JPH049631A - Device for measuring strain - Google Patents

Device for measuring strain

Info

Publication number
JPH049631A
JPH049631A JP11050590A JP11050590A JPH049631A JP H049631 A JPH049631 A JP H049631A JP 11050590 A JP11050590 A JP 11050590A JP 11050590 A JP11050590 A JP 11050590A JP H049631 A JPH049631 A JP H049631A
Authority
JP
Japan
Prior art keywords
strain
stress
measured
strain amplification
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050590A
Other languages
Japanese (ja)
Inventor
Masato Araki
正任 荒木
Fusao Hirose
富佐雄 廣瀬
Yukihisa Takeuchi
幸久 竹内
Makoto Takagi
誠 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
NOF Corp
Original Assignee
NipponDenso Co Ltd
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd, Nippon Oil and Fats Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11050590A priority Critical patent/JPH049631A/en
Publication of JPH049631A publication Critical patent/JPH049631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure small or large strain at a high SN ratio by measuring the strain value of a member to be measured by a strain sensor at a strain amplification factor >1 or <1. CONSTITUTION:A rod-like member 21 whose cross section is small is connected to the intermediate part of a pair of members 10, 10 to be measured consisting of metallic rod-like members to form a strain amplification part 22. The strain due to stress loaded to the members 10 is measured by the strain sensor fixed to the center part 23 of the amplification part 22 at the strain amplification factor >=1. On the other hand, the part 22 having strain amplification factor <=1 is formed by a rod-like member 20 connected to the members 10 and having a large cross section, and the strain is measured by the strain sensor fixed to the strain sensor setting part 23 at the strain amplification factor <1.

Description

【発明の詳細な説明】 [産業−1−の利用ゲ・野] 本発明は、応力の貴石され7:部材の機械的な歪みを磁
気f71号または電気化)収□、変換し、て測定する歪
み測定装置に関し・、特に、機械機、横系部分におりる
工夫により、実効的に歪み検出系の測定感度ないしは検
出利得を調整したに等しい結果の得られる歪み測定装置
に関する2゜ [従来の技術] 機械的な歪みを磁気信号または電気信号に変換するため
の歪みセ゛1ノサ目体と1、T′ならば、従来例h)(
:、も種々のものが提供され′7おり、例えば機械的な
歪みの変化を電気抵抗値の変イト、に変換する抵抗縁台
み劃や、同l、抵抗値変化でも半導体系材1.4に認め
られるピエゾ抵抗変化を利用°4るもの等を初め、磁歪
現象を利用し、機械的な歪みの変化をインダクタンス(
+y)変化や磁束透A量ないし2透磁率の変化「、や換
オろいわゆる忠壬センサ等があり、さr−には−ノ、・
、機械的な歪a、の変化をキャパシタンスの変化に変]
本“イ゛るセンサ等もある。
[Detailed Description of the Invention] [Industry-1- Utilization/Field] The present invention is a method for measuring mechanical strain of a member by collecting it (magnetic F71 or electrification), converting it, and measuring it. Regarding strain measuring devices that perform [Technology] If the strain for converting mechanical distortion into a magnetic signal or electrical signal is 1, 1, T', then the conventional example h) (
A variety of products have been provided, such as a resistor mount that converts a change in mechanical strain into a change in electrical resistance, and a semiconductor-based material 1.4 that converts a change in mechanical strain into a change in electrical resistance. In addition to those that utilize changes in piezoresistance observed in
+y) change and change in magnetic flux permeability A or 2 magnetic permeability.
, change in mechanical strain a into change in capacitance]
There are also sensors that can read books.

l#第4的にも最近′Cは種々σ〕改良が認められ、例
えは実接触型磁気センサどり、ては、アモルファス金属
ないしアモル゛、′アス合金等、いわゆるアモルファス
系の材料で薄膜状の歪hセンサを作り、これに磁界の発
生源と磁界検出素子としてのポール素子を臨ませ、歪み
センサである当該アモルファス薄膜が歪みによ1て変形
するに伴う磁束透過量の変化をホール素子で検出するよ
うなタイプのものもある。
Fourthly, various improvements have been made in recent years, such as actual contact-type magnetic sensors, for example, thin film-like materials using so-called amorphous materials such as amorphous metals, amorphous metals, and arsenic alloys. A strain h sensor is made, and a magnetic field generation source and a pole element as a magnetic field detection element are placed in front of it, and changes in the amount of magnetic flux transmitted as the amorphous thin film, which is the strain sensor, is deformed due to strain are detected by the hall element. There are also types that can be detected by .

本発明では、後述の所から理解されるように、機械的な
歪み変化を検出するセンサ自体とし”〔は既イYのいず
れのタイプのものも採用可能であるので、これら種々の
センサ類を総括して以降、車に歪みセンサと呼称するが
、このような歪みセンサは、一般に圧縮力、引っ張り力
、剪断力、捩じり力(トルク)等、何等かの応力の負荷
された部材に生じ・た機械的な歪みを測定することで、
現に負荷されている応力の大きさを測定したり、あるい
は逆に、部材に負荷する応力の大きさを既知として、当
該部材の歪み量(一般には一次元ないし次元方向の寸法
変化)からその部月の物理的な強度その他、各種機械的
パラメータを測定するため等に用いられる。
In the present invention, as will be understood from the description below, any type of sensor can be used as the sensor itself for detecting mechanical strain changes. In summary, we will refer to the vehicle as a strain sensor from now on, but such a strain sensor generally applies to a member that is loaded with some kind of stress, such as compressive force, tensile force, shearing force, or torsional force (torque). By measuring the mechanical strain that occurs,
You can measure the amount of stress that is currently being applied, or conversely, if you know the amount of stress that is being applied to a member, you can calculate that part from the amount of strain (generally one-dimensional or dimensional change) in the member. It is used to measure the physical strength of the moon and various other mechanical parameters.

しかし、このような測定目的の如何によらず、従来にお
いては、歪み測定の対象となる部材の表面に対して直接
、歪みセンサを取付けるか接層して用いており、つまり
は部材の歪みをそのままの大ぎさで歪みセンサに伝えて
いた。
However, regardless of the purpose of measurement, in the past, strain sensors have been attached directly to or in contact with the surface of the member to be measured; The same magnitude was transmitted to the strain sensor.

[発明が解決しようとする課題] このように、歪み測定対象部月の当該歪みの大きさがそ
のままの大ぎさで歪みセンサに伝えられるような従来の
構造では、実際−十、次のような不都合を生ずることが
あった。
[Problems to be Solved by the Invention] As described above, in the conventional structure in which the magnitude of the distortion of the strain measurement target part is transmitted to the strain sensor as it is, in reality, the following problems occur. This could cause some inconvenience.

第一に、どのようなタイプの歪みセンサを用いようとも
、測定対象部林に生ずる歪/−の変化が小さけれは当然
、それら歪みセンサの出力する磁気信号または電気信号
の出力変化幅も小さ′くなるので、特に微小な歪み範囲
または微小な歪み変化範囲しか取扱ないような場合、歪
みセンサ単体としてのみならず、測定系全体としての信
号対雑音比(S/N比)が極端に悪化し易い。
First, no matter what type of strain sensor is used, if the change in strain/- that occurs in the area to be measured is small, the range of change in the output of the magnetic or electrical signal output by the strain sensor is also small. Therefore, especially when dealing with only a minute strain range or a minute strain change range, the signal-to-noise ratio (S/N ratio) not only of the strain sensor alone but also of the entire measurement system may be extremely deteriorated. easy.

換言すれば、この種の測定に係る一般的な測定環境下で
は、歪みセンサ自体の発する変換雑音はもとより、近く
に原動機等があるとそれの発する機械的な振動雑音の影
響も受けるし、機械的歪みを変換した後の磁気信号ない
し電気信号に対してもまた、周辺の磁気発生源や電気な
いし電子回路からの伝播雑音や輻射雑音が大いに影響し
でくる。にもかかわらず、これら機械的、磁気的、電気
的雑音はいずわも定量的に予測することができず、し5
たがっでこtlらを低減させる対策にt>限度があるた
め、結局は歪みセンサの出力に関[2、その絶対値の小
さな範囲またはその変化幅の小さな範囲で測定精度が出
11.難くなるのである1、。、ち、測定対象部村の歪
みの程度ないしはそ・、・)変化幅が人ぎく、S /”
’ N比は特に問題に冒≧らf9りいような場合にも、
]−記従来例のように、当該迎1定対象部材の歪みの大
ぎさがそのままの大きさで歪みセンサに伝わるようrな
−〕でいると、今度は逆に、その歪みないし歪み変化幅
の大きさが大ぎ過ぎるがため、測定不能となる場合かあ
−ジた。
In other words, under the general measurement environment for this type of measurement, not only is the strain sensor itself affected by conversion noise, but if there is a nearby prime mover, it is also affected by mechanical vibration noise, and the mechanical The magnetic or electrical signal after the physical distortion has been converted is also greatly affected by propagation noise and radiation noise from surrounding magnetic sources and electrical or electronic circuits. However, these mechanical, magnetic, and electrical noises cannot be quantitatively predicted.
Since there is a limit to measures to reduce the distortion tl, etc., the measurement accuracy is achieved in the range where the absolute value of the output of the strain sensor is small or the range of its change is small. 1. It becomes difficult. , the extent of the distortion in the area to be measured, or...) The range of change is amazing, S/”
' The N ratio is especially important in cases where the problem is ≥ f9.
] - As in the conventional example, if the magnitude of the strain in the target member is transmitted to the strain sensor as it is, then conversely, the distortion or strain change width is There were cases in which measurement was impossible because the size was too large.

例えば抵抗線歪み計においでは、応力を受ける部材に直
接これを接着して用いるが、部材の変形の程度が太きい
と接着剤が変形し、正確な測ξが不能となる。・一般的
に言っても、従来の歪み測定系の構成例では、用いる歪
みセッサに許容されでいる弾性範囲内の大きさの歪み変
化しか、測定できなかったのである。
For example, a resistance wire strain gauge is used by directly adhering it to a member that receives stress, but if the member is deformed to a large extent, the adhesive deforms, making accurate measurement ξ impossible.・Generally speaking, with conventional configuration examples of strain measurement systems, it has been possible to measure strain changes only within the elastic range allowed by the strain sensor used.

[課題を解決するl、・めのf段] 本発明は、このような従来の歪み1ill定装置“i′
(υ持つ欠点を解消すべくf♂されたものであるが、こ
れに際し・、本発明者はまず、理論的、実験的じ鋭意検
討の結果、次!、”) 、、l、すな知(店を得た■ 
既述のよう(、°、様々な測定環境下にお?゛子る種々
機械的、磁気的、電気的な911′音は5詠測定環境ご
とに異なり、ぞれぞれな!i、S シF 4.y ’:
E減しようとする試みはも町)ろん、多・< 11′r
戸1)j究者、研究機関しより検討されてはいるが、測
定環境自体が−・退的に決定できない以ノ1、やはりこ
うし、た雑音の低減には限度があると考えねばならない
[I, f stages to solve the problem] The present invention solves the problem by replacing the conventional strain constant device "i'
(It was f♂ in order to eliminate the drawback of υ, but at this time, the inventor first made the following as a result of intensive theoretical and experimental studies.) (I got a store■
As mentioned above, the various mechanical, magnetic, and electrical 911' sounds that occur under various measurement environments are different depending on the measurement environment, and each !i, S shiF4.y':
Attempts to reduce E are of course less than 11'r.
1) Although researchers and research institutions have been considering this more, it must be considered that there is a limit to the reduction of noise in this way, since the measurement environment itself cannot be determined retrospectively. .

したがって、S 、/ N比の向上を望むには、雑音成
分の低減よりも、歪みセンサから得られる正規の信号成
分の人ぎさを増す力が成果があると思われる。
Therefore, in order to improve the S,/N ratio, it seems that the ability to increase the harshness of the normal signal component obtained from the strain sensor is more effective than the reduction of the noise component.

■ −力、歪みセンサからの出力の大きざを増すために
普通、最初に考えられる。′とは、当該歪みセン号自体
の変換利得(感度)を向上さゼることであり、現に各種
の歪みセンサに関し・この方面での研究も重ねられてい
る。
■ - force, usually considered first to increase the magnitude of the output from the strain sensor. '' refers to improving the conversion gain (sensitivity) of the strain sensor itself, and research in this direction is currently being conducted regarding various strain sensors.

が、歪み測定系全体としてのS/N比を考えると、こね
だけでは不満足である。なぜならば、歪みセンサが直接
に接触している部材に対して印加される機械的な雑音ま
で、センサにおける変換利得の向上に伴い増強されてし
まうからである。換言すれば、この手法だけでは、歪み
センサの出力として正規の信号成分のみを増強した結果
は得られない。
However, when considering the S/N ratio of the strain measurement system as a whole, kneading alone is not satisfactory. This is because the mechanical noise applied to the member with which the strain sensor is in direct contact is increased as the conversion gain of the sensor is improved. In other words, with this method alone, it is not possible to obtain a result in which only the normal signal component is enhanced as the output of the strain sensor.

■ これに対し、歪みセンサの人力の段階、−〕まりは
応力の負荷によって機械的な歪みを発生する被測定対象
部材の当該歪みが歪みセンサに印加される段階において
、この機械的な歪み自体を1を越える増幅率α(α〉1
)で機械的に増幅して歪みセンサに人力することができ
れば、歪みセンサの変換出力に表れる信号成分も当該1
より大きい#1幅率に見合って増強されることになり、
高いS/N比を確保できる筈である。
■ On the other hand, in the manual strain sensor stage, -] the strain sensor generates mechanical strain due to the stress load. is an amplification factor α exceeding 1 (α〉1
), if it can be mechanically amplified and input manually to the strain sensor, the signal component appearing in the converted output of the strain sensor will also be the same.
It will be strengthened commensurate with the larger #1 width ratio,
It should be possible to secure a high S/N ratio.

■ そして、本発明省か得たこの知見0はまた、望まし
いことに、先に述べた従来例の持つもう一つの欠点をも
合理的に解決する手法を示唆している。
(2) This knowledge obtained by the Ministry of the Invention also desirably suggests a method for rationally solving another drawback of the conventional example described above.

すなわち、用いた歪みセンサの弾性範囲よりも大きな機
械的歪みが印加されるような場合、従来、その測定は不
能であったが、上記■において機械的歪みの増幅率αを
1より人ぎくしたのに代え、1よりも小さな値に設定す
れば(αく1)、応力の負荷される被測定対象部材の生
ずる大きな機械的歪みないしは人きな歪み変化を圧縮し
、既存の歪みセンサで取扱うことのできる歪範囲内また
は歪変化範囲内にシフトしての測定が可能となる。
In other words, if a mechanical strain larger than the elastic range of the strain sensor used is applied, it has conventionally been impossible to measure it, but in Instead, if it is set to a value smaller than 1 (α - 1), large mechanical strain or small strain change that occurs in the member to be measured under stress can be compressed and handled by existing strain sensors. It becomes possible to perform measurements by shifting within the strain range that can be changed or within the strain change range.

このような知見■〜■に基づいた結果、応力の負荷され
る被測定対象部材の機械的な歪みを測定する装置として
、本発明者は、次のような発明的構成を得るに至った。
As a result of these findings (1) to (2), the inventors of the present invention have come up with the following inventive configuration as a device for measuring the mechanical strain of a member to be measured to which stress is applied.

すなわち、被測定対象部材に機械的に結合し、被測定対
象部材に応力が負荷された時、この被測定対象部利が企
む程度に対し、1よりも大鮒な歪み増幅率て大きく歪む
か、または1よりも小さな歪み増幅率で小さく歪む歪み
増幅部分を持−3)機械的な歪み増幅機構を設り、その
」二で、歪みセンサは、この歪みの増幅された部分の当
該歪みに対応した磁気信号または電気侶喝を発するよう
に配置する。
In other words, when it is mechanically connected to a member to be measured and stress is applied to the member to be measured, will it be distorted to a large extent with a distortion amplification factor greater than 1, compared to the intended degree of the target part? , or has a distortion amplification section that distorts small with a distortion amplification factor smaller than 1.3) A mechanical distortion amplification mechanism is provided, and in the second step, the strain sensor responds to the distortion of the amplified section. Arranged to emit a corresponding magnetic signal or electrical alarm.

これが本発明の提案する最も基本的な構成による歪み測
定装置の特徴部分であるが、これよりも下位の構成とし
1、本発明ではまた、被測定対象部材と機械的な歪み増
幅機構との間の機械的な結合関係に直列型と並列型とを
提案する。
This is the characteristic part of the strain measuring device with the most basic configuration proposed by the present invention, but the configuration is lower than this1, and in the present invention, it is also possible to We propose series and parallel types of mechanical coupling relationships.

直列型は、応力の負荷される被測定対象部材に対し、機
械的に直列な関係で歪み増幅機構が結合された場合で、
応力の伝達経路で見でも、応力が最初に負荷された点か
ら最後に伝達される点までの応力伝達経路中の少なくと
もどこかに直列に歪み増幅機構の歪み増幅部分が挿入さ
れていわば足り、この場合には被測定対象部材に負荷さ
れた応力の全てが歪み増幅機構に印加される。
The series type is a case where the strain amplification mechanism is connected mechanically in series with the member to be measured to which stress is applied.
Looking at the stress transmission path, it is sufficient to insert the strain amplification part of the strain amplification mechanism in series at least somewhere in the stress transmission path from the point where stress is first applied to the point where it is finally transmitted. In this case, all the stress applied to the member to be measured is applied to the strain amplification mechanism.

対して並列型は、応力の負荷される被測定対象部材に対
し、機械的にも並列な関係で歪み増幅機構が結合された
場合で、応力の伝達経路で見ると、被測定対象部材中の
応力伝達経路とは並列な関係で歪み増幅機構中を通るも
う −フの応力伝達経路が存在し・、したがつてこの場
合には、被測定対象部材に゛負荷された応力の全てでは
なく、その一部が歪め増幅機構に印加ざねる。
On the other hand, the parallel type is a case where the strain amplification mechanism is connected mechanically in parallel to the member to be measured to which stress is applied. There is another stress transmission path that passes through the strain amplification mechanism in parallel with the stress transmission path. Therefore, in this case, not all of the stress applied to the member to be measured, A part of it is applied to the distortion amplification mechanism.

さらに、本発明の別な!@様によると、歪み増幅機構が
、被測定対象部材じ負荷された圧縮応力または引っ張り
応力を剪断応力に変換し°C゛から歪み増幅部分に与え
るか、またはその逆の関係の変換機能を持つ応力変換機
構を含む場合や、同様に圧縮応力から引っ張り応力に、
またはその逆に変換する応力変換機構を持つ場合、さら
には捩じり応力(トルク)を圧縮応力または引っ張り応
力あるいは剪断応力に変換するか、またはその逆に変換
する応力変換機構を持つ場合も開示する。
Furthermore, another feature of the present invention! According to @, the strain amplification mechanism has a conversion function that converts the compressive stress or tensile stress applied to the member to be measured into shear stress and applies it from °C to the strain amplification part, or vice versa. In cases where a stress conversion mechanism is included, or similarly from compressive stress to tensile stress,
Also disclosed is a case in which the stress conversion mechanism converts torsional stress (torque) into compressive stress, tensile stress, or shear stress, or vice versa. do.

ただし、上記いずれの場合にも、用いる歪みセンサには
特に有意の限定を要さない。
However, in any of the above cases, there is no particular need for significant limitations on the strain sensor used.

[作  用] 本発明によると、被測定対象部材に応力が負荷されたと
きの当該被測定対象部材の機械的な歪みを磁気信号また
は電気信号に変換して測定1”るにも、当該被測定対象
部材に直接に歪みセンヅを付して当該被測定対象部材の
歪み量ないしは歪みの程度(歪み率)を直接に測定する
のではなく、当該被測定対象部材の生ずる歪み量ないし
歪み率に対し、1よりも大きな増幅率関係にあるか、ま
たは1よりも小さな増幅率関係のどちらかの関係で規定
される増幅率で歪みが増幅された部分の歪みを歪みセン
サで測定する。
[Function] According to the present invention, the mechanical strain of the member to be measured when stress is applied to the member to be measured can be converted into a magnetic signal or an electric signal for measurement. Rather than attaching a strain sensor directly to the target member to directly measure the amount of strain or degree of strain (strain rate) in the target member, it is possible to directly measure the amount of strain or strain rate caused by the member to be measured. On the other hand, the strain sensor measures the distortion in a portion where the distortion is amplified by an amplification factor defined by either an amplification factor relationship greater than 1 or an amplification factor relationship smaller than 1.

したがって、相対的に微小な歪みまたは微小な歪み変化
を測定する際、S/N比の向上が望まれる場合には、上
記の増幅率を1よりも十分に大きく取ることで正規の機
械的歪み信号成分のみを増強することができ、この目的
を達成することができる。
Therefore, if it is desired to improve the S/N ratio when measuring a relatively small strain or a small change in strain, the above amplification factor can be set sufficiently larger than 1 to measure the normal mechanical strain. Only the signal components can be enhanced to achieve this objective.

一方、歪みまたは歪み変化が大きく、S/N比上の問題
は特にないが、逆にそうした歪みまたは歪み変化が大き
過ぎて、用いる歪みセンサの適用範囲を越えるような場
合には、上記の増幅率を1よりも小さな値に選ぶことに
より、そのように従来は測定不能であった大きな変位領
域の歪みまたは歪み変化をも既存の歪みセンサで捕犬る
ことができるようになる。
On the other hand, if the distortion or distortion change is large and there is no particular problem with the S/N ratio, but conversely, such distortion or distortion change is so large that it exceeds the applicable range of the strain sensor used, the above-mentioned amplification By choosing the ratio to be a value smaller than 1, it becomes possible to capture strain or strain change in such a large displacement area, which could not be measured conventionally, with existing strain sensors.

さらに、本発明の別な態様に従えば、応力の変換機構も
設けられるので、負荷される応力の種類が使用する歪み
センサに対しては適当でない場合(例えば負荷応力がト
ルクであって、用いる歪みセンサは主として直線的な機
械的変位を測定4るに適当な場合等)には、当該トルク
ないし捩じり応力を圧縮応力または引フ張り応力に変換
する変換機構を用いることで対処できる。
Furthermore, according to another aspect of the present invention, a stress conversion mechanism is also provided, so that if the type of stress to be applied is not appropriate for the strain sensor used (for example, if the applied stress is torque, In cases where the strain sensor is mainly suitable for measuring linear mechanical displacement (4), a conversion mechanism that converts the torque or torsional stress into compressive stress or tensile stress can be used.

もちろん、本発明の歪み測定装置は、実際にはこれを用
いることにより、最終的には被測定対象部材に負荷され
た応力を測定する応力測定系に採用されて良く、逆に応
力を既知として、得られた歪みから被測定対象部材の未
知の機械的パラメータを測定する測定系等に使われて良
い。
Of course, the strain measuring device of the present invention may be used in a stress measuring system that ultimately measures the stress applied to the member to be measured, or vice versa. , it may be used in a measurement system that measures unknown mechanical parameters of a member to be measured from the obtained strain.

[実 施 例] 以下、本発明の各実施例につき、図面を参照し2て説明
する。
[Example] Hereinafter, each example of the present invention will be described with reference to the drawings.

第1図には、本発明により構成される歪み測定装置にお
いて、特に従来にはない改変部分を取出して丞したもの
て、換言すわば本発明の特徴の良く表れている構造部分
の最も基本的ないし・原理的な一実施例を示し・ている
FIG. 1 shows the strain measuring device constructed according to the present invention, in particular, the most basic structural parts that clearly show the features of the present invention. Or, it shows an example of the principle.

図示の場合、歪み測定対象として、一般に金属の棒状材
を想定している被測定対象部材10.10が一対、用い
られていて、それらの間に機械的に直列に本発明で用い
る歪み増幅機構20の一具体例が介在している。
In the illustrated case, a pair of members to be measured 10.10, which are generally assumed to be metal rods, are used as strain measurement objects, and the strain amplification mechanism used in the present invention is mechanically connected in series between them. There are 20 specific examples.

この実施例の場合、当該歪み増幅機構20は、やはり適
当な金属材料を想定し7た単なる棒状部オΔ21であっ
て、その両端はそわぞれ対応する被測定対象部材10.
10の各端に強固に固着されている。同名手段は問わな
いが、後述の所から理解されるように、被測定対象部材
10の一端に圧縮応力または引っ張り応力等の応力0が
印加されたとき、歪み増幅機構20としてのこの棒状部
材21が引き離されたりずれたりしないことが■1要で
、これを満たす限り、接着、ビン止めやネジ止め、4−
を用いた固着等、任意の手段によって良いが、特に溶接
やロウ付けのような冶金学的な結合も好ましい。
In the case of this embodiment, the strain amplification mechanism 20 is simply a rod-shaped portion Δ21 made of a suitable metal material, and both ends thereof are connected to the corresponding member to be measured 10.
10 is firmly attached to each end. Although the means with the same name does not matter, as will be understood from the description below, when zero stress such as compressive stress or tensile stress is applied to one end of the member to be measured 10, this rod-shaped member 21 acts as the strain amplification mechanism 20. ■1 requirement is that the parts will not be pulled apart or shifted, and as long as this is met, adhesives, bolts, screws, 4-
Any means may be used, such as fixing using a bonding method, but metallurgical bonding such as welding or brazing is particularly preferable.

また、棒状部材21は、その中間部分か径または断面積
の均一な細い部分22となっ°〔おり、後述のように、
ここがこの実施例において歪みの増幅される歪み増幅部
分22どなる。
In addition, the rod-shaped member 21 has a thin portion 22 with a uniform diameter or cross-sectional area in its middle portion.
This is the distortion amplification section 22 where distortion is amplified in this embodiment.

この棒状部材21の中間の細い部分22である歪み増幅
部分22の両端は、滑らかに徐々にその径または断面積
を増しながら、上記した一対の被測定対象部材10.1
0の各対応端部との接続端を構成している。これは応力
0が負荷されたときの応力集中を避けるためで、もし細
いまま、相対的に太い被測定対象部材10.10に接続
すると、当該棒状部分21、あるいはまた被測定対象部
材1010の力にも、所期の方向以外の歪み変形や、甚
だしくは破損を生ずることもある。
Both ends of the strain amplification part 22, which is the middle thin part 22 of this rod-shaped member 21, smoothly and gradually increase its diameter or cross-sectional area, and connect the above-mentioned pair of members to be measured 10.1.
0 constitutes a connecting end with each corresponding end. This is to avoid stress concentration when zero stress is applied, and if the thin member is connected to a relatively thick member to be measured 10.10, the force of the rod-shaped portion 21 or the member to be measured 1010 However, distortion or deformation in a direction other than the intended direction or even damage may occur.

このような静的な構造により、この第1図示実施例の場
合には、一対の被測定対象部材io、+、oの一方の一
端に応力0が負荷されると、図示していないが適宜な固
定部位に固定された他方の他端に向けてこの応力Oが伝
達するに際し、その伝達紅路の途中じ歪み増幅機構20
としての棒状部セ21か直列に介在しているため、当該
棒状部オΔ21は負狗された応力0の全てを交番プる。
Due to such a static structure, in the case of the first illustrated embodiment, when zero stress is applied to one end of the pair of members to be measured io, +, o, an appropriate amount of stress (not shown) is applied. When this stress O is transmitted toward the other end fixed to the fixed part, the strain amplification mechanism 20
Since the rod-shaped portion Δ21 is interposed in series, the rod-shaped portion Δ21 alternately absorbs all of the applied stress 0.

そして、次に説明するように、被測定対象部材10と歪
み増幅機構20としての棒状部オJ’21との機械的物
性関係や寸法関係の設定如何により、歪み増幅機構20
は機械的歪みの増幅に関し2.1よりも大きい増幅率を
持つことができる。
As described below, the strain amplification mechanism 2
can have an amplification factor greater than 2.1 for mechanical strain amplification.

すなわち、被測定対象部材10 、10の均一な断面積
をS、。とし2、歪み増幅機構20を構成する棒状部材
21にありで中間の細い部分の断面積を320とすると
、まずは簡単のため、両方の部材10.21の材料が共
に鋼糸の材料であ)て、ヤング率が共に等し、<Eであ
るとした場6、負荷された応力0に対し、それら各部材
の当該応力印加方向と平行な方向の歪み率cta、ε2
゜は、それぞれ次式1) 、 2)で表される。
That is, the uniform cross-sectional area of the members to be measured 10, 10 is S. Assuming that the cross-sectional area of the rod-shaped member 21 constituting the strain amplification mechanism 20 is 320 mm, then for simplicity, both members 10 and 21 are made of steel thread.) If both Young's moduli are equal and <E, then for an applied stress of 0, the strain rate of each member in the direction parallel to the stress application direction cta, ε2
° is expressed by the following equations 1) and 2), respectively.

εro= Q/ S +、oE        ・・・
・・・1.)620=(1/520E        
”・・2)そこで、棒状部材21の中間部分の断面積S
20と被測定対象部材10の断面積SIOとの間に、K
を1よりも大きい正の実数として、 5lo=KS2o・・・・・・3) なる関係が成立するように、当該棒状部材21の中間部
分の断面積320を細く設定すれば、その歪み率ε2o
と被測定対象部材10の歪み率ε1oとの間には、上記
1) 、 2)式の比として、α=ε2゜/ε1o=K
>1       ・−−−−−4)にて定義される機
械的な歪み増幅率αが得られる。
εro=Q/S+, oE...
...1. )620=(1/520E
”...2) Therefore, the cross-sectional area S of the middle part of the rod-shaped member 21
20 and the cross-sectional area SIO of the member to be measured 10, K
If the cross-sectional area 320 of the middle part of the rod-shaped member 21 is set thin so that the following relationship holds true, assuming that 5lo = KS2o...3) is a positive real number larger than 1, then the strain rate ε2o
and the strain rate ε1o of the member to be measured 10, as the ratio of the above equations 1) and 2), α=ε2°/ε1o=K
>1 ·----4) A mechanical distortion amplification factor α is obtained.

つまり、被測定対象部材10の材料も棒状部材21の材
料も、共に等しいヤング率Eを持−つとした場合には、
同じ大きさの応力σの印加の丁でも、上記の断面積比K
に応じ、棒状部材21の方が増幅率α(=K)に従って
に倍だしり、大きく歪むことになり、これをして本発明
に用い得る歪み増幅機構′70の一つを構成することか
1・きる。
In other words, if the material of the member to be measured 10 and the material of the rod-shaped member 21 both have the same Young's modulus E, then
Even when the same magnitude of stress σ is applied, the above cross-sectional area ratio K
Accordingly, the rod-shaped member 21 is doubled in accordance with the amplification factor α (=K) and becomes greatly distorted, which constitutes one of the strain amplification mechanisms '70 that can be used in the present invention. 1. Kill.

lかし7、被測定対象部材11)に負荷さ才するごとが
+庁される1111I定範、川内の最も大きな応カム:
対シフ゛τt)、細い歪み増幅部分22が破壊オること
なく耐λオ、)ばなl?)ないJど(、慢巴然″I′1
ちる、そのためには、桧測定対t1部tiAの降イ(応
力Y、、、に:対し、Sの部分22〕降伏U、力Y、、
。jf al < t、t 1寸h if j、(ラ1
2 イカ、これは特に実用上、溝たすに離l1.い条件
てδJない、11′)1えは」し体例を挙り°1′み?
7屹、常用iAt、、力上限かI Q 0MPa (、
り鋼・第1狛がある 力で、常用応力上限が”i−(7
’15イ8−1500 MPaに達する高張力鋼も容易
(、ζ人手可畦′″Cある5、 干ζで、常用応力」−2眼1 O0MPKlの材料を被
測−51対象部材” 10 、 It O、用い、50
(’1MPa6’)オ、fl*’lを歪/J+増幅植・
楡/(テ“あく、棒状部材ねに用いイ1とするな(P、
)は、少)’tt くとも被測定対象部材1oが降伏す
るまマ′■、棒状部材21も降伏1.〆tいどい)条件
)゛でも、ぞわらの!lT面積比5IL1・S20は最
大で5;1まで取オ′1.ることになる3、′1なオっ
ち、この場省には、歪み:i1!+幅享fIlとし′1
′最大1.α=5まで取れるごとになる。もちろん、1
面積比にを・通′11設′W1シ、9“41以−1・の
任意の値に設定することは白]1]であZl。
1111I regular standard, Kawauchi's largest response cam:
The thin distortion amplifying portion 22 can withstand λo without being destroyed; ) No Jdo(, arrogant ``I'1
In order to do so, we need to calculate the yield U of the t1 part tiA (stress Y, , 22: for the S part 22), the yield U, the force Y, .
. j f al < t, t 1 inch h if j, (la 1
2 Squid, this is especially practical, apart from the groove 11. If there is no condition, δJ does not exist, 11') 1. Give an example of 1'.
7, commonly used iAt,, upper limit of force or IQ 0MPa (,
The upper limit of normal stress is ``i-(7
'15 I8 - High tensile strength steel reaching 1500 MPa is also easy (, ζ manual work is possible) 5. In dry ζ, normal stress - 2 eyes 1 O0 MPKl material to be measured - 51 Target member' 10, It O, used, 50
('1MPa6') O, strain fl*'l/J+amplification plant・
Elm/(te "Dark, don't use it for a rod-shaped member and make it 1 (P,
) is low) 'tt At least the member to be measured 1o yields '■, and the rod-shaped member 21 also yields 1.゛It's hard) conditions)゛But it's scary! The IT area ratio 5IL1・S20 can be taken up to a maximum of 5;1. 3, '1's guy, for now, distortion: i1! +Width enjoyment fl1 and '1
'Maximum 1. It becomes possible to obtain up to α=5. Of course, 1
To set the area ratio to any value between 9 and 41 and -1, set the area ratio to white]1] and Zl.

このようにして、この実り15例にJ:ると、棒状部材
2+&”あって断面積の均一な中間部分22が機械的歪
みの増幅された部分22とf、t Zlので、この部分
に;”、・・・]中、斜線を(・11.、、 l’:・
卯坏;υ“τ示−!J: ’、)に、(3“意適当4C
イ・歪みセ“°、・・升([6示セず> 11“Lら各
1・−2習に、−、、)i!j1′知のそわぞtl最適
な固5″l−”1段で設置゛6°オ目・よ。
In this way, in this fruitful 15 example J:, there is a rod-shaped member 2+&'', and the middle part 22 with a uniform cross-sectional area is the part 22 where the mechanical strain is amplified, and f, t Zl, so in this part; ”,...] inside, diagonal line (・11.,, l':・
卯坏;υ"τshow-!J: ',), (3" arbitrary 4C
I distortion set "°, ... square ([6 shown> 11 "L et al. each 1.-2 points, -,,) i! j1'Knowazo tl Optimum hardness 5"L-"Installed in one stage ゛6°O.

ヤ才1ら歪み+・レザ1.2士、、f1イiii 2ζ
t1プ、−・シ1−3力Ok゛玄、月、χ?を測定対象
部材10f2)歪み誘たは歪み変化を機械的i、″′増
幅しまた形て検出するごとができ、ひい′Cは負荷応力
cIσ)大きさまたは十の241幅を測定づることが1
゛きる、1 当然、機械的Cな雑音成分があってt)、こねは被測定
対象粁1オA11)にも棒状部材21にも等し、い汰き
゛ざて貰か伝わらないし、棒状部材21σ)固有振Il
l数を原鮎椙1.樗械0゛−1雑音発生源の振動数に対
し”ζ共振関係にならないよう1.X設定す?8笠はこ
の柚σ)分野に通暁する者に゛は通常の設計手段である
ので、結局、本発明し”従、〜)でのこのような実施例
構造本7゛よ才′1は、歪みセンサの人力の段階ですで
にS/N比向上の1立てが計られていることになる。
Yasai 1 and others distortion +, leather 1.2,, f1 iii 2ζ
t1pu, - shi1-3 power Ok゛gen, moon, χ? The member to be measured 10f2) strain induced or strain change can be mechanically amplified and detected, and the load stress cIσ) can be measured as the magnitude or width. 1
1 Naturally, there is a mechanical noise component t), and the noise is the same as the object to be measured 1oA11) and the rod-shaped member 21, and the vibration cannot be transmitted to the rod-shaped member 21σ. ) Natural vibration Il
The l number is 1. For the frequency of the machine's 0゛-1 noise source, set 1.X so as not to have a ζ resonance relationship. After all, the structure of this embodiment according to the present invention (7)'1 is that one step toward improving the S/N ratio has already been taken at the stage of manually applying the strain sensor. become.

なお4才でに述べたように、本発明に゛C採用できる歪
みセンサには原則として制約はない。後述する実施例で
もそうであるが、機械的な歪みを磁気イハ号または電気
イこ号に変換するための歪みセンサどして従来例から提
供されている種々のものを用いることができる。。
As mentioned above, there are no restrictions in principle on the strain sensors that can be used in the present invention. As in the embodiments to be described later, various conventional strain sensors can be used for converting mechanical strain into a magnetic I/H signal or an electric I/I signal. .

例えば、代表的には機械的な歪みの変化を電気抵抗値の
変化に変換する抵抗線歪み計や、同じ抵抗値変化でも半
導体系材料に認められるビュ、ゾ抵抗変化を利用するも
の等がある。
For example, typical examples include resistance wire strain meters that convert changes in mechanical strain into changes in electrical resistance, and devices that utilize changes in resistance that are observed in semiconductor materials even when the same change in resistance occurs. .

また、磁歪現象を利用し、機械的な歪みの変化をインダ
クタンスの変化や磁束透過量ないし透磁率の変化に変換
するいオ)ゆる磁歪センサ等もあるし、機械的な歪みの
変化をキャパシタンスの変化に変換するセンサ等もある
。特に、非接触型の磁気センサとして、アモルファス金
属ないしアモルファス合金その他、いわゆるアモルファ
ス系の材料で1Iii!膜状の歪みセンサを作り、これ
に磁界の発生源と磁界検出素子としてのホール素子を臨
ませ、歪みセンサである当該アモルファス薄膜か歪みk
よって変形するに伴う磁束透過量の変化をホール素子で
検出するようなタイプのものもあるので、これも用いる
ことができる。
There are also magnetostrictive sensors that use the magnetostrictive phenomenon to convert changes in mechanical strain into changes in inductance, magnetic flux transmission, or magnetic permeability. There are also sensors that convert it into changes. In particular, as a non-contact magnetic sensor, amorphous metals, amorphous alloys, and other so-called amorphous materials can be used! A film-like strain sensor is made, and a magnetic field generation source and a Hall element as a magnetic field detection element are placed on it, and the amorphous thin film, which is the strain sensor, is
Therefore, there is also a type that uses a Hall element to detect the change in the amount of magnetic flux transmitted due to deformation, and this can also be used.

しかるに1.第1図示の実施例に基づく説明は、被測定
対象部材10と棒状部分21の中間の歪み増幅部分22
どの断面積比K (= S to/ S 20)に等1
−.い増幅率αが得ら第1ることを示し2ているので、
他の必要な条件は上記した第1図示実施例の通りとし、
断面積、の大小関係だζ、→を逆転させて、例λば第2
図示のように、棒状部材中間部分ないし、歪み増幅部分
22の断面積S20の方を被測定対象部材10.10の
断面積Shoよりも太くすると、既述の1)−4)式か
ら明らかなように、当然、その太くし、・た比の逆数に
応じ、、には1よりも小さな値となり、これに等しい増
幅率αも1より小さい値どなる。したがフてこの場合に
は、被測定対象部材111の歪みまたは歪み変化を圧縮
した関係にある歪みが歪み増幅部分22に得られる。
However, 1. The explanation based on the embodiment shown in the first figure will be based on the strain amplifying portion 22 located between the member to be measured 10 and the rod-shaped portion 21.
Which cross-sectional area ratio K (= S to / S 20) is equal to 1
−. Since we can obtain a high amplification factor α and show the first thing, 2,
Other necessary conditions are as in the first illustrated embodiment described above,
By reversing the size relationship of cross-sectional area, ζ and →, for example, λ, the second
As shown in the figure, if the cross-sectional area S20 of the rod-shaped member intermediate portion or the strain amplification portion 22 is made thicker than the cross-sectional area Sho of the member to be measured 10. Naturally, depending on the reciprocal of the thickening ratio, , becomes a value smaller than 1, and the amplification factor α, which is equivalent to this, also becomes a value smaller than 1. Therefore, in this case, a strain that compresses the strain or strain change of the member to be measured 111 is obtained in the strain amplification portion 22.

そこで、このような断面積比(K<1)に従う関係は、
従来、企みまたは歪み変化の範囲か大き過ぎて歪みセン
サの弾性範囲を赳えていたような系に応用することが′
C:き、任意適当なる歪みセンサでそのように大きな歪
みまたは歪み変化をも圧縮した状態で測定することが可
能となる。
Therefore, the relationship according to this cross-sectional area ratio (K<1) is
It can be applied to systems where the range of change in strain or strain has traditionally been too large to accommodate the elastic range of the strain sensor.
C: It becomes possible to measure such a large strain or strain change in a compressed state using any suitable strain sensor.

逆に、この第2図示のように、歪み増幅機構20とし・
ての棒状部材21の中間部分の径ないし2断面積が被測
定対象部材10のそれより太い場合でも、それらに用い
る材料のヤング率の関係如何によってはなお、第1図示
実施例と同様、1よりも大きな歪み増幅率αを得ること
もできる。
On the contrary, as shown in this second diagram, the distortion amplification mechanism 20 and
Even if the diameter or cross-sectional area of the intermediate portion of each of the rod-like members 21 is thicker than that of the member to be measured 10, depending on the relationship of the Young's modulus of the materials used therein, the diameter of It is also possible to obtain a larger distortion amplification factor α.

先の実施例では両名のヤング率Eは共に等しいとしたが
、第2図示の構造においてそれらを異ならせ、被測定対
象部材lOのヤング率EIOと棒状部材21のヤング率
E2..どの間に、 EIO>E2(1”・・” 5) なる関係があるとすると、既述の1) 、 2)式中の
ヤング率Eをそれぞれ各部材ごとのヤング率に胃き換え
ると明らかなように、応力0の負荷によって生ずるそれ
ぞれの部材10.21の歪み率f−(o * b 2゜
は、それぞれ、 ε+o=(ff/5zoE2o       ・・・・
” 6)εzo=(ff/5zoE2o       
・・・・” 7)となるので、それらの比とし′1得ら
第1る増幅率αは、 α=5.。、、’ε1o=slOElo/520E20
・・・・・ 1j となる。
In the previous embodiment, the Young's modulus E of both members was equal, but in the structure shown in the second figure, they are different, and the Young's modulus EIO of the member to be measured IO and the Young's modulus E2 of the rod-shaped member 21 are set. .. Assuming that there is a relationship between EIO>E2(1"..."5), it becomes clear that if we replace the Young's modulus E in equations 1) and 2) mentioned above with the Young's modulus of each member, As shown, the strain rate f-(o*b2°) of each member 10.21 caused by a load of zero stress is ε+o=(ff/5zoE2o...
” 6) εzo=(ff/5zoE2o
..." 7), so the first amplification factor α is obtained by taking the ratio of them as α=5..,'ε1o=slOElo/520E20
...It becomes 1j.

したがって、例え第2図示構造のように、棒状部材中間
部分である歪み増幅部分22の力が太く、上記8)式中
の値S20の方が大きくても、そのヤング率E20が十
分に小さければ、それら両者の積であるS 20E 2
0項の値がS IOE 141項よりも小さくなること
は十分にあり得、その場合には1よりも大籾な値の増幅
率αが得られる。
Therefore, even if the force of the strain amplifying portion 22, which is the middle portion of the rod-shaped member, is large as in the structure shown in the second diagram, and the value S20 in the above formula 8) is larger, if the Young's modulus E20 is sufficiently small, then , the product of both of them S 20E 2
It is quite possible that the value of the 0 term is smaller than the S IOE 141 term, and in that case, an amplification factor α greater than 1 can be obtained.

これを具体的な例について求めてみよう。被測定対象部
材10とし”τ常用応力上限が100MPa、ヤング率
EIOが2. I X 101.1kgm152m2の
鋼材を用い、棒状部材21として常用応力上限が50M
Pa、ヤングH’f= E 20が0.7 x 10 
”kgm/52m2のアルミニウム合金を用いたとする
と、全体としてほぼ同程度の応力0に耐えねばならない
から、棒状部材21の断面積は最低でも被測定対象部材
10の2倍程度は要る。
Let's look at this using a concrete example. The member to be measured 10 is a steel material with a normal stress upper limit of 100 MPa and a Young's modulus EIO of 2. I
Pa, Young H'f = E 20 is 0.7 x 10
If an aluminum alloy of 52 kgm/52 m2 is used, the cross-sectional area of the rod-shaped member 21 must be at least twice that of the member to be measured 10, since the entire rod-shaped member 21 must withstand approximately the same zero stress.

しかし、棒状部材21の断面積をこのように被測定対象
部材10のほぼ2倍としても、そのヤング率の比は上記
の通り、局倍程度となるから、結局、上記8)式からし
て、この場合の歪み増幅率αはほぼ1.5、得られるこ
とになる。
However, even if the cross-sectional area of the rod-shaped member 21 is approximately twice that of the member to be measured 10, the ratio of its Young's modulus will be approximately the same as the curve as described above. , the distortion amplification factor α in this case is approximately 1.5.

なお、上記の第2図示構造でも、棒状部材21を挟んで
一対備えられている被測定対象部材10.10の各棒状
部材との結合端はそれぞれ滑らかに太くなって、最終的
には棒状部材21の径と等しい状態で結合しているが、
これも第1図示実施例におi1プる場合と同様、弱い方
の材料である棒状部材21の各端に応力が集中するのを
防ぐためである5、また、上記では歪み増幅機構20を
構成する棒状部材21に常用応力上限の小さいアルミニ
ウム合金を用いた具体例を挙げ、それが故にこの棒状部
材21の方を太くしたと言えるが、高張力アルミニウム
合金等、強度の釣り合いの取れる材料を用いるならば、
棒状部材21を特に太くゼす、被測定対象部材lOの断
面積とほぼ同じ断面積のものでも、それらのヤング率の
比から上記8)式に従い、1より大きな値の増幅率αを
得ることができる。
In addition, also in the above-mentioned structure shown in the second diagram, the joint ends of the members to be measured 10.10, which are provided as a pair with the rod-shaped member 21 in between, and each of the rod-shaped members are smoothly thickened, and finally the rod-shaped members are connected to each other. Although they are connected with the same diameter as 21,
This is also to prevent stress from concentrating on each end of the rod-shaped member 21, which is the weaker material, as in the case of the first illustrated embodiment. A specific example will be given in which the rod-shaped member 21 is made of an aluminum alloy with a small upper limit of normal stress, and therefore it can be said that the rod-shaped member 21 is made thicker. If you use
Even if the rod-shaped member 21 is particularly thick and has a cross-sectional area that is approximately the same as that of the member to be measured lO, an amplification factor α larger than 1 can be obtained from the ratio of their Young's moduli according to the above formula 8). I can do it.

さらに、上記第1.2図示実施例の場合、負荷される応
力Oは矢印の方向からして一7応、圧縮応力を想定した
が、上記名式から明らかなように、上記の歪み増幅作用
は矢印方向に負の方向の応力、すなわち引っ張り応力σ
が印加される場合+=も全く同様に成立する。
Furthermore, in the case of the illustrated embodiment 1.2 above, the applied stress O is assumed to be compressive stress based on the direction of the arrow, but as is clear from the above formula, the strain amplification effect described above is is the stress in the negative direction in the direction of the arrow, that is, the tensile stress σ
When is applied, += holds true in exactly the same way.

もちろん、上記した実施例を含め、本発明の実施例とし
ても歪み増幅機構20が当該応力の伝達経路中に直列に
介在する実施例の場合には、当該応力伝達経路のどこか
に本発明による歪み増幅機構20が直列に存在していれ
ば良いので、第1.2図に示されでいるように、被測定
対象部材10.II:lを一対設り、こわらの間に歪み
増幅機構20を挟み込む必要は特になく、どちらか一方
のみに被測定対象部材10があるたけでも良い。
Of course, in the case of an embodiment of the present invention including the embodiments described above, in which the strain amplification mechanism 20 is interposed in series in the stress transmission path, the present invention is applied somewhere in the stress transmission path. Since it is sufficient that the strain amplification mechanism 20 exists in series, as shown in FIG. 1.2, the member to be measured 10. It is not particularly necessary to provide a pair of II:l and sandwich the strain amplification mechanism 20 between them, and it is sufficient to have the member to be measured 10 on only one of them.

次に、本発明は、負荷される応力の種類とシ1.て上記
した圧縮応力、引ワ張り応力の外、槻しり応力にも対応
て・きるので、まず、当該捩じり応力ないし、トルクT
と歪みとしての援じ才1の関係につき、第3図に即して
説明する。
Next, the present invention is based on the type of stress to be applied and the type. In addition to the above-mentioned compressive stress and tensile stress, it can also handle torsion stress, so firstly, the torsional stress and torque T
The relationship between this and the distortion 1 will be explained with reference to FIG.

被測定対象部層10が丸棒であって、これに負荷される
捩じり応力であるトルクをT、棒の長さをし、直径をd
、剛性率をGとすると、トルク0の負荷された部分での
涙じれ角ψは次のように表される。
The layer 10 to be measured is a round bar, the torque which is the torsional stress applied to it is T, the length of the bar is d, and the diameter is d.
, where the rigidity is G, the tear angle ψ at the portion where torque 0 is applied is expressed as follows.

ψ=32LT/7Td’ G       ・・・・・
・ 9)そこで例えば、長さ02m2直径0.02mの
鋼の丸棒lOに2 Okgfm# t、 96 x 1
0 ” kgm2/S2のの擦じり干−・メンl−Tが
掛かると、鋼の剛性率Gを純鉄と等しいとずれば、当該
丸棒1oの表面の剪断応力では、一般に τ卒16T/πd3        ・・・・・・10
)で表されるので、この10)式に上記の具体値を代入
するど、 T = 1.24..8Mi”a = 12.7kgf
/min+2と求められ、また、捩じれ角ψは、 ψ=3.O6x 10−2(rad) = 1..75
’と求められる。
ψ=32LT/7Td'G...
9) So, for example, 2 Okgfm # t, 96 x 1 on a steel round bar lO with a length of 02m2 and a diameter of 0.02m.
0 ''kgm2/S2 of rubbing drying-men l-T, assuming that the rigidity G of steel is equal to that of pure iron, the shear stress on the surface of the round bar 1o is generally τ 16T. /πd3 ・・・・・・10
), so by substituting the above concrete value into equation 10), T = 1.24. .. 8Mi"a = 12.7kgf
/min+2, and the twist angle ψ is ψ=3. O6x 10-2 (rad) = 1. .. 75
' is asked.

一方、上記9)式から明らかなように、捩じれ角ψは丸
棒lOの直径dの4乗に反比例するので、当該直径dの
変化に敏感に対応する。
On the other hand, as is clear from the above equation 9), the torsion angle ψ is inversely proportional to the fourth power of the diameter d of the round bar IO, so it responds sensitively to changes in the diameter d.

そこで、例えば第1図中に仮想線の矢印T″で示すよう
に、被測定対象部材10を上記のような鋼製の丸棒10
とし、その寸法を1記の通りどした」で、本発明により
設けられる歪み増幅機構20としての棒状部材21を、
同様の相賀の丸棒であるか直径dが0.014nn、長
さが被測定対象部材1oの半分の0.1mとした構造を
為え、その部分の投シ、れ角ψを求めると、長さが半分
しかないのにもがかわらず、ψはほぼ3.65’ と求
められる。
Therefore, for example, as shown by the imaginary arrow T'' in FIG.
and its dimensions were as specified in 1 above, and the rod-shaped member 21 as the strain amplification mechanism 20 provided according to the present invention is
If we construct a similar Aiga round bar with a diameter d of 0.014 nn and a length of 0.1 m, which is half of the member to be measured 1o, and find the throw and deflection angles ψ of that part, we get: Even though it is only half the length, ψ is calculated to be approximately 3.65'.

したがって、被測定対象部材10の捩じれ角をψ1o、
歪み増幅機構を構成する丸棒部材21の捩じれ角をψ、
。で表すと、その比ψ稟0/ψ2oが本発明に従っての
歪み増幅率αとなり、上記数値関係の場合、当該増幅率
αはほぼ2,09と求められる。
Therefore, the torsion angle of the member to be measured 10 is ψ1o,
The torsion angle of the round bar member 21 constituting the strain amplification mechanism is ψ,
. Expressed as follows, the ratio ψ0/ψ2o becomes the distortion amplification factor α according to the present invention, and in the case of the above numerical relationship, the amplification factor α is determined to be approximately 2.09.

ただし、この場合における最大前段応力ではほぼ363
.8MPa 、すなわち約37.1 kgf/mm2と
なり、したがって歪み増幅機構20としての丸棒部材2
jの材質に通常の炭素鋼を用いると、長期的に使用する
場合、その疲労限度も考えて許容応力を越えるので、高
張力鋼等にすれば良い。
However, the maximum pre-stage stress in this case is approximately 363
.. 8 MPa, that is, approximately 37.1 kgf/mm2, and therefore the round bar member 2 as the strain amplification mechanism 20
If ordinary carbon steel is used as the material for j, the allowable stress will be exceeded when used for a long period of time, taking into consideration its fatigue limit, so high-tensile steel or the like may be used.

第4図は、これまでの言わば直列型の本発明実施例に対
し、並列型と呼べる実施例の一つを示している。対応す
る符号は先の実施例中におりると同一または対応する構
成要素を示している。
FIG. 4 shows one embodiment of the present invention that can be called a parallel type, in contrast to the so-called serial type embodiments of the present invention. Corresponding symbols indicate the same or corresponding components as in the previous embodiments.

棒状の被測定対象部層10の長さの途中には、適当な中
心開路* L 24だけ離間した一対の固着部月24 
、24がそれぞれ当該棒状の被測定対象部材ioに堅固
に固着しており、これら一対の固着部材24゜24は被
測定対象部材lOに応力σが印加されてもずれることな
く、また、それ自身が変形することのない寸分な剛性を
持っている。
In the middle of the length of the rod-shaped layer 10 to be measured, there is a pair of fixed parts 24 spaced apart by an appropriate center open circuit * L 24.
. It has sufficient rigidity to prevent it from deforming.

この一対の固着部材24 、24の間を継げるように設
けられた架橋部分22が、この実施例における歪み増幅
部分22となり、その上に任意の歪みセンサの設置部位
23を設定することができる。この歪み増幅部分22は
、長さL2Oを有しており、その断面積は全長に亙って
均一である。
The bridge portion 22 provided to connect the pair of fixing members 24 and 24 serves as the strain amplification portion 22 in this embodiment, and an arbitrary strain sensor installation portion 23 can be set on it. . This strain amplification portion 22 has a length L2O, and its cross-sectional area is uniform over its entire length.

歪み増幅機構20が上記のような部材22 、24 、
24で構成されているこのような静的構造であると、被
測定対象部材10の一端に負荷された圧縮応力または引
っ張り応力0は、その一部が固着部材2424を介して
歪み増幅部分としての架橋部分22に印加され、換言す
れば、被測定対象部材10中の応力伝達経路とは並列に
なった別の応力伝達経路中に本発明に従っての歪み増幅
機構20が備えらねているごとになる。並列型と呼べる
のは、それが故である。
The strain amplification mechanism 20 includes the members 22, 24,
24, a compressive stress or tensile stress of 0 applied to one end of the member to be measured 10 is partially transmitted through the fixed member 2424 as a strain amplification part. In other words, each time the strain amplification mechanism 20 according to the present invention is provided in another stress transmission path parallel to the stress transmission path in the member to be measured 10 that is applied to the bridge portion 22. Become. That is why it is called a parallel type.

ここで、一対の固着部材24 、24の中心間距離を上
記のようにL24、架橋部分22の被測定対象部材に平
行な長さをL20%被測定対象部、14’IOの長さを
L−ioとし、歪みセンサ設置部位23における架橋部
分22の断面積を52゜、被測定対象部材1(lのそゎ
を310、そして矢印方向に印加される圧縮応力0の大
きさをその記号のまま0としで、被測定対象部材10も
架橋部分22も共に同じヤング率Eを有すると、架橋部
分2?の」記動面積320が被測定対象部材10のそれ
Shoに比し°℃ト分に小さく、はぼ無視できる場合(
S 20<<S IQ)には、被測定対象部材10に関
する圧縮率6+oは先の1)式と同様、ε+o=O/S
+oE        ”・・11)となり、したがっ
て被測定対象部材lOの全長L1c。
Here, the distance between the centers of the pair of fixed members 24 and 24 is L24 as described above, and the length of the bridge portion 22 parallel to the member to be measured is L20%.The length of the member to be measured, 14'IO, is L20. -io, the cross-sectional area of the bridge portion 22 at the strain sensor installation site 23 is 52 degrees, the width of the member to be measured 1 (l) is 310, and the magnitude of the compressive stress 0 applied in the direction of the arrow is the symbol of the symbol. Assuming that both the member to be measured 10 and the bridged portion 22 have the same Young's modulus E, the moving area 320 of the bridged portion 2 is 0 °C compared to that of the member to be measured 10. If it is small and can be ignored (
S 20
+oE''...11), and therefore the total length L1c of the member to be measured lO.

の圧縮量Δ1.11oは、 ΔLto=L1o6+o        −−−−−*
x2)となる。
The compression amount Δ1.11o is ΔLto=L1o6+o −−−−−*
x2).

同様に、固着部材24 、24間の中心開路Ill L
 24も同じ圧縮率の影響を受け、L24el。だけ縮
むが、当該固着部材24 、24が既述のように変形し
ないだけの剛性を持っていれば、これらの間の架橋部分
22における長さL2Oも、長さL+oに対する変形分
Lioε、。と同量の変形を受ける。
Similarly, the center opening Ill L between the fixing members 24 and 24
24 is also affected by the same compression ratio, L24el. However, if the fixing members 24 and 24 have enough rigidity not to deform as described above, the length L2O of the bridge portion 22 between them will also be the deformation amount Lioε with respect to the length L+o. undergoes the same amount of deformation.

したが7て、この架橋部分22における圧縮率ないし歪
み増幅機構20における圧縮率ε2oは、ε2o=L2
<g+o/Lzo      +++++43)となり
、明らかなように、長さに関し、L24> Lxo  
        ・・・・・・l 4)となっているの
で、歪みセンサ設置部位23におりる歪み甲(圧縮率)
ε2oは、それが被測定対象部材10の上にある場合に
比l15、−上記長さの比、K−L24/ L20  
       ・・・・・・15)たけ、増倍されるご
、とになり、すなわち、戸り期通り、歪み増幅部分22
ないし歪みセンサ設置部位23にて増幅率α=Kに等し
い歪み増幅効果を得ることができる。
Therefore, the compressibility of the bridge portion 22 or the compression ratio of the strain amplification mechanism 20 is ε2o=L2
<g+o/Lzo ++++++43), and as is clear, regarding the length, L24> Lxo
・・・・・・l 4) Therefore, the strain A (compression ratio) at the strain sensor installation site 23
ε2o is the ratio l15 when it is on the member to be measured 10, - the ratio of the above lengths, K-L24/L20
......15) As it is multiplied, the distortion amplification section 22
Alternatively, a strain amplification effect equal to the amplification factor α=K can be obtained at the strain sensor installation site 23.

また、この際、センサ設置部位23を含む歪み増幅部分
ないし架橋部分22の受ける単位面積当たりの応力Q2
゜と、被測定対象部材10の受ける単位面積当たりの応
力O2゜の間には、ヤング率を共に一定値Eとすると、
全負荷応力0に対し、次の関係、 a = s 1.σl(++52QO20・”・”18
)が成立し、かつ、 0zo=Lz4cff+o/Lzo       ””
17)であるので、 (llo=cIL2(1/ (S1OL20+520L
24)・・・・・・18) となり、上記1.7)、L8)式から、σ2o=σL2
4/ (StoLzo+5zoL24)・・・・・・1
9) となる。
In addition, at this time, stress Q2 per unit area received by the strain amplification part or the bridge part 22 including the sensor installation part 23
When the Young's modulus is set to a constant value E, between
For a total load stress of 0, the following relationship: a = s 1. σl(++52QO20・”・”18
) holds true, and 0zo=Lz4cff+o/Lzo ””
17), so (llo=cIL2(1/(S1OL20+520L
24)...18) From the above equations 1.7) and L8), σ2o=σL2
4/ (StoLzo+5zoL24)・・・・・・1
9) becomes.

もちろん、以上の作用や各式は、圧縮応力に関してのみ
ならず、引っ張り応力についても成立する。
Of course, the above effects and formulas hold true not only for compressive stress but also for tensile stress.

第5図は第4図示の実施例に即して構成されたやや具体
的な構造例を示しており、丸棒状の被測定対象部材10
の長さの途中1互いに離間して設けられる固着部材24
.24はそれぞれソング状をなし、架橋部材ないし歪み
増幅部分22は、当該リング状固看部材の周方向の一部
分同志を渡す細幅板状の部材として構成されている。既
に述べたように、各固着部材24 、24と被測定対象
部材10の固着、結合方法や、固着部材24 、24と
板状架橋部分としての歪み増幅部分22との結合手法は
任意であり、不測の変形やずれが生じなければ良い。
FIG. 5 shows a somewhat specific structural example constructed in accordance with the embodiment shown in FIG. 4, in which a round rod-shaped member to be measured 10
Fixing members 24 provided spaced apart from each other midway along the length of
.. 24 each have a song shape, and the bridging member or strain amplification portion 22 is configured as a narrow plate-like member that extends a part of the ring-shaped fixation member in the circumferential direction. As already mentioned, the method of fixing and coupling the fixing members 24 , 24 to the member to be measured 10 and the method of coupling the fixing members 24 , 24 to the strain amplification portion 22 as a plate-shaped bridge portion are arbitrary. It is fine if no unexpected deformation or shift occurs.

第6図は第4図示または第5図示の実施例構造と構造的
には同一であるが、圧縮応力や引っ張り応力に代え、負
荷応力として軸回りの応力、すなわち涙しり力(トルク
)が印加された場合を示し7ている。図面的には第4.
5図における歪みセンサ設置部位23を真上から見た図
であって、歪みセンサ設置部位23に当該捩じり応力に
基づいて剪断応力でか加えられた場合の変位量は、その
方向共々、矢印δで表している。
Fig. 6 is structurally the same as the embodiment structure shown in Fig. 4 or Fig. 5, but instead of compressive stress or tensile stress, stress around the axis, that is, tearing force (torque) is applied as load stress. 7 shows the case where In terms of drawings, it is 4th.
This is a diagram of the strain sensor installation site 23 in FIG. 5 viewed from directly above, and the amount of displacement when a shear stress is applied to the strain sensor installation site 23 based on the torsional stress is as follows in both directions: It is represented by an arrow δ.

歪み増幅機構20中のセンサ設置部位23の所における
架橋部分22の断面積S20が、被測定対象部材10の
断面積SIOに比し、既述した通り、無視可能な程に小
さければ、被測定対象部材10の捩じれ角ψは先掲の9
)式により与えられる。
If the cross-sectional area S20 of the bridge portion 22 at the sensor installation site 23 in the strain amplification mechanism 20 is negligibly small compared to the cross-sectional area SIO of the member to be measured 10, then the The torsion angle ψ of the target member 10 is 9 as mentioned above.
) is given by the formula.

しかし、この捩じれ角ψの定義は、ある丸棒の一端を固
定して他端を捩じった場合、当該丸棒の捩じられた#部
がどの程度の回転角で捩じれるかを示すものであるので
、丸棒の長さ方向の各位置では部位ごとに捩じれ角が異
なる。
However, the definition of this twist angle ψ indicates how much rotation angle the twisted # section of a round rod will twist when one end of a round rod is fixed and the other end is twisted. Therefore, the twist angle differs depending on the length of the round bar.

モこで、丸棒の任意の位置における捩じれ角を知るには
、丁記捩しれ角ψを、丸棒の固定端からその位置までの
距離で割った値である捩じれ甲λを導入するのが便利で
ある。すなわち、固定端から当該任意の捩じ才1角測定
点までの距離をLとして、。
In order to find the torsion angle at a given position of the round bar, we can introduce the torsion angle λ, which is the value obtained by dividing the torsion angle ψ by the distance from the fixed end of the round bar to that position. is convenient. That is, let L be the distance from the fixed end to the arbitrary torsional angle measurement point.

λ−ψ/L、            ・・・・・・2
0)なる定義値を用いる。
λ−ψ/L, ・・・・・・2
0) is used.

してみるに、被測定対象部材10の捩じれ甲λは、捩じ
れ角をψとすると、長さし、。においてはψ10/LI
Oである。同様にして、本発明による歪み増幅機構20
中の架橋部分22の捩じれ角ψ2oに鑑みるに、その両
端はリング状の固着部材24.24によってずれや滑り
が生じないように被測定対象部材10に結合しているか
ら、当該架橋部分22の捩じれ率λ2゜はえ、0に等し
いかのように思える。
In other words, the length of the torsion instep λ of the member to be measured 10 is, where ψ is the torsion angle. ψ10/LI
It is O. Similarly, the distortion amplification mechanism 20 according to the present invention
Considering the torsion angle ψ2o of the bridging portion 22 inside, both ends are connected to the member to be measured 10 by the ring-shaped fixing members 24, 24 so as not to shift or slip. It seems as if the twist rate λ2° is equal to 0.

ところが、一対の固着部材24 、24間の実質的な距
離はL24であるが、架橋部分22の強度がそれら固着
部材24 、24のそれに比べて十分に小さく設定され
°rいるならば、固着部材開路1mt L 24間に均
等に生ずるべき歪みは架橋部分22の長さし2゜の間に
集中するので、実際には当該架橋部分22にお(、′3
る捩しれ率λ2oは、 λ20”λ+oL2a、/L、2o       ”・
・2]、)となる。よって、抜じれ率に関する歪み増幅
型αは、やはりL 24/ 1.= 20とすることが
でき、1より人きい値とし得る。
However, although the substantial distance between the pair of fixing members 24, 24 is L24, if the strength of the bridge portion 22 is set to be sufficiently smaller than that of the fixing members 24, 24, then the fixing members The strain that should occur evenly between the open circuits 1 mt L 24 is concentrated within 2 degrees of the length of the bridge portion 22, so in reality, the strain that should occur evenly across the length of the bridge portion 22 (, '3
The torsion rate λ2o is λ20"λ+oL2a,/L,2o"・
・2],). Therefore, the distortion amplification type α regarding the pull-out rate is still L 24/1. = 20, which may be a higher threshold than 1.

さらに、捩じれ歪みの絶対値についでは、センサ設置部
位23の軸心からの距離r20が被測定対象部材10の
半径rhoよりも大きいので、その捩じれ変位は、仮に
被測定対象部材10の表面に直接に歪みセンサを貼り伺
けた場合に比し、その分も大きくなる。これは第7図a
、bに即して説明することができる。
Furthermore, regarding the absolute value of the torsional strain, since the distance r20 from the axis of the sensor installation part 23 is larger than the radius rho of the member to be measured 10, the torsional displacement is directly applied to the surface of the member to be measured 10. This will also be larger than if a strain sensor were attached to the surface. This is Figure 7a
, b.

第7図aは半径rl。の丸棒状被測定対象部材10の表
面に対し、その長さ方向途中にあって長さL5の歪みセ
ンサ素子Sを直接に貼り付けた場合を示している。ここ
で、図中、当該歪みセンサ素子Sの奥の端部が固定され
ているとし、被測定対象部材10C捩じれ率λ、IOの
捩じれが生じたとすると、手前側の端部における被測定
対象部材10の変位δ、0は、 δ、。=λ、1orloLS         +++
++−22)となる。
Fig. 7a shows the radius rl. This figure shows a case where a strain sensor element S having a length L5 is directly attached to the surface of a round bar-shaped member to be measured 10, located midway in the length direction thereof. Here, in the figure, assuming that the rear end of the strain sensor element S is fixed and the torsion rate λ, IO of the member to be measured 10C occurs, the member to be measured at the front end The displacement δ,0 of 10 is δ,. =λ, 1orloLS +++
++-22).

−力、これに対して、第7図すは、歪みセンサ素子Sが
、第5,6図示の本発明実施例構造に即し、長さし、。
In contrast, in FIG. 7, the strain sensor element S has a length according to the structure of the embodiment of the invention shown in FIGS. 5 and 6.

の架橋部分22上にあってそれよりさらに短い長さLS
のセンサ設置部位231.に設置されている場合を示し
ており、この構造で上記第7図aにおけると同様、図中
、当該歪みセンサ素子Sの奥側の端部が固定されている
とし、被測定対象部材10に捩じれ率λ、0の捩じれが
生じたとすると、手前側の@部における歪みセンサ素子
の捩じれ角ψ2゜は、既述の20) 、21)式よりψ
20”λ1OL24Ls /Lzo      ”・”
・23)となるから、歪みセンサ素子の同じ端部におけ
る変位δ2oは、 δ2o−λ1or20L24L4 /L2゜・・・・・
・24) となる。
The length LS on the bridge portion 22 of
sensor installation site 231. In this structure, as in FIG. 7a above, it is assumed that the rear end of the strain sensor element S is fixed, and it is installed in the member to be measured 10. Assuming that a twist occurs with a twist rate λ of 0, the twist angle ψ2° of the strain sensor element at the front side @ part is calculated as ψ from the already mentioned equations 20) and 21).
20”λ1OL24Ls/Lzo “・”
・23) Therefore, the displacement δ2o at the same end of the strain sensor element is δ2o−λ1or20L24L4/L2°...
・24) becomes.

Lノたがって、捩じれによる歪みの増幅型αは、既述の
22)式と 24)式とから、 α2δ20/δ1o=r20L24/rlOL20・・
・・・・25) と求められ、r 20> r toで、L 24> L
 20であるから、当該増幅型αは1よりも人各な値と
なることが理解される。
Therefore, the amplified type α of distortion due to torsion is obtained from the above-mentioned equations 22) and 24) as follows: α2δ20/δ1o=r20L24/rlOL20...
...25) is calculated, r 20 > r to, L 24 > L
20, it is understood that the amplification type α has a value that varies from person to person rather than 1.

ところで、これまで述べてきた実施例においては、いず
れも、負荷された応力と同様の種類の応力として歪みを
正負に増幅する場合が示されていた。しかし、本発明の
また別な態様によると、負荷応力とは異なる種類の応力
として歪みを増幅することも可能である。以下、このよ
うな歪み変換機構を有する実施例について説明する。
Incidentally, in the embodiments described so far, cases have been shown in which strain is amplified in positive and negative directions as stress of the same type as the applied stress. However, according to another aspect of the present invention, it is also possible to amplify the strain as a different type of stress than the applied stress. An embodiment having such a distortion conversion mechanism will be described below.

第8図は、被測定対象部材lOに圧縮応力または引っ張
り応力Oが負荷されたとき、斜線を付I、・た歪みセン
サ設置部位23(ないし架橋部分22)には剪断応力が
印加される実施例を示しており、被測定対象部材lGの
長さ方向に沿って互いに距1i1 L 2 aだけ離れ
ながら被測定対象部材10に堅固に固着した一対の固着
部材24 、24が、それぞれ軸方向(被測定対象部材
の長さ方向)に相手力に向かつで伸びる腕部25 、2
5をイイし、この腕部25 、25の自由岨1間に被測
定対象部材どは重文する関係で架橋部分22ないしセン
サ設置部位23が形成さね”Cいる。
FIG. 8 shows an example in which, when compressive stress or tensile stress O is applied to the member to be measured lO, shear stress is applied to the strain sensor installation site 23 (or bridge portion 22) marked with diagonal lines I. An example is shown in which a pair of fixing members 24 and 24, which are firmly fixed to the member to be measured 10 while being separated from each other by a distance 1i1 L 2 a along the length direction of the member to be measured 1G, are connected in the axial direction ( Arm portions 25, 2 extending toward the opposing force in the longitudinal direction of the member to be measured)
5, a bridge portion 22 or a sensor installation portion 23 is formed between the free slopes 1 of the arm portions 25 and 25 because the member to be measured is an important object.

このような構4w・は、被測定対象部材1oの〜端に圧
縮応力0が負荷さ第1.ると、一対の同名部オA24 
、24間の距離L24は次式、で表される!、= 24
 ’ w′Ij縮される。
In such a structure 4w, zero compressive stress is applied to the end of the member to be measured 1o. Then, a pair of parts with the same name A24
, 24 is expressed by the following equation! , = 24
'w'Ij is reduced.

L24  =L2.、(1,−a/ S +oE)・・
・・・・26) ただし、これま士と同様し“、SIOは被測定対象部材
10の断面積、E、はヤングVであって、歪みセンサ設
置部(fi、23(ないし周り向架橋部分)の強度は]
−分に小さく゛、応力伝達部材とL2ての被測定対象部
材10の圧縮にiavしないとする。
L24=L2. , (1,-a/S +oE)...
...26) However, as in the previous case, SIO is the cross-sectional area of the member to be measured 10, E is Young's V, and the strain sensor installation part (fi, 23 (or circumferential bridge part) ) is the strength of ]
It is assumed that there is no compression of the stress transmitting member and the member to be measured 10 at L2.

このようにし、て、一対の固着部材24 、24間の距
離■、24がLxaoに圧縮さねると、架w8部分22
ないし歪みセンサ設置部位23には一対の腕25 、2
5の相対的な軸方向の逆方向運動によって剪断応力が負
荷され、当該部分23の長さをL2Oどす才1は、この
部分22ないし23の長手方向の軸に対し/、θ= t
an−’[(L2aa/5toE、) /’L24°)
]・・・・・・27) の角度θで剪断変形が件、する。し7たかって、ご才]
までの説明と上記26) 、27)式より、イ・4刺丁
学、機械工学に関し′1″通常の知識をイ1す?、・も
の−Tあ1+ば、上記した各1法の設定如何にまり、こ
の第11し;1し′示されているような応力変換P$!
、措付きに1、〕歪2色増幅機構20によっても、かな
り広い範II!Illでf、I恵rパ)歪み増幅率αを
得られることが分かる、また、同様に当業者であれは、
第8図示の構造は、捺じり応力を圧縮応力または引っ張
り応力に変換して測定する場合にもそのまま用い得るご
どが理解で籾る。すなわち、被測定対象部材1f)1.
:′捩じり応力が負荷されると、そのあ向に応I11、
−・対の腕部材25 、25間に配置さゎている架橋部
分22ないし・歪みセンサ設置部位23には圧縮応力か
引・ノ張り応力のいずれかが印加される。その際にも、
当該負荷される捩じり応力に対しての被測定対象部材1
0の歪みまたは歪み変化幅に対し、歪みセ2・す設置部
位23「おけるそうした歪みの増幅率σをどの程度に設
定するかは、最早当業者の設計範囲に入る。
In this way, when the distance between the pair of fixing members 24 and 24 is compressed to Lxao, the frame w8 portion 22
A pair of arms 25 and 2 are provided at the strain sensor installation site 23.
A shear stress is applied by the relative axial opposite movement of the parts 23, causing the length of the part 23 to be reduced L2O with respect to the longitudinal axis of this part 22-23, θ=t
an-' [(L2aa/5toE,) /'L24°)
]...27) Shear deformation occurs at an angle θ. 7 years old, thank you]
From the explanations up to and the above formulas 26) and 27), a. 4 ``1'' ordinary knowledge regarding knife science and mechanical engineering is 1?, ・Mono - T a 1 + B, Setting of each of the above 1 methods How do we get this 11th one; 1'? The stress transformation P$ as shown!
, 1,] Even with the distorted two-color amplification mechanism 20, it has a fairly wide range II! It can be seen that the distortion amplification factor α can be obtained as follows:
It is understood that the structure shown in Figure 8 can be used as is when measuring twisting stress by converting it into compressive stress or tensile stress. That is, the member to be measured 1f)1.
:'When torsional stress is applied, I11,
- Either compressive stress or tensile stress is applied to the bridge portion 22 or the strain sensor installation portion 23 located between the pair of arm members 25, 25. At that time,
Measurement target member 1 for the applied torsional stress
It is already within the design scope of those skilled in the art how to set the amplification factor σ of such distortion at the distortion center 2 and the installation site 23 for a distortion or distortion change width of 0.

第9図は、さらに別な応力変換機構を含む歪み増幅機構
20の実施例で、第8図示実施例における場合と同様の
条件ないし要件で被測定対象部材10に取付りられた一
対の固着部材24 、24が、そねぞれ被測定対象部材
の周方向に対向する腕部分25゜25を有するのみなら
ず、各腕部分25 、25の先端自由端がそれぞれ相手
方に向かってさらに直角に折れ、−・対の対向部分26
 、26を形成している場合をボしている。
FIG. 9 shows an embodiment of the strain amplification mechanism 20 including yet another stress conversion mechanism, in which a pair of fixing members are attached to the member to be measured 10 under the same conditions or requirements as in the embodiment shown in FIG. 24, 24 not only have arm portions 25° 25 facing each other in the circumferential direction of the member to be measured, but also each arm portion 25, 25 has a free end that is further bent at a right angle toward the other. , - Pair of opposing parts 26
, 26 are omitted.

歪み増幅部分ないし2架橋部分22は、この対向部分2
1i 、 26の間にあって被測定対象部材1oの長さ
方向に沿って配さね、かつ、この部分22が斜線を付し
て示すように、任意適当なる歪みヤングの設置部位23
となっている。
The strain amplifying portion or 2 bridging portion 22 is connected to this opposing portion 2.
1i, 26 along the length direction of the member to be measured 1o, and as shown with diagonal lines in this portion 22, an arbitrary strain Young installation portion 23 is provided.
It becomes.

明らかなように、このような構造によると、被測定対象
部材1oに圧縮応力0が負荷された場合、歪みセンサ設
置部位23には引っ張り応力が印加され、被測定対象部
材10に引っ張り応力0が負荷された場合には圧縮応力
が負荷される。このような機構さえ明らかになれば、最
〒、これまでの説明及び各式群から当業者であれば自明
の理とし′〔理解できるので、こうした装置構造により
て得られる歪み増幅率αを具体的に求める各式は省略す
る。
As is clear, according to such a structure, when zero compressive stress is applied to the member to be measured 1o, tensile stress is applied to the strain sensor installation site 23, and zero tensile stress is applied to the member to be measured 10. When loaded, compressive stress is applied. Once such a mechanism is clarified, it will be obvious to those skilled in the art from the above explanations and various equations. The formulas to be calculated are omitted.

また、これまでの説明において、直列型の場合には歪み
増幅機構20中、歪み増幅率αの計算に際し、歪みセン
サ設置部位23の強度も考慮に人ねたが、並列型の場合
には被測定対象部材10の強度に比し、そうした歪みセ
ンサ設置部イ◇23(ないシ、・架橋部分22)の強度
は無視可能な程に十分低いものとした。これは、並列型
の場合、ある程度、本質的に要求されることでもあり、
むしろ並列型の構造に鑑みるとそれで十分ではある。そ
れでもなお、より厳密な引算が必要とされる場合には、
材料力学や機#ili]ニ学「関し、通常の知識を有す
る者である限り、これまでの計算要領に即し、歪みセン
サ設置部位23の強度をまで含めて計算するごとは容易
にできる。
In addition, in the previous explanation, when calculating the strain amplification factor α in the strain amplification mechanism 20 in the case of the series type, the strength of the strain sensor installation part 23 was taken into account, but in the case of the parallel type, the Compared to the strength of the member to be measured 10, the strength of the strain sensor installation portion A◇23 (Bridging portion 22) is sufficiently low to be negligible. This is also, to some extent, an inherent requirement for parallel types;
In fact, considering the parallel structure, this is sufficient. If a more exacting subtraction is still required,
As long as a person has ordinary knowledge regarding material mechanics and machine science, it is easy to calculate the strength of the strain sensor installation site 23 in accordance with the calculation procedures used so far.

もっとも、本発明に従って構榮した歪み増幅機構20の
実効増幅甲α、ffは、被測定対象部オJ’IOに既知
の値の応力を加λながら歪みセンサ設置部位23に付し
、た歪みセンサでそのと籾の歪みを実測するごとにより
、実験的に求めることもできる。
However, the effective amplification A, ff of the strain amplification mechanism 20 constructed according to the present invention is determined by applying a stress of a known value to the strain sensor installation part 23 while applying a stress of a known value to the part to be measured OJ'IO. It can also be determined experimentally by actually measuring the distortion of the paddy using a sensor.

また、先にも少し触れたが、歪み増幅機構20に用いる
部材の中には、当該歪みを1より大きな増幅率で増幅す
る場合、被測定対象部材10よりも常に大きな機械的変
位を示さねばならない部材もあるので、その歪み範囲な
いし機械豹変6ン範囲がその部材の弾性範囲を越えない
ようにし、長期的使用に対する信頼性を確保することが
必要である。
Furthermore, as mentioned earlier, some members used in the strain amplification mechanism 20 must always exhibit a larger mechanical displacement than the member to be measured 10 when amplifying the strain with an amplification factor greater than 1. Therefore, it is necessary to ensure that the strain range or mechanical change range does not exceed the elastic range of the member to ensure reliability for long-term use.

しかし、このような設計も、当業者であれば1分、適切
になすことができる。
However, such a design can also be suitably made in one minute by a person skilled in the art.

以下、さらに具体的な実験例や製作例を挙げ、本発明の
有効性を実証する。
Below, more specific experimental examples and production examples will be given to demonstrate the effectiveness of the present invention.

まず、第一の製作例として、第1図示の本発明実施例に
即した歪み測定装置を組み上げるため、直径20mmφ
、長さ80mmの5S41鋼製の棒を被測定対象部材1
0.10として用いるために2本用意し2、それらの各
一端部側にはM20’″2′の雄ネジを長さ30m+n
に亙って切った。
First, as a first production example, in order to assemble a strain measuring device according to the embodiment of the present invention shown in the first figure, a diameter of 20 mmφ
, a 5S41 steel rod with a length of 80 mm was used as the member to be measured 1.
Prepare two screws for use as 0.10 2, and attach an M20'''2' male screw with a length of 30 m + n to one end of each of them.
I cut it over.

また、歪み増幅機構20中の棒状部材21どじではSN
CM439鋼を抗張ノ、I I GPa以」2に調質し
・かものを用い、その全長は1401で、両端は直径3
6rnm、平行部分の長さが38n+n+どなるように
太く加工し、この太い両端部分の各端面中火には、被測
定対象部材io 、 10としての上記棒状材に切った
雄ネジを捩じ込むに適当なように、深さ30+nmに亙
るM20’″2″′の雌ネジを穿ンた。
In addition, at the end of the rod-shaped member 21 in the strain amplification mechanism 20, the SN
CM439 steel is tempered to a tensile strength of 2 GPa or higher, and its total length is 140 mm, and both ends have a diameter of 3 mm.
6rnm, so that the length of the parallel part is 38n+n+, and it is machined thickly so that the length of the parallel part is 38n+n+, and the male screw cut from the above bar-shaped material as the member to be measured io, 10 is screwed into the medium heat on each end face of this thick end portion. Suitably, M20'''2''' female threads were drilled to a depth of 30+nm.

−・力、この棒状部材21にあっても、歪み増幅部分2
2となる長さぁ南中間の細い部分には、その中央部に太
さ1.On++n、平行部分の長さが1.6i+mの歪
みセンサ設置部位23を設け、両端の太い部分とこの中
間の紬い部分とは滑らかな曲線で継がるように加工し・
た。
- Even if the force is on this rod-shaped member 21, the strain amplification part 2
The length is 2. The narrow part in the middle of the south has a thickness of 1. On++n, a strain sensor installation part 23 with a parallel part length of 1.6i+m is provided, and the thick part at both ends and the pongee part in the middle are processed so that they are connected with a smooth curve.
Ta.

一上記の雄ネジ、雌ネジの嵌合により、全部で三つの棒
状材10 、21 、10を機械的に直列かつ堅固に結
合させた後、上記の歪みセンサ設置部位23に一般的な
抵抗線歪み計をこれも一般的な接着剤で貼り付けて第1
図示の装置構造を完成し、ごわを普通に使われている引
っ張り一圧縮応力試験機に掛け、引フ張り及び圧縮負荷
荷重に対する歪み測定試験を行なった。
1. After a total of three bar members 10, 21, and 10 are mechanically connected in series and firmly by fitting the above-mentioned male and female screws, a general resistance wire is connected to the above-mentioned strain sensor installation site 23. Attach the strain gauge using a common adhesive as well.
After completing the device structure shown in the figure, the stiffener was placed in a commonly used tensile-compressive stress testing machine, and strain measurement tests were conducted against tensile and compressive loads.

その結果は第10図中に示されている通りで、負荷応力
と歪みとの関係はリニアであり、かつ、比較のために作
成した従来構造に従う場合よりも傾きの急な直線となっ
た。
The results are shown in FIG. 10, and the relationship between applied stress and strain was linear, and the straight line had a steeper slope than in the case of the conventional structure created for comparison.

すなわち、上記の本発明に従う製作例と同一、の材質で
同じ太さを有するが、歪み増幅機構を有することなく、
長さが240mmの一木のみの棒状材を被測定対象部オ
Δ】0として用意し、この長さの中央部分に抵抗線歪み
計を貼り付け、同様の引−ノ張り及び圧縮負荷荷重に対
する歪み測定試験を行なった所、その測定曲線は同じ′
sio図中で従来例と記した直線となり、この従来例に
関する直線と本発明装置構造に関する直線の傾きの比で
求められる歪み増wj率αはほぼ4となった。
That is, it is made of the same material and has the same thickness as the production example according to the present invention described above, but does not have a distortion amplification mechanism.
A rod-like material made of a single tree with a length of 240 mm is prepared as the measurement target part O When strain measurement tests were conducted, the measurement curves were the same.
In the sio diagram, the straight line is marked as the conventional example, and the strain increase wj rate α, which is determined by the ratio of the slopes of the straight line regarding this conventional example and the straight line regarding the device structure of the present invention, is approximately 4.

次いで第二の実験のため、本発明に従う装置構造として
、上記しまた第一の製作例におけると同様の装置を用意
した。ただし、被測定対象部材10としての棒状材に設
けた雄ネジと歪み増幅機11120中の棒状部材21に
設けた雌ネジは、それぞれ幅と深さが4mm、長さが3
On+mのキー溝を長手軸に平行かつ軸対称に二つづつ
設けたものに変更し、それらの組立には各キー溝中に長
さ30mm、幅3[D[11、高さ6mmのキーの圧入
を利用した。
Next, for a second experiment, an apparatus similar to that described above and in the first fabrication example was prepared as an apparatus structure according to the present invention. However, the male thread provided on the bar-shaped member as the member to be measured 10 and the female thread provided on the bar-shaped member 21 in the strain amplifier 11120 each have a width and depth of 4 mm and a length of 3 mm.
The On+m keyways were changed to two parallel to the longitudinal axis and axially symmetrical, and to assemble them, a key with a length of 30 mm, a width of 3[D[11], and a height of 6mm was installed in each keyway. Press fit was used.

また、被測定対象部材10を構成する棒状材において、
キー溝を設けた側とは対向する端部には、六角ボルトの
頭のような部分を長さ20mmに亙って設けた。抵抗線
歪み計は、先の第一の実験例と同様、中間の棒状部材の
細い部分の中央に貼り付けた。
Furthermore, in the rod-shaped material constituting the member to be measured 10,
At the end opposite to the side where the keyway was provided, a portion resembling the head of a hexagonal bolt was provided over a length of 20 mm. The resistance wire strain gauge was attached to the center of the thin part of the intermediate rod-shaped member, as in the first experimental example.

このようにして作成した歪み測定装置にあって、六角ボ
ルトの頭状部分を有さない方の被測定対象部材の一端を
バイスで固定した上で、当該六角ボルトの頭状部分には
これに適合するソケットを有するトルクレンチを接合し
、これにより[・ルク(N−al)を負荷して抵抗線歪
み割の出力に基づき、捩じれ角θじ)を測定1.5な。
In the strain measuring device created in this way, one end of the member to be measured that does not have the head of the hexagonal bolt is fixed in a vice, and the head of the hexagonal bolt is attached to the end of the member to be measured. Connect a torque wrench with a suitable socket, and use it to load [·N-al] and measure the torsion angle θ, based on the output of the resistance wire strain factor, 1.5.

第11図中5本発明として記さねでいる測定曲線がその
結果を示していて、リニアな関係が得られている。ただ
し、用いた抵抗線歪み引の長さは10mmあり、測定さ
tlだ捩じれ角はこの抵抗線歪み計部分における軸回り
の値である。
The measurement curve marked as 5 of the present invention in FIG. 11 shows the results, and a linear relationship is obtained. However, the length of the resistance wire strain gauge used was 10 mm, and the measured torsion angle was the value around the axis at this resistance wire strain gauge portion.

−力、本発明との比較のため、バイスで固定したりトル
クレンチのソゲットに接合可能なように加工した点を除
き、先に述べた第一・の比較例と同様の棒状材を被測定
対象部材10として用意し、上記で本発明装置に用いた
と同じ抵抗線歪み計により、同じ試験環境下で捩じれ角
θの対負荷トルク曲線を取った所、第11図中、従来例
として記した直線が得られた。
-For comparison with the present invention, a rod-shaped material similar to the first comparative example described above was measured, except that it was fixed in a vise or processed so that it could be joined to the soget of a torque wrench. The load torque curve of the torsion angle θ was obtained under the same test environment using the same resistance wire strain meter as the target member 10 and used in the apparatus of the present invention, as shown in FIG. 11 as a conventional example. A straight line was obtained.

こうした本発明、従来例にそれぞれ関する二つの測定曲
線(直線)の傾き関係を見れば明らかなように、本発明
に従って構成された歪み測定装置においては、負荷トル
クに対する捩じれ角、ひいては機械的な歪みが従来例に
比し、太いに増幅されていることが分かる。
As is clear from the relationship between the inclinations of the two measurement curves (straight lines) for the present invention and the conventional example, in the strain measuring device constructed according to the present invention, the torsion angle with respect to the load torque, and thus the mechanical strain It can be seen that this is greatly amplified compared to the conventional example.

さらに第三の実験のため、並列型として示した本発明の
第4図示実施例構造に相当する装置を次のようにして作
成した。
Furthermore, for a third experiment, an apparatus corresponding to the structure of the fourth illustrated embodiment of the present invention shown as a parallel type was created as follows.

まず、歪み増幅機構20の構築のため、最初、直径4.
O+u+φ、長さfiommの5S41鋼の丸棒を用意
し、この軸心に沿って内径20+omφの透孔をドリル
で穿孔した後、当該丸棒の長さ方向の中央部分を幅20
mm、負狗さ34mv+でフライス加工して切欠き、軸
方向両端に被測定対象部材10への固着部材24 、2
4 (第4図参照二以下、この実験例において他の部材
も同様)となるべ籾環状部分を形成すると共に、フライ
ス加工によって切欠き残した厚さ6mm、幅28.6m
m、長さ20amで、底面は平ら、上面は円弧状となっ
ている部分に対しては、さらにその両側にクライス加工
を施し、それぞれ9、3 amづつ削って幅10mmの
蒲鉾型部分を形成した。
First, in order to construct the distortion amplification mechanism 20, the diameter 4.
Prepare a round bar made of 5S41 steel with a length of O+u+φ and fiommm, and after drilling a through hole with an inner diameter of 20+omφ along its axis using a drill, cut the central part in the lengthwise direction of the round rod into a hole with a width of 20 mm.
mm, cut out by milling with a depth of 34mv+, and fixing members 24, 2 to the member to be measured 10 at both ends in the axial direction.
4 (see Fig. 4, the same goes for other parts in this experiment example), and form a ring-shaped part of the rice grain with a thickness of 6 mm and a width of 28.6 m left by milling.
For the part with a length of 20mm and a flat bottom and an arcuate top, we further cut both sides of the part by 9mm and 3mm to form a kamaboko-shaped part with a width of 10mm. did.

この蒲鉾型部分が一対の環状固着部材24 、24間を
渡す架橋部分ないし歪み増幅部分22となるが、この部
分の円弧状の上面を長さ15mm、幅10mvaに亙っ
て深さ21でフライス加ユニLノで平面化し、ここを歪
みセンサ設置部位23とし、た。なお、第4図中でこの
部分23は、特に図面上でその部位を特定するのに便利
なように、あえて厚味のある部分のように示しているが
、これは全くの便宜のためであって、実際にはむしろ、
この実験例のように、平らに削って作る方が一般的であ
る。
This semi-cylindrical part becomes the bridge part or strain amplification part 22 that connects the pair of annular fixing members 24, 24, and the arcuate upper surface of this part is milled to a depth of 21 over a length of 15 mm and a width of 10 mva. It was flattened using the unit L, and this was used as the strain sensor installation site 23. In addition, this part 23 in Fig. 4 is intentionally shown as a thick part to make it convenient to identify the part on the drawing, but this is purely for convenience. Actually, rather,
It is more common to make it by carving it flat, as in this experimental example.

このようにして作成した歪み増幅機構20を、被測定対
象部材10として用いる直径20mmφ、長さ300)
の5341t!4製の丸棒の中央部に押し込み、歪み増
幅機構の一対の環状部分ないし固着部材24 、24と
被測定対象部材10としての丸棒とを隅肉溶接し、堅固
に結合させた。
The strain amplification mechanism 20 created in this way is used as the member to be measured 10 (diameter: 20 mmφ, length: 300 mm)
5341t! 4, and the pair of annular portions or fixing members 24 of the strain amplification mechanism and the round bar serving as the member to be measured 10 were fillet welded to firmly connect them.

一方、5541w!の表面に対し、爆発によって351
厚のアモルファスを形成したもので、表面カ半径20m
mの円柱の一部をなし、幅1O+am、厚さが最大部で
2mm、上記した仮想円柱の軸方向に沿う長さが14m
mの部材の四隅に、この各隔部分で直交する二辺からそ
れぞれ2Iall1w1れた位置に内径2.1 +um
φのドリル孔を穿孔し、この部材を、上記した歪み増幅
機構中の歪みセンサ設置部位にもあらかじめ対応する寸
法で穿ってあった各タップ孔に対し、それぞれM2’″
04のビスを捩じ込むことにより取付けた。
On the other hand, 5541w! 351 by explosion against the surface of
Made of thick amorphous material with a surface radius of 20 m.
It forms a part of a cylinder of m, width is 1O+am, thickness is 2mm at the maximum part, and length along the axial direction of the above virtual cylinder is 14m.
Inner diameter 2.1 + um is placed at the four corners of the member of m at positions 2Iall1w1 from the two sides orthogonal to each other at each interval.
Drill a φ drill hole, and attach this member to each tap hole, which was previously drilled with a size corresponding to the strain sensor installation site in the strain amplification mechanism, with M2'''.
It was installed by screwing in the 04 screw.

なお、5S41鋼の基材に対しアモルファス薄膜を付着
させるために用いた上記の言わば爆発法は、本出願人が
すでに特開昭61−195905号公報中にて開示した
中の一手法に従ったものであり、また、当該アモルファ
ス薄膜の具体的な組成は、原子比寮表記でFe7aBi
3Si*である。さらに、こうした爆発処、埋によって
アモルファス薄膜に与えられた残留応力は熱処理で除去
し、さらにこの熱処理の際に、5541mとの熱i張率
差釘よって与えられた圧縮応力は塑性加工により除去し
た。
The above so-called explosion method used to attach the amorphous thin film to the 5S41 steel base material was in accordance with one of the methods already disclosed by the applicant in Japanese Patent Application Laid-Open No. 195905/1983. The specific composition of the amorphous thin film is Fe7aBi in atomic ratio notation.
3Si*. Furthermore, the residual stress imparted to the amorphous thin film by such explosion treatment and embedding was removed by heat treatment, and during this heat treatment, the compressive stress imparted by the hot i elongation difference nail with 5541m was removed by plastic working. .

このようなアモルファス薄膜部材は、機械的変位に対し
、透過磁束量を変化させるセンサとし・て利用できる。
Such an amorphous thin film member can be used as a sensor that changes the amount of transmitted magnetic flux in response to mechanical displacement.

そこ−で、上記のようにして歪み増幅機構2o中の歪み
増幅部分ないし架橋部分22に備えられている歪I≠セ
5/す設−)部イiシ(2:liL、:j−の′ど(”
ル°・1.ス;1りみ1・′ンザ累:r−毛、・取りイ
・」i・tj=、、J“て・、磁界発電源と、y”イ−
ルファス歪みセン−1〕素子を透’yl’lh・jる磁
束1をJi4i x−るホー0.ル素f−と苓;、 、
、%g、 41ぞ゛れ(、’、)、 1 rn mのI
MI [!j 1・対向61i置15.た土7′7・・
、被測定対象部4!lI GとI・l゛のA1.棒し:
Iルクを負荷し、たととの″′13′b:メイ゛)ll
、ノメス、1≧21→ンサ素−了の機械rlI−′I歪
みイ・−・′−σ口、・:、・す素ず苓−透i7!韮゛
4イ)磁束Iの変化と1・1]ポール累イで捕λj、・
1所、当該ポール素子!Ji力を電il′的増幅器r:
 、1.−り電圧変換1、。
Therefore, as described above, the strain I≠Se5/set-) portion I (2:liL, :j-) provided in the strain amplification portion or bridge portion 22 in the strain amplification mechanism 2o is 'degree("
le°・1. S; 1 rimi 1・'Nza accumulation:r-hair,・torii・''i・tj=,,J“te・,magnetic field generation source, y”i−
Rufus strain sensor-1] Magnetic flux 1 passing through the element is Ji4i x-ho0. ru element f- and 蓓;, ,
, %g, 41 zore(,',), 1 rn m's I
MI [! j 1・Opposing 61i placed 15. 7'7...
, the part to be measured 4! lI G and I・l゛A1. Stick:
Load the I-lux, and then ``'13'b: may)ll.
, Nomes, 1≧21→Nsamoto-Ryo's machine rlI-'I distortion I--'-σmouth, ・:,・Susuzurei-Toru i7! 4.) Changes in magnetic flux I and 1.1] Captured by pole array λj,・
One place, the pole element in question! Electric power amplifier r:
, 1. - voltage conversion 1.

゛r適度em幅(1,またi&N −I冒d &>るが
、13113 m V 、、、z’ N ・mの感度が
得られ)J。
゛Rmoderate em width (1, and i & N −I d &>, but a sensitivity of 13113 m V, z' N ·m is obtained)J.

これに対し・、未発I]1IIIによる歪み増幅1機構
2 +i y;・用いるごどなく、−1−1記で歪み増
幅機4111中のζミめセ゛、・・す設置部4Q、 K
:設0たと同様の設置部位を被測定対象部材どしτの丸
棒1j′: i白接設り、同1′・7日“ルン゛γス企
みセンサ素子を取付けたたりの従東構造に″従う場合に
は、上記で用いたど同一の電子的増幅器出力で晃t゛、
ぞの51gは42.5111V7’ N−m Ll、か
得られなかフた。すなわち、本発明に:従)たi4.置
イハ方が、この場合、感度に1・Cはば24e:′、向
11・た4とに六、ぐイ°)、。
On the other hand, distortion amplification 1 mechanism 2 +i y by ungenerated I] 1III; and ζ error in the distortion amplifier 4111 in -1-1 are installed in installation parts 4Q, K.
: The same installation location as in Set 0 was installed on the target member to be measured. If you follow ``, then with the same electronic amplifier output as used above,
The 51g of the sample was 42.5111V7' N-m Ll, or could not be obtained. That is, i4. In this case, the sensitivity is 1.C = 24e:', the direction is 11.4 and the direction is 6, Gui°).

第12 図KT、 Letl、h−g、明!’: u″
> 、’i’tl 、?z ’PI幅4842i、 2
: 1で、同様に第4図シ)マの構造に′準1゛イ、が
、よセ、)載体的しjQ、ざ〆)にも5− )(7j 
!!eaイノ1例が小され(いと;)、、被測−j−8
対象部材1111:、、、i、51四2 l:9I P
、イに″□小J゛す1′でいる1つに′、SS・11錆
ツJのli[、、、棒(−′、シ1...−:) )、
1l141 :30 mmφ、長さ、’:l”r 00
1Dn+”1”F 3;る。i’l Ir(−、1!l
J <る4jうj、□′、も2°れr゛は切欠きjlが
備ンぐ、らtl 1:’ Vl’、iいイ)1、歪み機
構20中、計みセ:J1゛設は部(i旨1;)ない1.
印み増幅部分22仝・(8(・、・′)両端″L2 J
、持[0,、かパ)被測%]暑寸象部材10シ゛堅固に
′固不゛づるための固rj部本・l” 2 ’i + 
:ン・′1は、この実施例σ°山呂1、イーの一°)が
第12図(dに示されるよ)ノ1(構造に加工、”Cね
罫いる3、すなわち、主j、−、る形状部分、!l l
、下・乃環状!Nt’ 、B’ l:;1外径50H+
mφ、内径:’I O,(’、) 5 mll1φ、帽
(軸)」回J・=さ)15mmの5S41鋼にJ、り作
C″)才1z゛いシ゛)が、軸1ノア向一端面し“は、
1.の環状珀:状(ハ中心かt・′ll′什22mmの
同心円状(:::’)−点に:相当゛シる部分−′二、
Eri #’12、 ’A ++on、深さ8■の′i
盲孔7が」ンド#q 7+によ−)cつ穿たれ、この1
5孔2′)内(、、X:、は、S CM 421釦製で
aツクウェル硬さCスケール4(]し゛調’Il’f、
 L、た直径3rQ[11,、長ざ20+nmのピノ2
8がブし・ス装置により圧入さねでいる。
Figure 12 KT, Letl, h-g, Akira! ': u''
>,'i'tl,? z 'PI width 4842i, 2
: In the same way, in the structure of Figure 4, the structure of ``quasi 1'', but, yose,) is also 5-) (7j
! ! ea ino 1 example is small (ito;),, measured -j-8
Target member 1111:,,,i,5142 l:9I P
, ``□ Small J゛su 1' in one'', SS 11 rust J's li [,,, bar (-', si 1...-:) ),
1l141: 30 mmφ, length, ':l”r 00
1Dn+"1"F3;i'l Ir(-, 1!l
J <ru 4j uj, □', also 2°re r゛ is provided with a notch jl, et l 1:'Vl', ii a) 1, inside the distortion mechanism 20, measuring section: J1゛The setting is part (iji 1;) no 1.
Mark amplification part 22 仝・(8(・,・′)Both ends″L2 J
, holding [0,, kappa) measured %] heat dimensional member 10.
:N'1 is that this embodiment σ° Yamaro 1, E 1°) is processed into structure No. 1 (as shown in FIG. ,-, shape part, !l l
, bottom/no ring shape! Nt', B'l:;1 outer diameter 50H+
mφ, inner diameter: 'I O, (',) 5 ml1φ, cap (shaft)'' times J・=sa) J, made on 15 mm 5S41 steel One end facing “is”
1. Annular ring: shape (concentric circle of 22 mm from center t・'ll'(:::') - part corresponding to the point -'2,
Eri #'12, 'A++on,'i of depth 8■
Blind holes 7 are drilled by #q 7+, and this one
5 holes 2') inside (,,
L, diameter 3rQ [11,, length 20+nm pinot 2
8 is press-fitted by a bushing device.

また、一対の環状固着部材24 、24の中、どちらか
一つたG)には、この環状形状の中心点λ 上記の盲孔
27を結ぶ半径方向の直線シ二1a交′づる’t’ (
’l’=力向の直線に対し、第12図dの力に良く示さ
ハ旨゛、いるように、やや横力向にずれながら94行に
゛伸びる線に沿って、環状固着部材24の肉厚を葺、通
ずるM 5P−0,Isの通しタップ孔29も穿たねで
いる。ゴに、他方の環状固着部側24には、このような
タップ孔29は特に必要ない5、 一力、これら一対の固着部材24 、24間に渡iV 
t”+る架橋部分ないし歪み増幅部分22ど、そ゛の[
にイ・」される歪みヤ・ンサSは、第12図すに丞され
るような端面形状を持っている。ごれは次のようにて作
られたものである。
In addition, one of the pair of annular fixing members 24 and 24 (G) is attached to the center point λ of this annular shape.
With respect to the straight line in the direction of 'l' = force, the annular fixing member 24 is moved along a line extending in line 94 with a slight deviation in the direction of the lateral force, as clearly shown in the force in Figure 12d. The thickness is covered, and a through tap hole 29 of M5P-0, Is is also drilled. However, such a tap hole 29 is not particularly necessary on the other annular fixing part side 24.
t''+ cross-linked portion or strain amplification portion 22, etc.
The strained fiber sensor S to be inserted has an end face shape as shown in FIG. 12. The gore was made as follows.

1径50)φの5US304スランレス鋼製の丸棒の表
面に、既に述べた爆発法により、厚さ3511Wr(I
T) FeyaB+5Sj9ア−1:ルファス薄膜Sを
接合形成l2.にもの令厚さ10+n口]の円盤状に切
111:’ Iy、プさl:)に円中心を通る切断線で
・そJ″L−P J“1扇型j、、−六智分(てから、
ユンドミルによって第12図1〕に示ざ」・lるJ、つ
な端面を有ろる形状の架橋部材:! 2 il:加工l
、・た。ごの部側の」−面側表面か計みセンサ設置部位
2:3どなるが、ξ′の作成例【゛は、その土じ46に
j′1−ルソアス」、゛みセ・・す素子Sが取(t I
、)られたものとな−)でいる。
The surface of a 5US304 slanless steel round bar with a diameter of 50) was heated to a thickness of 3511Wr (I
T) FeyaB+5Sj9A-1: Bonding formation of Rufus thin film S l2. Cut it into a disk shape with a thickness of 10 + n mouth] with a cutting line passing through the center of the circle. (After that,
As shown in Fig. 12 by Jundmill, bridge members of various shapes with connected end faces:! 2il: Processing
,·Ta. Measurement sensor installation part 2:3 on the ``-side surface'' of the side part, but an example of creating ξ' S takes (t I
, ) is what was given -).

この端面図L”示1′すれているようv′、架橋部活2
2は1.周方向に離間し、ぞ: t’t Phか軸ノ)
向(J9味力向) lS:貫通する 対の透孔部分31
.:11を(、l” L、、−Cいるが、z:、 J”
T、には、先V説明し・た固着部材24 、24に各〜
木づ、)備えらね、ているビン28 、28がI’1人
さ、l−1る。実際のこの透孔部分31 、31の内径
は、上記のようt’ z”ごて用いく゛いるビン径に合
t、3mmと1・た。
This end view L'' shows 1' as if it is rubbing v', crosslinking part active 2
2 is 1. Spaced apart in the circumferential direction: t't Ph or axis)
Direction (J9 force direction) lS: Pair of through-hole portions 31
.. :11 (, l" L,, -C, z:, J"
T, the fixing members 24 and 24, which were explained in V above, are each attached to
28, 28 is I'1 person, l-1 person. The actual inner diameter of the through-hole portions 31, 31 was set to 3 mm, which corresponds to the diameter of the bottle used for the trowel, as described above.

組立はまず、 一対の環状固着部材24 、24の中、
タップ孔29を持t、・ない方の環状の同名部材24を
被測定対象部材10とI・での丸棒10にfの一端側が
ら押L・込む。このどき、押し込み方向先力に同番jで
ビン28が伸びる向きとし、この押し込みを続けていっ
て、当該丸棒の一端と、押し込んだ環状固着部材24に
あってビンの形成されていない方の端面との距離が12
911I1mになった所で押し込みを止め、その位置で
、当該ビン28の形成されていない端面と被測定対象部
材10の外周面との間に隅肉溶接を施し、両者を堅固に
結合する。
For assembly, first, inside the pair of annular fixing members 24, 24,
The annular member 24 with the same name, which has a tap hole 29, is pushed into the member to be measured 10 and the round bar 10 at I, from one end of f. At this time, the direction in which the bottle 28 extends with the same number j as the leading force in the pushing direction is continued, and the end of the round bar and the pushed-in annular fixing member 24, where the bottle is not formed, are aligned. The distance from the end face of is 12
The pushing is stopped at a point of 911I1m, and at that position, fillet welding is performed between the unformed end surface of the bottle 28 and the outer peripheral surface of the member to be measured 10 to firmly connect the two.

なお、第13図も、後述するように、歪みセンサSの向
きないし姿勢に改変的な特徴があるだけで、他の構造部
分はここで説明している’$12図示の各部品を用いて
いるため、第12図示装置の組立構造の参考にすること
ができる。
In addition, as will be described later, FIG. 13 also has a feature that changes the orientation or posture of the strain sensor S, and the other structural parts are explained here by using the parts shown in the figure. Therefore, it can be used as a reference for the assembly structure of the device shown in the twelfth figure.

上記のようにして固定した環状固着部材24のビン28
に対し、一対の透孔31 、31の中の一方が嵌合する
ように、第12図すに示されている架橋部材22を嵌め
付け、その表面のアモルファス歪みセンサ素子Sが環状
固着部材24の外周面とほぼ面一となるようにする。
Bin 28 of the annular fixing member 24 fixed as described above
The bridging member 22 shown in FIG. 12 is fitted so that one of the pair of through holes 31 and 31 is fitted, and the amorphous strain sensor element S on the surface of the bridging member 22 is fitted into the annular fixing member 24. so that it is almost flush with the outer peripheral surface of.

このようにしてから、もう一つの環状固着部材24を被
測定対象部材である丸棒10に他端から通し、そのビン
28が架橋部材22のもう一方の軸方向透孔31中に嵌
まるようにしながらこのビン側の端面が極力、架橋部材
22の端面に近付くように位置決める。上記の寸法関係
においては、実際上、それぞれの固着部材24に設けら
れているビン28の軸方向先端が相手方の固着部材の臨
向端面に衝突する位置として簡単に位置決め可能である
After doing this, the other annular fixing member 24 is passed through the round bar 10 which is the member to be measured from the other end, so that the bottle 28 is fitted into the other axial hole 31 of the bridging member 22. While doing so, the bottle side end face is positioned as close to the end face of the bridging member 22 as possible. In the above-mentioned dimensional relationship, it is actually possible to easily position the axial tips of the pins 28 provided on each fixing member 24 at a position where they collide with the facing end surface of the opposing fixing member.

このようにして、後から嵌めた環状固着部材24には、
先に述べたように、第12図すのタップ孔29が形成さ
れているので、これにはほぼ組立て完了状態を示す第1
2図aに模式的に示されているように、適合する径で長
さ15a+m、頭なしではあるがドライバ溝付きのボル
ト30を捩じ込む。
In this way, the annular fixing member 24 fitted later has
As mentioned earlier, since the tap hole 29 shown in FIG.
As schematically shown in Figure 2a, screw in a bolt 30 of suitable diameter and length 15a+m, headless but with a driver groove.

すると、このボルト30の先端は、この所定位置におけ
る固着部材24 、24と架橋部材22の組み付は状態
で当該ボルト先端の下に位置するように形成されている
被測定対象部材10の切欠き11(第12図e、f)に
当接する。
Then, the tip of this bolt 30 is inserted into the notch of the member to be measured 10, which is formed so as to be located under the tip of the bolt when the fixing members 24, 24 and the bridging member 22 are assembled at this predetermined position. 11 (Fig. 12 e, f).

そこで、このボルト30の捩じ込み量を調整すると、締
め付ける程、このボルト30を有している固着部材24
と被測定対象部材10、ひいては被測定対象部材10に
すでに堅固に固着されている他方の固着部材24との間
に相対的に逆方向の回転変位が生じ、架橋部材22ひい
てはアモルファス歪みセンサ素子Sに予め適当な引っ張
り応力を印加することができる。
Therefore, by adjusting the screwing amount of this bolt 30, the more the bolt 30 is screwed in, the more the fixing member 2
A relatively opposite rotational displacement occurs between the member to be measured 10 and the other fixed member 24 that is already firmly fixed to the member to be measured 10, and the bridging member 22 and the amorphous strain sensor element S An appropriate tensile stress can be applied in advance.

これは、第13図示のような測定系において、被測定対
象部材10にトルクを負荷し、対応する歪み量を測定す
るに際し、最低な応答を示す状態を探すためであり、し
たがって、このように、ボルト30の捩じ込み調整でア
モルファス歪みセンサ素子Sに予め与え得る引っ張り応
力は、バイアス応力と言っても良い。
This is to search for the state that shows the lowest response when applying torque to the member to be measured 10 and measuring the corresponding strain amount in the measurement system as shown in Figure 13. The tensile stress that can be applied in advance to the amorphous strain sensor element S by adjusting the screwing of the bolt 30 may be referred to as bias stress.

すでに述べた通り、第12図aの装置構造は第13図に
も示されているが、ただし、この第13図示実施例では
、はとんど第12図各図に示した部品構成を採用しては
いるものの、アモルファス歪みセンサSの取付は姿勢に
特徴があり、被測定対象部材lOの軸方向に対し、その
長手方向線が45°の角度を置くように設定されている
。このようにした場合、負荷トルクに対する感度は、適
当なる増幅率を有する増幅器ないし検出回路33を介し
た後ではあるが、第14図に示されるように特に高い値
が得られ、かつ直線性も極めて良好であった。また、第
13図中には、アモルファス歪みセンサ素子Sへの供給
磁束を発生する直流電源32も模式的に示しである。
As already mentioned, the device structure shown in FIG. 12a is also shown in FIG. 13, however, in the embodiment shown in FIG. However, the mounting of the amorphous strain sensor S is characterized by its posture, and is set so that its longitudinal direction line makes an angle of 45° with respect to the axial direction of the member to be measured IO. In this case, although the sensitivity to the load torque is passed through the amplifier or detection circuit 33 having an appropriate amplification factor, a particularly high value can be obtained as shown in FIG. 14, and linearity can also be achieved. It was extremely good. Further, in FIG. 13, a DC power supply 32 that generates magnetic flux to be supplied to the amorphous strain sensor element S is also schematically shown.

[効  果] 本発明によると、被測定対象部材に応力が負荷されたと
きの当該被測定対象部材の機械的な歪みを磁気信号また
は電気信号に変換して測定するに際し、当該被測定対象
部材の生ずる歪み量ないし歪み率に対し、1より大きな
増幅率でも、1より小さな増幅率でも、所望に応じた増
幅率で歪みを増幅でき、かつ、この歪みの増幅された部
分の歪みを歪みセンサで測定することかできる。
[Effect] According to the present invention, when measuring the mechanical strain of the member to be measured when stress is applied to the member to be measured by converting it into a magnetic signal or an electric signal, The distortion can be amplified by a desired amplification factor, whether it is an amplification factor greater than 1 or less than 1, with respect to the amount of distortion or distortion rate that occurs, and the distortion of the amplified portion of this distortion can be detected by the strain sensor. It can be measured by

したがって、相対的に微小な歪みまたは微小な歪み変化
を測定するためにS/N比の向上が望まれる場合には、
歪み増幅率を1よりも大きく取ることで歪み信号成分の
みを増強することができ、この目的を満たすことができ
る。
Therefore, when it is desired to improve the S/N ratio in order to measure relatively minute distortions or minute changes in strain,
By setting the distortion amplification factor to be larger than 1, only the distortion signal component can be enhanced, and this purpose can be achieved.

−あ、歪みまたは歪み変化が大き過ぎ、従来は歪みセン
サの適用範囲を越えていたような場合にも、上記の増幅
率を1よりも小さな値に−選ぶことにより、そのように
従来は測定不能1・あった大きな変位領域の歪みまたは
歪み変化をも既存の歪みセンサで捕えることができる。
-Ah, even if the distortion or strain change is so large that it would have exceeded the applicable range of conventional strain sensors, by choosing the above amplification factor to a value smaller than 1, it is possible to Distortion or strain change in a large displacement area can be detected by existing strain sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による歪み測定装置の基本的な実施例の
概略構成図。 第2図は本発明の他の実施例の概略構成図。 第3図は本発明の歪み測定装置を構築するに際し、負荷
応力がトルクである場合の当該負荷トルクと捩じれの発
生に関する説明図。 y84図は本発明に従い1列型の歪み増幅機構を有する
測定装置として構成された第一の実施例の概略構成図。 第5図は第4図示構造に即して構成された本発明実施例
装置の概略的な斜視図。 第6図は第4,5図示実施例装置をトルク負狗に対して
用いる場合の説明図。 第7図は負荷応力がトルクである場合に従来構造と本発
明に従った実施例構造と虹!−!ける相違を説明する説
明図。 第8図は本発明の他の実施例の概略構成図。 第9図は本発明のざらに他の実施例の概略構成図。 第10図は第1図示実施例構造に即し7て作成した本発
明歪み測定装置による圧縮応力及び引)張り応力負荷時
の実験結果と従来構造のそれとの対比を示す特性図。 ′s11図は第1図示実施例構造に即し2千作成した本
発明歪み測定装置によるトルク負荷時の実験結果と従来
構造のそれとの対比を示す特性図。 第12図は本発明実施例装置を実際に作成した一例にお
ける全体構成及び各部品の構造を示す概略構成図。 第13図は第12図示の装置構成に準じて作成し、歪み
センサの取付は位置ないし取付番フ姿勢を改変した実施
例の概略構成図1 第14図は第1図示実施により得たトルク負荷時の測定
出力特性図。 である。 図中、10は被測定対象部材、11は切欠き、20は歪
み増幅機構、21は棒状部材、22は歪みの増幅される
歪み増幅部分ないし架橋部分、23は歪みセンサ設置部
位、24は被測定対象部材への固着部材、25は腕部分
、26は対向部分、27は盲孔、28はビン、29はタ
ップ孔、30はボルト、31は架橋部材に設けられた透
孔、0は圧縮応力または引っ張り応力、Tはトルクない
し捩じり応力、ては剪断応力、ψは捩じれ角、δは変位
、Sは歪みセンサ、である。 第5図 ツム 第6図 ↑ σ応〃 第2図 第7図(a) 第7図(b) 第8し 一1戸)I 第11図 G 、;!。 (N−m ) 第12図(a) 第12図(b) アモルhス歪も>+)衆羊 第14図 須荷ト)レフ(N・m)
FIG. 1 is a schematic configuration diagram of a basic embodiment of a strain measuring device according to the present invention. FIG. 2 is a schematic configuration diagram of another embodiment of the present invention. FIG. 3 is an explanatory diagram regarding the load torque and the occurrence of torsion when the load stress is torque when constructing the strain measuring device of the present invention. Figure y84 is a schematic configuration diagram of a first embodiment configured as a measuring device having a single-row strain amplification mechanism according to the present invention. FIG. 5 is a schematic perspective view of an apparatus according to an embodiment of the present invention constructed in accordance with the structure shown in FIG. FIG. 6 is an explanatory diagram when the apparatus of the fourth and fifth illustrated embodiments is used for a torque dog. Figure 7 shows a conventional structure, an embodiment structure according to the present invention, and a rainbow when the applied stress is torque! -! FIG. FIG. 8 is a schematic diagram of another embodiment of the present invention. FIG. 9 is a schematic diagram of another embodiment of the present invention. FIG. 10 is a characteristic diagram showing a comparison between the experimental results when compressive stress and tensile stress are applied using the strain measuring device of the present invention, which was prepared based on the structure of the first embodiment shown in FIG. 7, and that of the conventional structure. Fig. 's11 is a characteristic diagram showing a comparison between the experimental results under torque load using the strain measuring device of the present invention, which was prepared in accordance with the structure of the first embodiment shown in the first figure, and that of the conventional structure. FIG. 12 is a schematic configuration diagram showing the overall configuration and the structure of each component in an example of an actually produced device according to the present invention. Figure 13 is a schematic configuration diagram of an embodiment created according to the device configuration shown in Figure 12, and the mounting position or mounting position of the strain sensor is changed. Figure 14 is the torque load obtained by the implementation shown in Figure 1. Measured output characteristic diagram at time. It is. In the figure, 10 is a member to be measured, 11 is a notch, 20 is a strain amplification mechanism, 21 is a rod-shaped member, 22 is a strain amplification part or a bridge part where strain is amplified, 23 is a strain sensor installation site, and 24 is a target object. Fixing member to the member to be measured, 25 is the arm part, 26 is the opposing part, 27 is the blind hole, 28 is the bottle, 29 is the tapped hole, 30 is the bolt, 31 is the through hole provided in the bridging member, 0 is compression stress or tensile stress, T is torque or torsional stress, or shear stress, ψ is torsion angle, δ is displacement, and S is strain sensor. Figure 5 Zum Figure 6 ↑ σ Response〃 Figure 2 Figure 7 (a) Figure 7 (b) Figure 8 and 11) I Figure 11 G ,;! . (N-m) Fig. 12 (a) Fig. 12 (b) Amorphous strain also >+) Common sheep Fig. 14 Sugato) Ref (N m)

Claims (6)

【特許請求の範囲】[Claims] (1)負荷された応力に応じて機械的に歪む被測定対象
部材の該歪みを測定する装置であって;該被測定対象部
材に機械的に結合し、該被測定対象部材に上記応力が負
荷された時、該被測定対象部材が歪む程度に対し、1よ
りも大きな歪み増幅率で大きく歪むか、または1よりも
小さな歪み増幅率で小さく歪む歪み増幅部分を持つ機械
的な歪み増幅機構と;該歪み増幅部分の機械的歪みを磁
気信号または電気信号に変換する歪みセンサと; を有して成る歪み測定装置。
(1) A device that measures the strain of a member to be measured that is mechanically distorted in response to applied stress; the device is mechanically coupled to the member to be measured, and the stress is applied to the member to be measured. A mechanical strain amplification mechanism having a strain amplification part that distorts greatly with a strain amplification factor larger than 1 or distorts small with a strain amplification factor smaller than 1 when a load is applied, relative to the degree to which the member to be measured is distorted. A strain measurement device comprising; and a strain sensor that converts mechanical strain of the strain amplification portion into a magnetic signal or an electrical signal.
(2)上記歪み増幅部分は、上記被測定対象部材に負荷
される上記応力の伝達経路中に直列に位置し、該被測定
対象部材に負荷される該応力の全てを受けること; を特徴とする請求項1に記載の装置。
(2) The strain amplification portion is located in series in the transmission path of the stress applied to the member to be measured, and receives all of the stress applied to the member to be measured; 2. The device according to claim 1.
(3)上記歪み増幅部分は、上記被測定対象部材に負荷
される応力が該被測定対象部材を通る主たる応力伝達経
路に対し、並列な関係にある別途な応力伝達経路中に位
置し、該被測定対象部材に負荷される該応力の一部を受
けること; を特徴とする請求項1に記載の装置。
(3) The strain amplification portion is located in a separate stress transmission path that is parallel to the main stress transmission path through which the stress applied to the member to be measured passes through the member to be measured; The apparatus according to claim 1, wherein the apparatus receives a part of the stress applied to the member to be measured.
(4)上記歪み増幅機構は、上記被測定対象部材に負荷
された圧縮応力または引っ張り応力を上記歪み増幅部分
に対する剪断応力に変換するか、またはその逆に該被測
定対象部材に負荷された剪断応力を該歪み増幅部分に対
する圧縮応力または引つ張り応力に変換する応力変換機
構を有すること; を特徴とする請求項1、2、または3に記載の装置。
(4) The strain amplification mechanism converts compressive stress or tensile stress applied to the member to be measured into shear stress to the strain amplification portion, or conversely converts the shear stress applied to the member to be measured. The apparatus according to claim 1, 2, or 3, further comprising a stress conversion mechanism that converts stress into compressive stress or tensile stress on the strain amplification portion.
(5)上記歪み増幅機構は、上記被測定対象部材に負荷
された圧縮応力を上記歪み増幅部分に対する引っ張り応
力に変換するか、またはその逆に該被測定対象部材に負
荷された引っ張り応力を該歪み増幅部分に対する圧縮応
力に変換する応力変換機構を有すること; を特徴とする請求項1、2、または3に記載の装置。
(5) The strain amplification mechanism converts compressive stress applied to the member to be measured into tensile stress to the strain amplification portion, or vice versa, converts the tensile stress applied to the member to be measured into tensile stress. The apparatus according to claim 1, 2, or 3, further comprising a stress conversion mechanism that converts stress into compressive stress for the strain amplification portion.
(6)上記歪み増幅機構は、上記被測定対象部材に負荷
された捩じり応力を上記歪み増幅部分に対する圧縮応力
または引っ張り応力あるいは剪断応力に変換するか、ま
たは、該被測定対象部材に負荷された圧縮応力または引
っ張り応力あるいは剪断応力を該歪み増幅部分に対する
捩じり応力に変換する応力変換機構を有すること;を特
徴とする請求項1、2、または3に記載の装置。
(6) The strain amplification mechanism converts the torsional stress applied to the member to be measured into compressive stress, tensile stress, or shear stress to the strain amplification portion, or loads the member to be measured. 4. The apparatus according to claim 1, further comprising a stress converting mechanism that converts the applied compressive stress, tensile stress, or shear stress into torsional stress on the strain amplification portion.
JP11050590A 1990-04-27 1990-04-27 Device for measuring strain Pending JPH049631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050590A JPH049631A (en) 1990-04-27 1990-04-27 Device for measuring strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050590A JPH049631A (en) 1990-04-27 1990-04-27 Device for measuring strain

Publications (1)

Publication Number Publication Date
JPH049631A true JPH049631A (en) 1992-01-14

Family

ID=14537475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050590A Pending JPH049631A (en) 1990-04-27 1990-04-27 Device for measuring strain

Country Status (1)

Country Link
JP (1) JPH049631A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020368A (en) * 2002-06-17 2004-01-22 Japan Science & Technology Corp High sensitivity torque sensor adjusting method applicable to robot knuckle or the like
JP2005539230A (en) * 2002-09-18 2005-12-22 トランセンス テクノロジーズ ピーエルシー Measurement of torsional strain using a simple-to-use clip device (SAW)
JP2007032299A (en) * 2005-07-22 2007-02-08 Mitsubishi Electric Corp Accelerator operation device, electronic control throttle device using accelerator operation device and method for controlling throttle valve opening of electronic control throttle device
JP2008241614A (en) * 2007-03-28 2008-10-09 Nissan Motor Co Ltd Magnetostrictive stress sensor and its manufacturing method
JP2008256431A (en) * 2007-04-03 2008-10-23 Kayaba Ind Co Ltd Torque sensor
JP2012230099A (en) * 2011-04-12 2012-11-22 Mitsubishi Electric Corp Strain sensor, measuring apparatus, and method for measuring strain
US9329093B2 (en) 2011-08-10 2016-05-03 Isis Innovation Limited Determining torque in a shaft
JP2019035636A (en) * 2017-08-14 2019-03-07 アズビル株式会社 Torque detector and manufacturing method thereof
CN110077574A (en) * 2018-01-26 2019-08-02 波音公司 Dynamic balance sensor and method for it
JP2020016598A (en) * 2018-07-27 2020-01-30 株式会社小野測器 Torque detector and motor evaluation system
WO2020122912A1 (en) * 2018-12-13 2020-06-18 Halliburton Energy Services, Inc. Strain magnification

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020368A (en) * 2002-06-17 2004-01-22 Japan Science & Technology Corp High sensitivity torque sensor adjusting method applicable to robot knuckle or the like
JP2005539230A (en) * 2002-09-18 2005-12-22 トランセンス テクノロジーズ ピーエルシー Measurement of torsional strain using a simple-to-use clip device (SAW)
JP2007032299A (en) * 2005-07-22 2007-02-08 Mitsubishi Electric Corp Accelerator operation device, electronic control throttle device using accelerator operation device and method for controlling throttle valve opening of electronic control throttle device
JP2008241614A (en) * 2007-03-28 2008-10-09 Nissan Motor Co Ltd Magnetostrictive stress sensor and its manufacturing method
JP2008256431A (en) * 2007-04-03 2008-10-23 Kayaba Ind Co Ltd Torque sensor
JP2012230099A (en) * 2011-04-12 2012-11-22 Mitsubishi Electric Corp Strain sensor, measuring apparatus, and method for measuring strain
US9329093B2 (en) 2011-08-10 2016-05-03 Isis Innovation Limited Determining torque in a shaft
JP2019035636A (en) * 2017-08-14 2019-03-07 アズビル株式会社 Torque detector and manufacturing method thereof
CN110077574A (en) * 2018-01-26 2019-08-02 波音公司 Dynamic balance sensor and method for it
JP2019164120A (en) * 2018-01-26 2019-09-26 ザ・ボーイング・カンパニーThe Boeing Company Force balance sensor and method therefor
JP2020016598A (en) * 2018-07-27 2020-01-30 株式会社小野測器 Torque detector and motor evaluation system
WO2020122912A1 (en) * 2018-12-13 2020-06-18 Halliburton Energy Services, Inc. Strain magnification
US11761749B2 (en) 2018-12-13 2023-09-19 Halliburton Energy Services, Inc. Strain magnification

Similar Documents

Publication Publication Date Title
JPH049631A (en) Device for measuring strain
US4178799A (en) Force and bending moment sensing arrangement and structure
DE59914797D1 (en) Measuring device for determining the total tightening torque, the Kopfreibungsmoments and the biasing force of a tightened screw
JPH11512056A (en) Steering valve
US5509316A (en) System for measuring the torque applied to a threaded connection between sections of oilfield pipe
US4203318A (en) Strain gage load cell
JP2018516372A (en) Component transducer and multi-component transducer using the component transducer and use of the multi-component transducer
CN104245247A (en) Flexure elements for series elastic actuators and related methods
CN100347531C (en) Measuring torsional distortion using easily applied clamping apparatus (surface acoustic wave)
KR20100020799A (en) Strain bolt
US6931940B2 (en) Magnetostrictive strain sensor with hall effect
DE10245768A1 (en) Force transducers for measuring axial forces
US7698963B2 (en) Force-sensing device
DE10131688A1 (en) Temperature-compensated pressure sensor includes membrane, compensator and flexural element with selected mechanical- and thermal properties
JPS63238440A (en) Converter for bending moment and torsional moment
US20150297366A1 (en) Detection device of load and moment, and artificial limb including the detection device
Geonea et al. Design, manufacture and testing of a S type force transducer
JP5699338B2 (en) Torque wrench with &#34;dead band&#34; exclusion and improved torque monitoring system
JPS5862531A (en) Measuring apparatus
DE10029742C2 (en) Device for measuring force by detecting slight changes in length
JP4464005B2 (en) High rigidity load transducer
Huang et al. Shear measurement using strain gages under large deformation and rotation
Permana Design and Development of Impact Load Sensor for Dynamic Testing Purposes
JPH0623952Y2 (en) Control cable with sensor
JP2023035338A (en) torque sensor