角が104度の正八角錐の凹部を形成したものと、頂角
が90度の正八角錐の凹部を形成したものと、の二つを
用意した。いずれも正八角柱の径Dは11ミリメートル
である。受光部10に装着された受光面12の径φは5
ミリメートルである。
The omnidirectional prism 20 is prepared as a regular octagonal prism having a regular octagonal pyramid recess having an apex angle of 104 degrees and a regular octagonal pyramid recess having an apex angle of 90 degrees. did. In each case, the diameter D of the regular octagonal prism is 11 mm. The diameter φ of the light receiving surface 12 mounted on the light receiving unit 10 is 5
In millimeters.

【0038】実験は屋外と屋内とで行い、ビデオテープ
レコーダ50の背後に配置された赤外線発生装置52に
よって赤外線32を全方向受光装置8に照射した。とく
に屋外実験ではリモコン信号の到達距離に対して外乱で
ある太陽Sからの赤外線34の影響を調べるために、図
4Aに示す如き順光の場合と図4Bに示す如く逆光の場
合について実験を実施した。
The experiment was conducted outdoors and indoors, and the omnidirectional light receiving device 8 was irradiated with infrared rays 32 by the infrared ray generating device 52 arranged behind the video tape recorder 50. In particular, in an outdoor experiment, in order to investigate the influence of the infrared rays 34 from the sun S, which is a disturbance, on the reaching distance of the remote control signal, an experiment was performed in the case of forward light as shown in FIG. 4A and in the case of backlight as shown in FIG. 4B. did.

【0039】以下表1〜表4に実験結果を示す。尚、各
実験の条件は次の通りであり、結果の数値は赤外線を使
用したリモコン信号の到達距離(メートル)を示す。
Experimental results are shown in Tables 1 to 4 below. The conditions of each experiment are as follows, and the numerical value of the result indicates the reach distance (meter) of the remote control signal using infrared rays.

【0040】表1:同一垂直面内で、赤外線32の入射
角度を上下方向にβ=+30°〜−30°の範囲で変化
させた。屋内で実験、屋根板40は全方向プリズム20
の断面と同一形状且つ同一寸法のものを使用した。赤外
線32の入射方向は、全方向プリズム20の側面24に
垂直な方向(α=0°)と角部24A方向(α=22.
5°)の2方向。
Table 1: In the same vertical plane, the incident angle of the infrared rays 32 was changed vertically in the range of β = + 30 ° to −30 °. Experiment indoors, roof plate 40 is omnidirectional prism 20
The same shape and size as the cross section of The incident direction of the infrared rays 32 is the direction (α = 0 °) perpendicular to the side surface 24 of the omnidirectional prism 20 and the direction of the corner portion 24A (α = 22.
5 °) in 2 directions.

【0041】表2:同一垂直面内で、赤外線32の入射
角度を上下方向にβ=+30°〜−30°の範囲で変化
させた。屋外で実験、外光は順光(N)及び逆光
(R)、屋根板40は全方向プリズム20の断面と同一
形状且つ同一寸法のものを使用した。赤外線32の入射
方向は、全方向プリズム20の側面24に垂直な方向
(α=0°)だけである。
Table 2: In the same vertical plane, the incident angle of the infrared rays 32 was changed vertically in the range of β = + 30 ° to −30 °. Experiments were conducted outdoors, and ambient light was normal light (N) and backlight (R), and the roof plate 40 had the same shape and the same size as the cross section of the omnidirectional prism 20. The incident direction of the infrared rays 32 is only the direction (α = 0 °) perpendicular to the side surface 24 of the omnidirectional prism 20.

【0042】表3:同一水平面内で、赤外線32の入射
方向を左右方向にα=+30°〜−30°の範囲で変化
させた。屋内で実験、屋根板40は全方向プリズム20
の断面と同一形状且つ同一寸法のものを使用した。赤外
線32の入射角度は水平方向(β=0°)だけ。
Table 3: In the same horizontal plane, the incident direction of the infrared rays 32 was changed in the lateral direction in the range of α = + 30 ° to -30 °. Experiment indoors, roof plate 40 is omnidirectional prism 20
The same shape and size as the cross section of The incident angle of the infrared ray 32 is only in the horizontal direction (β = 0 °).

【0043】表4:同一水平面内で、赤外線32の入射
方向を左右方向にα=L22.5°〜R22.5°の範
囲で変化させた。屋外で実験、外光は順光(N)及び逆
光(R)、屋根板40は全方向プリズム20の断面と同
一形状且つ同一寸法のものを使用した。赤外線32の入
射角度は水平方向(β=0°)だけ。
Table 4: In the same horizontal plane, the incident direction of the infrared rays 32 was changed in the lateral direction in the range of α = L22.5 ° to R22.5 °. Experiments were conducted outdoors, and ambient light was normal light (N) and backlight (R), and the roof plate 40 had the same shape and the same size as the cross section of the omnidirectional prism 20. The incident angle of the infrared ray 32 is only in the horizontal direction (β = 0 °).

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】次に、図7に示す如き、頂角θが90度で
ある正八角錐の凹部を有する全方向プリズム20を含む
従来例の全方向受光装置を使用した実験の方法及び結果
を示す。
Next, as shown in FIG. 7, an experimental method and results using an omnidirectional light receiving device of a conventional example including an omnidirectional prism 20 having a regular octagonal pyramid recess having an apex angle θ of 90 degrees will be described.

【0049】屋内で実験をした。屋根板40は全方向プ
リズム20の断面と同一形状且つ同一寸法のものを使用
した。赤外線32の入射方向は、同一水平面内で、全方
向プリズム20の側面24に垂直な方向(α=0°)と
角部24A方向(α=22.5°)の2方向である。
Experiments were conducted indoors. The roof plate 40 has the same shape and size as the cross section of the omnidirectional prism 20. The incident directions of the infrared rays 32 are two directions in the same horizontal plane, that is, a direction perpendicular to the side surface 24 of the omnidirectional prism 20 (α = 0 °) and a corner portion 24A direction (α = 22.5 °).

【0050】赤外線32の入射方向が全方向プリズム2
0の側面24に垂直な方向(α=0°)の場合には赤外
線の到達距離は6.5メートル、赤外線32の入射方向
が全方向プリズム20の角部24A方向(α=22.5
°)の場合には赤外線の到達距離は5.5メートル、で
あった。
The incident direction of the infrared ray 32 is the omnidirectional prism 2
In the case of the direction perpendicular to the side surface 24 of 0 (α = 0 °), the reach distance of the infrared rays is 6.5 meters, and the incident direction of the infrared rays 32 is the direction of the corner portion 24A of the omnidirectional prism 20 (α = 22.5).
In the case of (°), the reach distance of infrared rays was 5.5 meters.

【0051】以上の実験結果より、全方向プリズム20
の上面22に形成した正八角錐の凹部の頂角を90度よ
り大きくすることによってワイヤレスリモコン信号の到
達距離を増加させることができることがわかる。特に斯
かる正八角錐の凹部の頂角θを104度とすることによ
って、ワイヤレスリモコン信号の到着距離が増加させる
ことができる。
From the above experimental results, the omnidirectional prism 20
It can be seen that the reaching distance of the wireless remote control signal can be increased by making the apex angle of the regular octagonal pyramid concave portion formed on the upper surface 22 of 90 degrees larger than 90 degrees. In particular, the arrival angle of the wireless remote control signal can be increased by setting the apex angle θ of the regular octagonal pyramid recess to 104 degrees.

【0052】以上本発明の実施例について詳細に説明し
てきたが、本発明は上述の実施例に限ることなく、本発
明の要旨を逸脱することなく他の種々の構成が採り得る
ことは当業者にとって容易に理解されよう。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned embodiments, and various other configurations can be adopted without departing from the gist of the present invention. Easily understood by

【0053】[0053]

【発明の効果】本発明に依ると、全方向受光装置8に入
射された信号光線が効率的に受光素子に集光されること
ができる。従って、赤外線発生装置52と赤外線受光装
置とを有するワイヤレスリモコン装置に於いて、リモコ
ン信号の到達距離を増加させることができる利点があ
る。
According to the present invention, the signal beam incident on the omnidirectional light receiving device 8 can be efficiently focused on the light receiving element. Therefore, in the wireless remote controller having the infrared generator 52 and the infrared receiver, there is an advantage that the reach distance of the remote controller signal can be increased.

【0054】特に、ワイヤレスリモコン装置を屋外で使
用する場合にリモコン信号の到達距離を増加させること
ができ、操作範囲が増大する利点がある。
In particular, when the wireless remote control device is used outdoors, the reach of the remote control signal can be increased, which has the advantage of increasing the operating range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全方向受光装置を示す図である。FIG. 1 is a diagram showing an omnidirectional light receiving device of the present invention.

【図2】全方向受光装置に入射される光線の経路示す説
明図である。
FIG. 2 is an explanatory diagram showing paths of light rays incident on an omnidirectional light receiving device.

【図3】全方向受光装置に入射される光線の経路示す説
明図である。
FIG. 3 is an explanatory diagram showing paths of light rays incident on an omnidirectional light receiving device.

【図4】本願発明者が実施した実験方法を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing an experimental method carried out by the inventor of the present application.

【図5】本願発明者が実施した実験に使用した全方向受
光装置を示す説明図である。
FIG. 5 is an explanatory diagram showing an omnidirectional light receiving device used in an experiment conducted by the inventor of the present application.

【図6】本願発明者が実施した実験方法を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing an experimental method carried out by the inventor of the present application.

【図7】従来例の全方向受光装置の概観図である。FIG. 7 is a schematic view of a conventional omnidirectional light receiving device.

【図8】従来例の全方向プリズムの詳細図である。FIG. 8 is a detailed view of a conventional omnidirectional prism.

【図9】従来例の全方向受光装置の断面とそれに入射し
た光線の経路を示す図である。
FIG. 9 is a diagram showing a cross section of a conventional omnidirectional light receiving device and paths of light rays incident on the light receiving device.

【図10】全方向受光装置の他の例を示す概観図であ
る。
FIG. 10 is a schematic view showing another example of the omnidirectional light receiving device.

【図11】全方向受光装置の他の例を示す概観図であ
る。
FIG. 11 is a schematic view showing another example of the omnidirectional light receiving device.

【図12】全方向受光装置の他の例を示す概観図であ
る。
FIG. 12 is a schematic view showing another example of the omnidirectional light receiving device.

【符号の説明】[Explanation of symbols]

8 全方向受光装置 10 受光部 12 受光面 20 全方向プリズム 22 上面 24 側面 24A 角部 26 底面 28 錐面 30 反射面 32 赤外線(信号光線) 34 赤外線(外光) 40 屋根板 42 鍔部 50 ビデオテープレコーダ 52 赤外線発生装置 8 omnidirectional light receiving device 10 light receiving part 12 light receiving surface 20 omnidirectional prism 22 upper surface 24 side surface 24A corner part 26 bottom surface 28 cone surface 30 reflecting surface 32 infrared ray (signal light) 34 infrared ray (outside light) 40 roof plate 42 collar portion 50 video Tape recorder 52 Infrared generator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 康 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Noda 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 柱体の上面に逆錐体状の凹部を有し該錐
体の錐面が上記柱体の側面より入射した光線に対する反
射面を構成するプリズムと、該プリズムの下端部に装着
された受光素子とを有する全方向受光装置にして、上記
プリズムの凹部の錐体の頂角が90度より大きいことを
特徴とする全方向受光装置。
1. A prism having an inverted cone-shaped concave portion on the upper surface of a pillar, the conical surface of which constitutes a reflecting surface for a light ray incident from the side surface of the pillar, and a prism at the lower end of the prism. An omnidirectional light receiving device having an attached light receiving element, wherein the apex angle of the cone of the concave portion of the prism is larger than 90 degrees.
【請求項2】 請求項1の全方向受光装置にして、上記
プリズムの凹部の錐体の頂角は実質的に104度である
ことを特徴とする全方向受光装置。
2. The omnidirectional light receiving device according to claim 1, wherein the cone of the concave portion of the prism has an apex angle of substantially 104 degrees.
JP3341374A 1991-12-24 1991-12-24 Omnidirectional light receiving device Pending JPH05175911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3341374A JPH05175911A (en) 1991-12-24 1991-12-24 Omnidirectional light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3341374A JPH05175911A (en) 1991-12-24 1991-12-24 Omnidirectional light receiving device

Publications (1)

Publication Number Publication Date
JPH05175911A true JPH05175911A (en) 1993-07-13

Family

ID=18345571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3341374A Pending JPH05175911A (en) 1991-12-24 1991-12-24 Omnidirectional light receiving device

Country Status (1)

Country Link
JP (1) JPH05175911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100367A1 (en) * 2002-05-08 2003-12-04 Konami Corporation Model-use light receiving device, model, and model-use signal light detection method
US7706698B2 (en) 2004-12-21 2010-04-27 Sony Corporation Remote control system and receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100367A1 (en) * 2002-05-08 2003-12-04 Konami Corporation Model-use light receiving device, model, and model-use signal light detection method
US7276702B2 (en) 2002-05-08 2007-10-02 Konami Corporation Light receiving device for model, model, and signal light detecting method for model
US7706698B2 (en) 2004-12-21 2010-04-27 Sony Corporation Remote control system and receiver

Similar Documents

Publication Publication Date Title
JP3092276B2 (en) Omnidirectional light receiver
US8669508B2 (en) Sun-tracking system
US5036188A (en) Remote-control-light detecting device for AV apparatus
JPH05175911A (en) Omnidirectional light receiving device
GB1155544A (en) Improvements relating to Signal Receivers
CN207557561U (en) A kind of passive infrared sensor wide-angle optics
JPH05175910A (en) Omnidirectional light receiving device
US4118622A (en) Cone optical system
CN100401112C (en) Hemispherical optical lens for plane positioning and plane positioning method thereof
JPH05175909A (en) Omnidirectional light receiving device
CN112305851A (en) Panoramic annular imaging optical system
JPH10190581A (en) Light converging device and optical signal transmitter
WO2023092318A1 (en) Monolithic integrated high-precision and high-speed double-light-spot synchronous position detector structure
CN210803962U (en) Panoramic annular imaging optical system
JPS56108809A (en) Measuring apparatus of deposit profile in blast furnace
US4603949A (en) Conical beam concentrator
CA1303217C (en) Apparatus including multielement detectors for recording heat images
JPS5468150A (en) Electron ray deflector
TW377400B (en) Active video apparatus using deflection lenses
JPS52111736A (en) Scanning optical system with information beam take-out element
JPS59143115A (en) Condensing and transmitting system of sunbeam
JPS56137262A (en) Infrared ray tracker
JPS5912577Y2 (en) Photoelectric detector with mirror type optical axis setting device
JP2001285202A (en) Waveguide for optical multi-dimensional input unit having uniform received light intensity
WO2013112073A1 (en) Control method and complex using a laser pen