JPH0496211A - Manufacture of metallized film capacitor - Google Patents

Manufacture of metallized film capacitor

Info

Publication number
JPH0496211A
JPH0496211A JP2207439A JP20743990A JPH0496211A JP H0496211 A JPH0496211 A JP H0496211A JP 2207439 A JP2207439 A JP 2207439A JP 20743990 A JP20743990 A JP 20743990A JP H0496211 A JPH0496211 A JP H0496211A
Authority
JP
Japan
Prior art keywords
capacitor
electrode
solder
mounting
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207439A
Other languages
Japanese (ja)
Inventor
Junichiro Hiratsuka
純一郎 平塚
Yoshihiro Sakata
坂田 芳弘
Nobuyuki Kume
久米 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2207439A priority Critical patent/JPH0496211A/en
Publication of JPH0496211A publication Critical patent/JPH0496211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve electrical and mechanical reliability of external electrodes and lands by polishing the surface of leadout electrodes formed by metalicon at both end surfaces of capacitor element and then forming an external electrode by immersing the capacitor into melted solder bath after coating of the flux. CONSTITUTION:A leadout electrode 2 formed by metalicon at both ends of a capacitor element l is polished as the mirror surface. Next, it is coated with a water-soluble flux. After five seconds from the coating, the composition of solder of solder bath is tin : lead = 6 : 4, and capacitor is immersed for two seconds under the liquid temperature of 200 deg.C and thereafter it is taken out. Thereby, the air part is not provided at the surface of external electrode 11 and therefore the interior is not oxidized continuously. A capacitor forming external electrodes 11 is immsered into hydrocarbon halogenide such as 1-1-1 trichloroethane and fourine group solvent and is cleaned in the ultrasonic cleaner to remove water-soluble flux so that adverse effect on the other electronic parts can be prevented on the substrate after the mounting.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器などに使用される金属化フィルムコ
ンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing metallized film capacitors used in electronic equipment and the like.

従来の技術 近年、電子部品は小型チップ部品にする要望が非常に強
い。それは電子部品の実装方法が基板上に部品を接着剤
またはペースト半田で固定し、半田浴槽内または高温炉
中を通過させることによシミ子部品の外部電極と基板上
に形成された外部電気回路の接紅端子部(以下ランドと
いう)を直接接続するという面実装が主流になりつつあ
るからである。この面実装は電子機器の小型化工程での
合理化などにおおいに寄与している。
BACKGROUND OF THE INVENTION In recent years, there has been a strong demand for electronic components to be made into small chip components. It is a method of mounting electronic components by fixing the components on a board with adhesive or paste solder and passing them through a solder bath or high temperature furnace.The external electrodes of the parts and the external electric circuit formed on the board This is because surface mounting, in which the red bonding terminals (hereinafter referred to as lands) are directly connected, is becoming mainstream. This surface mounting greatly contributes to streamlining the miniaturization process of electronic devices.

金属化フィルムコンデンザのチップ化においては、当初
は高耐熱性を付与するために樹脂モールド外装を行なっ
ていた。
Initially, metallized film capacitors were packaged with a resin mold to provide high heat resistance.

第4図は初期のチップ型の金属化ソイlレムコンデンサ
(以下、単にコンデンサと称する)の外観図である。区
において1はコンデンサ素子、2はメタリコンにより形
成された引出し電極、3は樹脂モールド外装、4は引出
し電極2からランドに接続されるコムリードである。
FIG. 4 is an external view of an early chip-type metalized soil rem capacitor (hereinafter simply referred to as a capacitor). In the figure, 1 is a capacitor element, 2 is an extraction electrode made of metallicon, 3 is a resin molded exterior, and 4 is a comb lead connected from the extraction electrode 2 to a land.

しかしこの場合、コンデンサを小型化するに従い、コン
デンサの外形寸法に対する樹脂モールド外装の割合が犬
きくなり小型化の障害となっていた。
However, in this case, as capacitors are made smaller, the ratio of the resin molded exterior to the external dimensions of the capacitor becomes larger, which becomes an obstacle to miniaturization.

そこで従来から高耐熱性誘電体などの開発により、樹脂
モールド外装を除いたコンデンサの開発がなされている
Therefore, capacitors without resin molded exteriors have been developed by developing highly heat-resistant dielectric materials.

第5図はそのコンデンサの外観図である。図において1
はコンデンサ素子、2はコンデンサ素子1から外部への
引出し電極、5はランドへ直接接続される外部電極であ
シ、電極2と5はともにメタリコンによシ形成される。
FIG. 5 is an external view of the capacitor. In the figure 1
2 is a capacitor element, 2 is a lead-out electrode from the capacitor element 1 to the outside, and 5 is an external electrode directly connected to a land. Both electrodes 2 and 5 are formed of metallcon.

このうち外部電極5は実装時の加熱によりその表面また
は表層部の一部を溶融させることにより、フロー半田付
時の半田浴槽内の半田またはりフロー−半田付時のペー
スト半田と容易に溶融することをねらっている。
Among these, the external electrode 5 is easily melted with the solder in the solder bath during flow soldering or the paste solder during flow soldering by melting the surface or a part of the surface layer by heating during mounting. That's what I'm aiming for.

以下にこの従来のコンデンサのメタリコンによる電極の
形成方法について第6図および第7図を用いて説明する
A method for forming metal electrodes of this conventional capacitor will be described below with reference to FIGS. 6 and 7.

第6図はメタリコンの方法を示している。FIG. 6 shows the Metallicon method.

メタリコンとは二本の金属の線材の先端を接触させ、そ
の線材間に電圧を以加して溶融させ、線材の先端の後方
から圧縮空気を送ることにより溶融金属を球状にしてコ
ンデンサ素子端部に吹きつけて堆積させて金属層を形成
する方法である。この第6図において、6は金属線材で
あシ、7は金属線材6の溶融球である。
Metallicon is a method in which the ends of two metal wires are brought into contact, a voltage is applied between the wires to melt them, and compressed air is sent from behind the ends of the wires to make the molten metal into a spherical shape that forms the end of a capacitor element. In this method, a metal layer is formed by spraying and depositing the metal layer. In FIG. 6, 6 is a metal wire, and 7 is a molten ball of the metal wire 6.

第7図はメタリコン後の電極の断面図である。FIG. 7 is a cross-sectional view of the electrode after metallization.

図において1はコンデンサ素子、2はコンデンサ素子か
ら外部への引出し電極であシ、裸に近い構成のため耐候
性の良い銅−亜鉛合金を用いている。5は外部電極であ
る。8は電極2および5の内部にある空気部であシ、メ
タリコンで溶融粒子を吹き付けた時冷却固化した粒子の
はね返りなどにより多数発生する。なお、外部電極5の
表面は汚れや酸化物除去のため表面研磨を経て実装に供
される。
In the figure, 1 is a capacitor element, and 2 is a lead-out electrode from the capacitor element to the outside.Since the structure is almost bare, a copper-zinc alloy with good weather resistance is used. 5 is an external electrode. Numerals 8 are air portions inside the electrodes 2 and 5, and are generated in large numbers due to the splashing of particles cooled and solidified when molten particles are sprayed with metallicon. Note that the surface of the external electrode 5 is subjected to surface polishing to remove dirt and oxides before being used for mounting.

発明が解決しようとする課題 しかしながらこのような従来の電極形成法によって得ら
れたコンデンサの面実装後の電極近傍の状態には課題が
あった。
Problems to be Solved by the Invention However, there are problems in the state near the electrodes after surface mounting of a capacitor obtained by such a conventional electrode forming method.

それについて第8図を用いて説明する。This will be explained using FIG. 8.

第8図において、1はコンデンサ素子、2は外部への引
出し電極、5は外部電極、8は空気部、9は実装半田部
である。1oはランドであシ、実装半田部9とランド1
oの結合によりコンデンサは外部回路と電気的に結合さ
れる。実装半田部9は外部電極6の表面部の溶融によシ
結合されるが、この際、空気部8は実装半田部9内へ容
易に移動する。この一部が実装半田部9の表面部分に気
泡を発生させることとなる。このようなメタリコンによ
る従来の電極形成法では、面実装における気泡発生部の
面積の合計は実装半田の表面積に対して約30〜4oチ
を占める。
In FIG. 8, 1 is a capacitor element, 2 is an external lead electrode, 5 is an external electrode, 8 is an air space, and 9 is a mounting solder part. 1o is a land, mounting solder part 9 and land 1
The coupling of o electrically couples the capacitor to the external circuit. The mounting solder portion 9 is bonded by melting the surface portion of the external electrode 6, but at this time, the air portion 8 easily moves into the mounting solder portion 9. A portion of this causes bubbles to be generated on the surface portion of the mounting solder portion 9. In such a conventional method of forming electrodes using metallicon, the total area of the bubble generation portion in surface mounting occupies about 30 to 4 square meters with respect to the surface area of the mounting solder.

このため実装半田表面の外観を損ねるとともに、外部の
ランドとの電気的2機械的結合力を低下させる原因とな
る。
This impairs the appearance of the mounting solder surface and causes a decrease in electrical and mechanical bonding force with external lands.

なおこの際、引出し電極2の空気部は銅・亜鉛合金が溶
融しないため、気泡発生には関与しない。
At this time, since the copper-zinc alloy in the air portion of the extraction electrode 2 does not melt, it does not participate in the generation of bubbles.

またメタリコンの際、溶融金属球は容易に酸化されるた
め、堆積した電極は酸化金属粒子の集合体であシ、内部
まで連続して酸化されている。
Furthermore, in the case of metallization, since the molten metal sphere is easily oxidized, the deposited electrode is an aggregate of oxidized metal particles, which are continuously oxidized to the inside.

その結果、実装半田のぬれ性が低下し、実装半田の弾き
ゃ実装半田表面に酸化物が付着するなどの問題があシ、
コンデンサの実装に際し、信頼性および外観上に大きな
問題があった。
As a result, the wettability of the mounting solder decreases, causing problems such as oxides adhering to the mounting solder surface if the mounting solder is repelled.
There were major problems with reliability and appearance when mounting the capacitor.

本発明は上記従来の課題を解決し、コンデンサの小型化
を図シつつ、実装時にコンデンサの外部電極とランドと
の電気的2機械的信頼性の向上したコンデンサの製造方
法の提供を目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a method for manufacturing a capacitor that improves the electrical and mechanical reliability between the external electrode and land of the capacitor during mounting while reducing the size of the capacitor. .

課題を解決するだめの手段 上記の目的を達成するために本発明のコンデンサの製造
方法は、コンデンサ素子の両端面にメタリコンによって
形成された引出し電極の表面を研磨処理し、その研磨さ
れた引出し電極表面に7ラツクスを塗布した後溶融半田
槽に上記引出し電極を浸漬して外部電極を形成すること
を特徴としている。
Means for Solving the Problems In order to achieve the above object, the capacitor manufacturing method of the present invention involves polishing the surfaces of lead electrodes formed of metallicon on both end faces of a capacitor element, and polishing the polished lead electrodes. The method is characterized in that after applying 7 lux to the surface, the above-mentioned lead-out electrode is immersed in a molten solder tank to form an external electrode.

作   用 本発明は上記した構成によシ、ランドと接続する外is
 7’it r%の内部の空気部および酸化部をなくす
ことになる。
Function The present invention has the above-mentioned configuration, and the outside connected to the land is
This results in the elimination of 7'itr% internal air and oxidation.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明のコンデンサの製造工程図である。FIG. 1 is a manufacturing process diagram of a capacitor according to the present invention.

図において、(a)は引比し電極の表面研磨工程であり
、1000番の研磨紙によりコンデンサ素子の両端にメ
タリコンによって形成した引出し電極を鏡面研磨する。
In the figure, (a) is a surface polishing step of the comparison electrode, in which the extraction electrodes formed of metallicon at both ends of the capacitor element are mirror-polished using No. 1000 abrasive paper.

(b)はフラックス塗布工程であシ、研磨処理したコン
デンサ素子の引比し電極に対して、■アサ上化学研究所
製水溶性フラックス(商品名T−1o1WF)を塗布す
る。
(b) is a flux application step, in which ① water-soluble flux manufactured by Asa Kamikagaku Kenkyusho (trade name T-1o1WF) is applied to the comparison electrode of the polished capacitor element.

(C)はフラックス塗布されたコンデンサ素子を半田浴
槽内へ浸漬する工程で、郵)のフラックス塗布5秒後に
行なう。半田浴槽内の半田の組成比は錫:鉛=6=4で
、液温200℃で2秒間浸漬した後引き上げる。
(C) is a step in which the capacitor element coated with flux is immersed in a solder bath, which is carried out 5 seconds after the flux application in (Y). The composition ratio of the solder in the solder bath was tin:lead=6=4, and the solder was immersed for 2 seconds at a liquid temperature of 200° C. and then pulled out.

この工程を経たコンデンサ素子の外部電極はメタリコン
によって形成した引出し電極上に溶融半田が形成された
ものとなる。
After this step, the external electrode of the capacitor element is formed by forming molten solder on the lead electrode made of metallicon.

このため外部電極の表面は内部に空気部がなく、内部が
連続的に酸化される。ことがない。
Therefore, the surface of the external electrode has no air inside, and the inside is continuously oxidized. Never.

外部電極を形成したコンデンサは1−1−1トリクロル
エタンなどのハロゲン化炭化水素やフッ素系溶剤に浸漬
し、超音波洗浄器で洗浄して水溶性フラックスを除去し
実装後に基板上で他の電子部品へ悪影響をおよぼさない
ようにする。
The capacitor with the external electrode formed is immersed in a halogenated hydrocarbon or fluorinated solvent such as 1-1-1 trichloroethane, and cleaned with an ultrasonic cleaner to remove water-soluble flux. Avoid adverse effects on parts.

(a)の表面研磨工程における銅−亜鉛合金からなるメ
タリコンによって形成した引出し電極の鏡面研磨は、(
C)の半田浴槽へのコンデンサの浸漬の際、メタリコン
によって形成した引出し電極上の汚れや油膜を取り除く
とともに、■)の7ラツクス塗布工程でフラックスの広
がりを良くし、メタリコンによって形成した引比し電極
表面の酸化層を除去し、(C)の半田浴槽への浸漬時、
引出し電極上での半田の広がシの向上に寄与する。
In the surface polishing step of (a), mirror polishing of the extraction electrode made of metallicon made of copper-zinc alloy is carried out in (a).
When the capacitor is immersed in the solder bath in step C), dirt and oil film formed on the lead-out electrodes formed by metallicon are removed, and in the step of applying 7 lux in step 2), the spread of the flux is improved to improve the spread of the flux formed by metallikon. After removing the oxide layer on the electrode surface, when immersed in the solder bath (C),
This contributes to improving the spread of solder on the lead electrode.

(C)の工程において半田浴槽中の半田温度は高温程よ
いが、190℃を超えれば特に問題はない。
In the step (C), the higher the solder temperature in the solder bath, the better, but there is no particular problem if it exceeds 190°C.

浸漬時間は1〜2秒以上浸漬した方が外部電極の形成は
安定する。10秒以上の浸漬はコンデンサ素子に悪い影
響を与える。壕だ浸漬に用いる半田の錫−鉛組成は特に
限定しないが、錫組成比の高い方がメタリコンによって
形成した引出し電極への半田の広がりが良い。一方、実
装時の半田は通常錫−鉛の組成比が6=4のものが使用
されており、本実施例のコンデンサにも同じ組成比の半
田を用いるとすぐれた実装ができる。なお、本実施例の
方法により外部電極を形成した後研磨などにより電極の
形状を成型してもよい。
The formation of the external electrode will be more stable if the dipping time is 1 to 2 seconds or more. Immersion for more than 10 seconds has a negative effect on the capacitor element. The tin-lead composition of the solder used for trench dipping is not particularly limited, but the higher the tin composition ratio, the better the solder spreads to the lead electrode formed of metallicon. On the other hand, solder with a tin-lead composition ratio of 6=4 is normally used for mounting, and excellent mounting can be achieved by using solder with the same composition ratio for the capacitor of this embodiment. Note that after forming the external electrodes by the method of this embodiment, the shape of the electrodes may be formed by polishing or the like.

第2図は本実施例によって製造したコンデンサの斜視図
である。図において、1は金属化フィルムコンデンサ素
子、2はメタリコ〆によって形成した銅−亜鉛合金から
なる引出し電極、11は溶融半田に浸漬して形成した外
部電極である。
FIG. 2 is a perspective view of the capacitor manufactured according to this example. In the figure, 1 is a metallized film capacitor element, 2 is an extraction electrode made of a copper-zinc alloy formed by metallizing, and 11 is an external electrode formed by immersing it in molten solder.

第3図は第1図の製造工程前のコンデンサの斜視図であ
る。
FIG. 3 is a perspective view of the capacitor before the manufacturing process shown in FIG. 1.

同図において、1はコンデンサ素子、2はメタリコンに
より形成された引出し電極であり銅−亜鉛合金を使用し
でいる。この場合、銅−亜鉛の組成比は70−30とし
た。
In the figure, 1 is a capacitor element, 2 is an extraction electrode made of metallicon, and a copper-zinc alloy is used. In this case, the copper-zinc composition ratio was 70-30.

表に本実施例によるコンデンサと従来ノコンテンサの実
装試験の結果を示す。実装条件は予熱12o℃1分、7
o−半田付を240℃3秒で行なったときの実装半田表
面の観察の結果で、コンデンサ各々100ケに対して行
なった。気泡発生部がコンデンサの実装面積に占める割
合を0〜6チ、6〜30係および31%以上の3つのラ
ンクに分けて従来の製造方法によるコンデンサ(従来品
)と本発明の製造方法によるコンデンサ(発明品)を比
較した。
The table shows the results of mounting tests on the capacitor according to this embodiment and the conventional capacitor. Mounting conditions are preheating at 12oC for 1 minute, 7
These are the results of observation of the mounting solder surface when o-soldering was performed at 240° C. for 3 seconds, and was performed for 100 capacitors each. The ratio of the bubble generation area to the mounting area of the capacitor is divided into three ranks: 0 to 6 inches, 6 to 30 inches, and 31% or more, and the capacitors manufactured by the conventional manufacturing method (conventional product) and the capacitors manufactured by the manufacturing method of the present invention are divided into three ranks. (invented product).

表 以上の結果から明らかなように発明品では実装における
外観不良が大幅に低減している。
As is clear from the results in the table above, the invented product significantly reduces appearance defects during mounting.

1だ発明品は従来品に比べて実装表面に酸化物が付着す
る外観不良も大幅に低減することを確認した。
It was confirmed that the invented product significantly reduces appearance defects caused by oxides adhering to the mounting surface compared to conventional products.

発明の効果 以上のように本発明による金属化フィルムコンデンサの
製造方法は、引出し電極の表面を研磨処理した後フラッ
クスを塗布し、溶融半田槽に浸漬後引き上げて外部!極
を形成するので、外部電極内部の空気部および酸化部が
なくな)、半田実装時の外部電極とランド間の信頼性の
向上したδ型のチップ型の金属化フィルムコンデンサを
提供できる。
Effects of the Invention As described above, the method for manufacturing a metallized film capacitor according to the present invention involves polishing the surface of the lead electrode, applying flux, dipping it in a molten solder bath, and then pulling it out to the outside! Since the electrode is formed as a pole, there are no air portions or oxidized portions inside the external electrode), and it is possible to provide a δ-type chip-type metallized film capacitor with improved reliability between the external electrode and the land during solder mounting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属フィルムコンデンサの製造方法の
工程図、第2図は同コンデンサの斜視図、第3図は製造
工程前のコンデンサの斜視図、第4図および第5図はそ
れぞれ従来の製造方法によるコンデンサの斜視図、第6
図はメタリコンの説明図、第7図は従来のコンデンサの
電極の断面図、第8図は同コンデンサの実装後の電極近
傍の断面図である。 1・・・・・・金属化フィルムコンデンサ素子、2・・
・・・・引出し電極、11・・・・・・外部電極゛。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 第 図 第 図 ゴ
Fig. 1 is a process diagram of the method for manufacturing a metal film capacitor of the present invention, Fig. 2 is a perspective view of the same capacitor, Fig. 3 is a perspective view of the capacitor before the manufacturing process, and Figs. 4 and 5 are each a conventional method. Perspective view of a capacitor manufactured by the manufacturing method No. 6
The figure is an explanatory diagram of a metallicon, FIG. 7 is a sectional view of an electrode of a conventional capacitor, and FIG. 8 is a sectional view of the vicinity of the electrode of the same capacitor after being mounted. 1...Metalized film capacitor element, 2...
... Extraction electrode, 11 ... External electrode. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (1)

【特許請求の範囲】[Claims]  金属化フィルムコンデンサ素子の両端面にメタリコン
により形成された引出し電極の表面を研磨処理し、その
表面にフラックスを塗布し、その後、溶融半田漕に上記
引出し電極を浸漬して外部電極を形成することを特徴と
する金属化フィルムコンデンサの製造方法。
Polishing the surface of the lead electrode formed of metallicon on both end faces of the metallized film capacitor element, applying flux to the surface, and then immersing the lead electrode in a molten solder bath to form an external electrode. A method for manufacturing a metallized film capacitor characterized by:
JP2207439A 1990-08-03 1990-08-03 Manufacture of metallized film capacitor Pending JPH0496211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207439A JPH0496211A (en) 1990-08-03 1990-08-03 Manufacture of metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207439A JPH0496211A (en) 1990-08-03 1990-08-03 Manufacture of metallized film capacitor

Publications (1)

Publication Number Publication Date
JPH0496211A true JPH0496211A (en) 1992-03-27

Family

ID=16539790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207439A Pending JPH0496211A (en) 1990-08-03 1990-08-03 Manufacture of metallized film capacitor

Country Status (1)

Country Link
JP (1) JPH0496211A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236024B2 (en) * 1984-04-06 1990-08-15 Shaken Kk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236024B2 (en) * 1984-04-06 1990-08-15 Shaken Kk

Similar Documents

Publication Publication Date Title
US3436818A (en) Method of fabricating a bonded joint
US5269453A (en) Low temperature method for forming solder bump interconnections to a plated circuit trace
WO2008076428A1 (en) Chip capacitor embedded pwb
US11284519B2 (en) Electronic board comprising SMDS soldered on buried solder pads
EP0084464A2 (en) Connector for electronic subassemblies
JPH06511353A (en) Solder film reflow method for forming solder bumps on circuit traces
JP3115713B2 (en) Ceramic electronic components
JPH0496211A (en) Manufacture of metallized film capacitor
TWI241704B (en) Surface treatment for oxidation removal in integrated circuit package assemblies
JPH0428110A (en) Conductive paste for forming terminal electrode of stacked capacitor and stacked capacitor
JPS5846161B2 (en) Conductive terminals on heat-resistant insulator substrates
JP3072361B2 (en) Manufacturing method of electronic components for protection of ultra-small thin film circuits
JPH0528752Y2 (en)
JPH06342734A (en) Ceramic electronic component
JP2509409Y2 (en) Chip type electronic component and its mounting board
JP3078781B2 (en) Semiconductor device manufacturing method and semiconductor device
JPS619992A (en) Creamy solder
JPH11103155A (en) Formation of solder bump
JPH07335487A (en) Electronic part and method of manufacturing the same
JP2960504B2 (en) Rotary transformer
JP2712344B2 (en) Manufacturing method of square electronic components
JP2973687B2 (en) Radial lead electronic components
JP2004006904A (en) Electronic component with wire
JPH03136294A (en) Glass wiring board
JPH05160322A (en) Semiconductor device