JPH046839A - Charge transfer element - Google Patents

Charge transfer element

Info

Publication number
JPH046839A
JPH046839A JP2107474A JP10747490A JPH046839A JP H046839 A JPH046839 A JP H046839A JP 2107474 A JP2107474 A JP 2107474A JP 10747490 A JP10747490 A JP 10747490A JP H046839 A JPH046839 A JP H046839A
Authority
JP
Japan
Prior art keywords
charge transfer
charge
gate electrodes
transfer
transfer element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107474A
Other languages
Japanese (ja)
Inventor
Masahiko Denda
伝田 匡彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107474A priority Critical patent/JPH046839A/en
Publication of JPH046839A publication Critical patent/JPH046839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To keep the area of a gate electrode definite, to reduce an effective channel length and to realize a charge transfer element having a high transfer efficiency without reducing a charge handling amount by a method wherein the transfer direction of an electric charge and the extension direction of the gate electrode are not perpendicular to each other or parallel to each other but at a specific angle to each other. CONSTITUTION:At a charge transfer element, a charge transfer region 4 used to transfer an electric charge and a plurality of gate electrodes 1 used to control the transfer operation of the electric charge are provided on a semiconductor substrate. At the charge transfer element, the transfer direction of the electric charge and the extension direction of the gate electrodes are not perpendicular to each other or parallel to each other but at a specific angle to each other. Thereby, the area S of the gate electrodes 1 is S=LXW (where L is the gate length of the gate electrodes and W is the width of the gate electrodes); it is possible to ensure the same area as that of conventional charge transfer elements. On the other hand, the effective gate length in the direction of adjacent gate electrodes becomes short as compared with that of conventional charge transfer elements. Consequently, the distance between adjacent gate electrodes becomes short, a fringe field drift effect becomes large, and the charge transfer element having a high transfer efficiency can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、高転送効率の電荷転送素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charge transfer element with high transfer efficiency.

[従来の技術] 従来この種の電荷転送素子としては、特公昭57282
32号公報に開示された構成及び1983年4月発行の
5PIE (エスピーアイイー) vol、395.5
5頁に開示された構成があった。
[Prior Art] Conventionally, this type of charge transfer device was disclosed in Japanese Patent Publication No. 57282.
The configuration disclosed in Publication No. 32 and 5PIE vol. 395.5 published in April 1983.
There was a configuration disclosed on page 5.

第2図は前述の特公昭57−28232号公報に示され
た電荷転送素子(CCD:チャージカップルドデバイス
)の平面図である。また、第3図は前述の1983年の
5PIE (エスピーアイイー) vol、395に掲
載された蛇行形の電荷転送素子である。第2図において
、(1)は図示しない半導体基板上に形成された複数の
制御・転送電極としてのゲート電極、(2)は前記各ゲ
ート電極(1)と直交して設けられた複数の分離(チャ
ネルストップ)領域である。また、第3図において、(
1)は図示しない半導体基板上に形成された複数の制御
・転送電極としてのゲト電極、(2)は分離領域、(3
)は電荷の転送方向を決定するための浅ポテンシャル領
域である。
FIG. 2 is a plan view of a charge transfer device (CCD: charge coupled device) disclosed in the above-mentioned Japanese Patent Publication No. 57-28232. Further, FIG. 3 shows a meandering charge transfer element published in the aforementioned 1983 5PIE vol. 395. In FIG. 2, (1) is a plurality of gate electrodes as control/transfer electrodes formed on a semiconductor substrate (not shown), and (2) is a plurality of isolation electrodes provided orthogonally to each gate electrode (1). (channel stop) area. Also, in Figure 3, (
1) is a gate electrode as a plurality of control/transfer electrodes formed on a semiconductor substrate (not shown); (2) is a separation region;
) is a shallow potential region for determining the direction of charge transfer.

従来の電荷転送素子は、前述したように構成されており
、以下に、その動作について説明する。
The conventional charge transfer device is configured as described above, and its operation will be explained below.

なお、第4図は第2図の電荷転送素子の各ゲート電極(
1)に印加される電気信号であり、第5図は第2図のA
−A”における断面図、第6図は第4図の各信号のB、
C,D、Hの各タイミングにおける半導体基板のポテン
シャル図である0次に、電荷転送素子の動作を第6図に
よって説明する。
In addition, FIG. 4 shows each gate electrode (
1), and Figure 5 is the electrical signal applied to A in Figure 2.
-A'' cross-sectional view, Figure 6 is B of each signal in Figure 4,
Next, the operation of the charge transfer element will be explained with reference to FIG. 6, which is a zero-order potential diagram of the semiconductor substrate at timings C, D, and H.

第6図において(10)は!荷であり、この電荷(10
)はポテンシャルの低い部分に蓄積される。第6図(B
)で右端に蓄積されている電荷(10)は、印加電圧の
変化によってポテンシャルが変化することから、第6図
(C) 、 (D) 、 (E)に示されるように左方
へ転送される。
In Figure 6, (10) is! This charge (10
) is accumulated in areas with low potential. Figure 6 (B
) is transferred to the left as shown in Figure 6 (C), (D), and (E) because the potential changes with changes in the applied voltage. Ru.

[発明が解決しようとする課題] 従来の電荷転送素子は、以上のように構成されていたた
め、信号電荷はポテンシャルの井戸に蓄積され、ポテン
シャルの井戸の移動によって転送されるが、転送経路中
のトラップなどにより完全に転送されずに残留電荷が発
生する。従って、全電荷に対する転送された電荷の比率
で転送効率を定義するが、この転送効率としては99.
99%以上のものが得られている。
[Problems to be Solved by the Invention] Since the conventional charge transfer device is configured as described above, signal charges are accumulated in the potential well and transferred by movement of the potential well, but the signal charge is Due to traps, etc., residual charges are generated without being completely transferred. Therefore, transfer efficiency is defined as the ratio of transferred charges to total charges, and this transfer efficiency is 99.
More than 99% of the results have been obtained.

この電荷の転送は自己誘導ドリフト、フリンジ電界ドリ
フト、熱拡散などの過程が考えられるが、このうち、フ
リンジ電界ドリフトは、隣り合ったゲート電極が“H”
と“L”の各々の状態の場合に、ケト電極下のポテンシ
ャルが隣のゲート電極の影響を受けて傾く効果によるも
のであり、この傾きが大きいほど電界による信号電荷の
ドリフトが大きくなり、転送効率の改善が行なわれる。
Processes such as self-induced drift, fringe electric field drift, and thermal diffusion can be considered for this charge transfer. Among these, fringe electric field drift occurs when adjacent gate electrodes are at "H" level.
This is due to the effect that the potential under the keto electrode is tilted due to the influence of the adjacent gate electrode in the and "L" states, and the greater the tilt, the greater the drift of the signal charge due to the electric field, and the transfer Efficiency improvements are made.

前述のフリンジ電界は隣接のゲート電極からの距離に依
存しているため、1つの電極の長さ(L)が大きい場合
にはフリンジ電界の効果が弱くなり、転送効率が悪化す
ることになる。
Since the fringe electric field described above depends on the distance from the adjacent gate electrode, if the length (L) of one electrode is large, the effect of the fringe electric field will be weakened and the transfer efficiency will be deteriorated.

一方、電荷転送素子の電荷取扱い可能量は、電荷転送素
子のゲート電極と半導体基板間の容量に依存することか
ら、電荷転送素子のゲート電極の長さ(L)と幅(M)
に依存している。従って、転送効率の面からは長さ(L
)を大きくすることは避けるべきであるから輻(N)を
大きくすることになるが、この幅(−)を大きくするこ
とは別の方面からの制約があるにの電荷転送素子はイン
クラインCCD(IL−CCD)方式を用いた固体撮像
素子として広く使用されており、IL−CCD方式は光
電変換部と電荷転送部を分離したタイプの固体撮像素子
であり、このタイプの素子は、カラー撮像素子として使
用する場合のカラーフィルタの配列の自由度が大きいこ
とや、光電変換部を変更することにより、可視光のみで
なく赤外領域へも対応が可能であることなどの特徴があ
る。また、電子シャッタ機能の付加も容易であることも
大きな特徴である。前述のような理由からlt−CCD
方式は固体撮像素子において広く使用されているが、こ
の方式においては開口率の向上に限界がある。この開口
率とは1画素の面積に対する光電変換領域の面積比で定
義されるが、IL−CCD方式は光電変換部と電荷転送
部が1画素別々に設置されているため、開口率の向上が
制限される。また、電荷転送素子の電荷取扱い可能量を
増加させるために、電荷転送素子幅(H)を大きくする
ことは光電変換部の面積を縮小し、開口率を低下させる
こととなる。
On the other hand, the amount of charge that a charge transfer element can handle depends on the capacitance between the gate electrode of the charge transfer element and the semiconductor substrate, so the length (L) and width (M) of the gate electrode of the charge transfer element
depends on. Therefore, from the perspective of transfer efficiency, the length (L
) should be avoided, which means increasing the radiation (N).However, increasing the width (-) is subject to other constraints.The charge transfer element is an incline CCD. It is widely used as a solid-state image sensor using the (IL-CCD) method, and the IL-CCD method is a type of solid-state image sensor in which the photoelectric conversion section and the charge transfer section are separated. Features include a high degree of freedom in arranging color filters when used as an element, and by changing the photoelectric conversion section, it is possible to handle not only visible light but also in the infrared region. Another major feature is that it is easy to add an electronic shutter function. For the reasons mentioned above, lt-CCD
Although this method is widely used in solid-state imaging devices, there is a limit to the improvement of the aperture ratio in this method. This aperture ratio is defined as the area ratio of the photoelectric conversion region to the area of one pixel, but in the IL-CCD method, the photoelectric conversion section and the charge transfer section are installed separately for each pixel, so the aperture ratio can be improved. limited. Furthermore, increasing the charge transfer element width (H) in order to increase the amount of charge that the charge transfer element can handle reduces the area of the photoelectric conversion section and lowers the aperture ratio.

さらに、開口率と電荷取扱い可能量を一定に保ったまま
転送効率を向上させるには電荷転送素子の幅とゲート電
極面積を一定に保ったまた実効チャネル長を減少させる
ことが必要となる。
Furthermore, in order to improve the transfer efficiency while keeping the aperture ratio and charge handling capacity constant, it is necessary to keep the width and gate electrode area of the charge transfer element constant and to reduce the effective channel length.

この発明は上記のような課題を解決するためになされた
もので、特に、電荷転送素子のゲート電極面積を一定に
保って、実効チャネル長を減少できる電荷転送素子を得
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and in particular, it is an object of the present invention to obtain a charge transfer device that can reduce the effective channel length while keeping the area of the gate electrode of the charge transfer device constant.

[課題を解決するための手段] この発明による電荷転送素子は、半導体基板上に、電荷
を転送するための電荷転送領域と前記電荷の転送を制御
するための複数個のゲート電極とを備えた電荷転送素子
において、前記電荷の転送方向と前記ゲート電極の延伸
方向が、垂直或いは平行以外の特定の角度を有している
構成である。
[Means for Solving the Problems] A charge transfer device according to the present invention includes, on a semiconductor substrate, a charge transfer region for transferring charges and a plurality of gate electrodes for controlling the transfer of charges. In the charge transfer element, the charge transfer direction and the extending direction of the gate electrode have a specific angle other than perpendicular or parallel to each other.

[作 用] この発明による電荷転送素子においては、複数個のゲー
ト電極と電荷転送方向とのなす角度を45度とした場合
、ゲートtiの面積Sは、5=LXW(但し、しはゲー
ト長、Wはゲート幅)となり、従来の電荷転送素子と同
一の面積を確保することができる。
[Function] In the charge transfer device according to the present invention, when the angle between the plurality of gate electrodes and the charge transfer direction is 45 degrees, the area S of the gate ti is 5=LXW (however, the gate length , W is the gate width), and the same area as a conventional charge transfer element can be secured.

また、フリンジ電界ドリフト効果の発生要因となる隣接
のゲート電極方向の実効的なゲート長Laし は、La−一でr となり、従来の電荷転送素子と比べ
ると、   の長さとなる。
Further, the effective gate length La in the direction of adjacent gate electrodes, which causes the fringe field drift effect, is La-1 = r, and compared to the conventional charge transfer element, the length is as follows.

汀 従って、隣接のゲート電極との距離が短かくなるため、
フリンジ電界ドリフト効果が大きくなり、高転送効率の
電荷転送素子を得ることができる。
Therefore, since the distance to the adjacent gate electrode becomes shorter,
The fringe electric field drift effect becomes large, and a charge transfer element with high transfer efficiency can be obtained.

[実施例コ 以下、この発明の一実施例を図について説明する。[Example code] An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明による電荷転送素子の一実施例を示
す平面図である。
FIG. 1 is a plan view showing one embodiment of a charge transfer device according to the present invention.

第1図において、(1)は図示しない、半導体基板上に
斜めに設けられた複数個の制御・転送電極としてのゲー
ト電極、(2)は分離領域、(4)は電荷の転送を行う
ための電荷転送領域、(5)は前記ゲート電極(1)に
電圧を与える信号線で、この信号線(5)には、4相駆
動の駆動信号φ1〜φ、が印加されている。従って、電
荷の転送方向と前記ゲト電極(1)の延伸方向が、垂直
或いは平行以外の特定の角度を有している。
In FIG. 1, (1) is a plurality of gate electrodes (not shown) diagonally provided on a semiconductor substrate as control/transfer electrodes, (2) is an isolation region, and (4) is for transferring charges. In the charge transfer region, (5) is a signal line that applies a voltage to the gate electrode (1), and four-phase driving drive signals φ1 to φ are applied to this signal line (5). Therefore, the charge transfer direction and the extending direction of the gate electrode (1) have a specific angle other than perpendicular or parallel.

なお、第1図の実施例における電荷転送の方法は、従来
例で説明した電荷転送素子と同一であり、各ゲート電極
(1)に信号線(5)を介して、4相駆動の電圧を印加
することにより、第6図で示したように、ポテンシャル
井戸が形成され、このポテンシャル井戸を移動させるこ
とによって電荷転送が行われる。
The method of charge transfer in the embodiment shown in FIG. 1 is the same as that of the charge transfer element described in the conventional example, and a four-phase drive voltage is applied to each gate electrode (1) via a signal line (5). By applying this voltage, a potential well is formed as shown in FIG. 6, and charge transfer is performed by moving this potential well.

従って、第1図のゲート電極1と電荷転送方向とのなす
角度を45度とすると、ゲート電極1の面積Sは、5=
LxW(但し、Lはゲート電極のゲト長、Wはゲート電
極の幅)となり、従来の電荷転送素子と同一の面積を確
保することがてきる。
Therefore, if the angle between the gate electrode 1 in FIG. 1 and the charge transfer direction is 45 degrees, the area S of the gate electrode 1 is 5=
LxW (where L is the gate length of the gate electrode and W is the width of the gate electrode), and the same area as a conventional charge transfer element can be secured.

一方、フリンジ電界ドリフト効果の発生要因となる隣接
のゲート電極方向の実効的なゲート長Laこの実効的な
ゲート長Laが短かくなることによって、隣接のゲート
電極との距離が短かくなり、フリンジ電界ドリフト効果
が大きくなると共に、高転送効率の電荷転送素子を得る
ことができる。
On the other hand, as the effective gate length La in the direction of the adjacent gate electrode becomes shorter, the distance between the adjacent gate electrode becomes shorter and the fringe field drift effect occurs. The electric field drift effect becomes large and a charge transfer element with high transfer efficiency can be obtained.

なお、前述の実施例では、4相駆動の電荷転送素子の場
合について説明したが、4相駆動に限らず、2相駆動、
3相駆動等の他の駆動方法による電荷転送素子の場合で
も、前述の実施例と同様の作用効果を奏することがてき
る。
In addition, in the above-mentioned embodiment, the case of a four-phase drive charge transfer element was explained, but it is not limited to four-phase drive, and two-phase drive,
Even in the case of a charge transfer element using other driving methods such as three-phase driving, the same effects as those of the above-mentioned embodiments can be achieved.

「発明の効果」 以上のように、この発明によれば、電荷転送素子の制御
 転送電極であるゲート電極の延伸方向を、電荷の転送
方向に対して、垂直或いは平行以外の特定の方向である
斜めになるように構成したので、電荷転送素子の電荷取
扱い可能量を減少させずに高転送効率の電荷転送素子を
実現することができる。
"Effects of the Invention" As described above, according to the present invention, the extending direction of the gate electrode, which is a charge transfer electrode, is a specific direction other than perpendicular or parallel to the charge transfer direction. Since it is configured to be oblique, a charge transfer element with high transfer efficiency can be realized without reducing the amount of charge that the charge transfer element can handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す平面図、第2図、第
3図は従来の電荷転送素子の平面図、第4図は第5図の
φl〜φ4に印加されるクロック図、第5図は第2図の
A−A′断面図、第6図はクロックによるポテンシャル
図である。 (1)はゲート電極、(2)は分離領域、(4)は電荷
転送領域である。 なお、各図中、同一符号は同−又は相当部分を示す。 ’7f、1図 1  ケ゛’−トtゼな 2  宏1准11X 4  、’tfT転送/領1収 麗3図 昂5図 !lF、6図 手 続 補 正 書 平成 と 1 月11 日
FIG. 1 is a plan view showing an embodiment of the present invention, FIGS. 2 and 3 are plan views of a conventional charge transfer element, and FIG. 4 is a diagram of clocks applied to φl to φ4 in FIG. 5. FIG. 5 is a sectional view taken along the line AA' in FIG. 2, and FIG. 6 is a potential diagram based on a clock. (1) is a gate electrode, (2) is an isolation region, and (4) is a charge transfer region. In each figure, the same reference numerals indicate the same or corresponding parts. '7f, 1 fig. IF, Figure 6 Procedural Amendment Heisei and January 11th

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に、電荷を転送するための電荷転送領域
と前記電荷の転送を制御するための複数個のゲート電極
とを備えた電荷転送素子において、前記電荷の転送方向
と前記ゲート電極の延伸方向が、垂直或いは平行以外の
特定の角度を有していることを特徴とする電荷転送素子
In a charge transfer element comprising, on a semiconductor substrate, a charge transfer region for transferring charge and a plurality of gate electrodes for controlling the charge transfer, the charge transfer direction and the extending direction of the gate electrode. has a specific angle other than vertical or parallel.
JP2107474A 1990-04-25 1990-04-25 Charge transfer element Pending JPH046839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107474A JPH046839A (en) 1990-04-25 1990-04-25 Charge transfer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107474A JPH046839A (en) 1990-04-25 1990-04-25 Charge transfer element

Publications (1)

Publication Number Publication Date
JPH046839A true JPH046839A (en) 1992-01-10

Family

ID=14460121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107474A Pending JPH046839A (en) 1990-04-25 1990-04-25 Charge transfer element

Country Status (1)

Country Link
JP (1) JPH046839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713793B1 (en) 1999-07-15 2004-03-30 Mitsubishi Denki Kabushiki Kaisha Field effect transistor structure with bent gate
US7540178B2 (en) 2005-07-18 2009-06-02 Sms Demag Ag Rolling installation and method for producing metal strips

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266763A (en) * 1988-04-18 1989-10-24 Nec Corp Charge transfer device
JPH0316231A (en) * 1989-06-14 1991-01-24 Matsushita Electron Corp Charge transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266763A (en) * 1988-04-18 1989-10-24 Nec Corp Charge transfer device
JPH0316231A (en) * 1989-06-14 1991-01-24 Matsushita Electron Corp Charge transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713793B1 (en) 1999-07-15 2004-03-30 Mitsubishi Denki Kabushiki Kaisha Field effect transistor structure with bent gate
US7540178B2 (en) 2005-07-18 2009-06-02 Sms Demag Ag Rolling installation and method for producing metal strips

Similar Documents

Publication Publication Date Title
JPS634751B2 (en)
JPH08250699A (en) Solid-state image sensor and driving method therefor
US5289022A (en) CCD shift register having a plurality of storage regions and transfer regions therein
JPH04172085A (en) Solid image pickup device
JPH05283666A (en) Solid state image pickup
JPH046839A (en) Charge transfer element
JP2545801B2 (en) Solid-state imaging device
JP3301176B2 (en) Charge transfer device
JPH06283704A (en) Ccd-type solid-state image sensing element
JPS5842630B2 (en) charge coupled device
JP3185230B2 (en) Solid-state imaging device
JP2820019B2 (en) Solid-state imaging device
JP4686830B2 (en) Solid-state imaging device and driving method thereof
JP2907841B2 (en) Line sensor
JPS60174583A (en) Driving method of solid-state image pickup element
JPH0436469B2 (en)
JPH03116841A (en) Charge-coupled element
JPS63313862A (en) Charge transfer device
JP2671151B2 (en) Semiconductor device
JPH04367237A (en) Ccd solid-state image sensing device
JP3291774B2 (en) CCD solid-state imaging device
JPH1126742A (en) Ccd solid-state image sensing element
JP3413732B2 (en) CCD type solid-state imaging device
JPH02264579A (en) Driving method for solid-state image pickup element
JPH08316459A (en) Charge transfer device and solid-state image-pickup device