JPH0458414B2 - - Google Patents

Info

Publication number
JPH0458414B2
JPH0458414B2 JP63037576A JP3757688A JPH0458414B2 JP H0458414 B2 JPH0458414 B2 JP H0458414B2 JP 63037576 A JP63037576 A JP 63037576A JP 3757688 A JP3757688 A JP 3757688A JP H0458414 B2 JPH0458414 B2 JP H0458414B2
Authority
JP
Japan
Prior art keywords
conductivity
phase
oxygen
oxygen ion
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63037576A
Other languages
Japanese (ja)
Other versions
JPH01215723A (en
Inventor
Koreyoshi Fuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP63037576A priority Critical patent/JPH01215723A/en
Publication of JPH01215723A publication Critical patent/JPH01215723A/en
Publication of JPH0458414B2 publication Critical patent/JPH0458414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料電池発電システム、水蒸気電解シ
ステム、酸素ポンプ及び酸素センサー等の固体電
解室として用いる高酸素イオン導電体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high oxygen ion conductor used as a solid electrolytic chamber in fuel cell power generation systems, steam electrolysis systems, oxygen pumps, oxygen sensors, and the like.

[従来の技術] 従来の高酸素イオン導電体には2価あるいは
3価の低原子価金属酸化物を所定量固溶させて、
高温相であるホタル石型構造の定温安定化と共に
多数の酸素イオン空孔を生成せしめた安定化
ZrO2系、安定化HfO2系:2価あるいは3価の
低原子価金属酸化物を所定量固溶させて多数の酸
素イオン空孔を生成せしめたCeO2系、ThO2系:
2〜6価の各種の金属酸化物を所定量固溶させ
て高温相である欠陥ホタル石型構造を低温度域ま
で安定化せしめた安定化Bi2O3系などがあつた。
[Prior art] A predetermined amount of divalent or trivalent low-valent metal oxide is dissolved in a conventional high-oxygen ion conductor.
Constant-temperature stabilization of the fluorite-type structure, which is a high-temperature phase, and stabilization by generating numerous oxygen ion vacancies.
ZrO 2 system, stabilized HfO 2 system: CeO 2 system, ThO 2 system in which a predetermined amount of divalent or trivalent low valence metal oxide is solid-dissolved to generate a large number of oxygen ion vacancies:
There was a stabilized Bi 2 O 3 system in which the defective fluorite-type structure, which is a high-temperature phase, was stabilized down to a low temperature range by dissolving a predetermined amount of various divalent to hexavalent metal oxides.

Bi2O3系において、その高温安定相であるδ相
は欠陥ホタル石型構造と呼ばれる高酸素イオン導
電相であるが、その存在温度範囲が730〜825℃に
限られる。そこで、各種の酸化物を固溶させるこ
とにより、このδ相を低温度域まで安定化するこ
が必要であるが、導電率は安定化剤の増加に伴つ
て低下する。従つて、高い導電率を維持するため
には、安定化剤の添加量をδ相の低温安定化に必
要最小限に抑えることが重要である。従来、この
安定化剤としてはPbO、CaO、SrO、BaO、
Sm2O3、La2O3、Y2O3、Gd2O3、Er2O3、Dy2O3
Yb2O3、V2O5、Ta2O5、Nb2O5、WO3、MoO3
どが公知である。上述の安定化剤の中でNb2O5
(Bi2O30.85(Nb2O50.15の組成において500〜800
℃の温度域で最も高い導電率を示すものの1つで
あつた。
In the Bi 2 O 3 system, the δ phase, which is a high temperature stable phase, is a high oxygen ion conductive phase called a defective fluorite structure, but its existing temperature range is limited to 730 to 825°C. Therefore, it is necessary to stabilize this δ phase down to a low temperature range by solid-dissolving various oxides, but the electrical conductivity decreases as the amount of stabilizer increases. Therefore, in order to maintain high electrical conductivity, it is important to suppress the amount of stabilizer added to the minimum necessary for stabilizing the δ phase at low temperatures. Conventionally, these stabilizers include PbO, CaO, SrO, BaO,
Sm 2 O 3 , La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , Er 2 O 3 , Dy 2 O 3 ,
Yb 2 O 3 , V 2 O 5 , Ta 2 O 5 , Nb 2 O 5 , WO 3 , MoO 3 and the like are known. Among the above-mentioned stabilizers, Nb 2 O 5 has a composition of (Bi 2 O 3 ) 0.85 (Nb 2 O 5 ) 0.15 with a concentration of 500 to 800
It was one of the materials showing the highest electrical conductivity in the temperature range of °C.

[発明が解決しようとする課題] しかし、現在500〜800℃において最も高い導電
率を示す高酸素イオン導電体の1つである
(Bi2O30.85(Nb2O50.15でも、酸性またはアルカ
リ性水溶液電解質や溶融炭酸塩電解質の導電率に
比べると、まだ、かなり低いため、燃料電池など
の電解質として使用するには800℃以上の高温を
必要とするという欠点があり、更に、導電率の高
い高酸素イオン導電体の出現が望まれている。
[Problem to be solved by the invention] However, even with (Bi 2 O 3 ) 0.85 (Nb 2 O 5 ) 0.15 , which is currently one of the high oxygen ionic conductors that exhibits the highest conductivity at 500 to 800°C, it is acidic. However, the conductivity is still quite low compared to that of alkaline aqueous electrolytes and molten carbonate electrolytes, so it has the disadvantage of requiring high temperatures of 800°C or higher to be used as electrolytes in fuel cells, etc. It is hoped that a high-oxygen ionic conductor with high oxygen content will emerge.

[課題を解決するための手段] そこで、本発明者はこの(Bi2O3)−(Nb2O5
系に着目し、更に、第2の安定化剤としてはやは
りBi2O3との2成分系において高酸素イオン導電
性を示すY2O3を初めとする3価の希土類酸化物
を選定した。これらを同時に適量Bi2O3に固溶さ
せることにより、従来よりも更に高い導電率を有
する高酸素イオン導電体を完成した。
[Means for Solving the Problems] Therefore, the present inventor solved this (Bi 2 O 3 )−(Nb 2 O 5 )
system, and selected trivalent rare earth oxides such as Y 2 O 3 , which also exhibit high oxygen ion conductivity in a binary system with Bi 2 O 3 , as the second stabilizer. . By simultaneously dissolving these in appropriate amounts in Bi 2 O 3 , we have completed a high oxygen ion conductor with even higher conductivity than conventional ones.

即ち、本発明はBi2O3を主成分とし、Nb2O5
3価の希土類酸化物を複合添加して固溶させるこ
とを特徴とする導電性の優れた高酸素イオン導電
体に係る。
That is, the present invention relates to a high oxygen ion conductor with excellent conductivity, which is characterized in that Bi 2 O 3 is the main component, and Nb 2 O 5 and a trivalent rare earth oxide are added as a solid solution. .

[作用] 本発明はBi2O3を主成分とし、Nb2O5と3価の
希土類酸化物の適量を複合添加して固溶させ、欠
陥ホタル石型構造を低温度域まで安定化すると共
に導電率の減少を最低限に抑えることに成功した
結果、広い温度範囲において従来材に比較してよ
り高い導電率を示す高酸素イオン導電体が得られ
る。
[Function] The present invention uses Bi 2 O 3 as the main component, and adds Nb 2 O 5 and an appropriate amount of trivalent rare earth oxide in a solid solution to stabilize the defective fluorite-type structure up to a low temperature range. At the same time, we succeeded in minimizing the decrease in conductivity, resulting in an oxygen-rich ionic conductor that exhibits higher conductivity than conventional materials over a wide temperature range.

本発明の高酸素イオン導電体の組成はBi2O370
〜90モル%、Nb2O55〜10モル%及び3価の希土
類酸化物5〜20モル%よりなる。
The composition of the high oxygen ion conductor of the present invention is Bi 2 O 3 70
-90 mol%, Nb2O5 5-10 mol%, and trivalent rare earth oxide 5-20 mol%.

Nb2O5及び3価の希土類酸化物の添加配合量が
それぞれ5モル%未満であると、得られる導電体
中に立方晶系δ相の他に正方晶系β相が混在す
る。このβ相はδ相に比較して導電率が低いの
で、導電特性を向上させる目的においては、β相
の混在は望ましくない。
When the amounts of Nb 2 O 5 and trivalent rare earth oxide added are less than 5 mol %, the resulting conductor contains a tetragonal β phase in addition to the cubic δ phase. Since this β phase has a lower conductivity than the δ phase, coexistence of the β phase is not desirable for the purpose of improving conductive properties.

Nb2O5及び3価の希土類酸化物の添加配合量が
それぞれ10モル%及び20モル%を超えるとNb2O5
を単独で添加した(Bi2O3)−(Nb2O5)系よりも
導電率が低下するので望ましくない。
If the added amount of Nb 2 O 5 and trivalent rare earth oxide exceeds 10 mol % and 20 mol %, respectively, Nb 2 O 5
It is undesirable because the conductivity is lower than that of the (Bi 2 O 3 )-(Nb 2 O 5 ) system in which only 1 is added.

本発明の高酸素イオン導電体に使用する3価の
希土類酸化物としてはY2O3、Er2O3、Gd2O3等が
挙げられる。
Trivalent rare earth oxides used in the oxygen-rich ion conductor of the present invention include Y 2 O 3 , Er 2 O 3 , Gd 2 O 3 and the like.

次に、本発明の高酸素イオン導電体の製造方法
を説明する。
Next, a method for manufacturing the oxygen-rich ionic conductor of the present invention will be explained.

Bi2O3、Nb2O5及び希土類酸化物例えばY2O3
所定量混合し、単軸加圧成形及びラバープレス成
形後、大気中雰囲気における仮焼を行ない、得ら
れた焼成体を更に粉砕し、再びラバープレス後、
同様の条件で仮焼し、粉砕することによつて合成
粉末を得る。これを所定の方法で成形し、焼結す
ることにより導電性の優れた高酸素イオン導電体
を得ることができる。
Bi 2 O 3 , Nb 2 O 5 and a rare earth oxide such as Y 2 O 3 are mixed in predetermined amounts, and after uniaxial pressure molding and rubber press molding, calcination is performed in the air atmosphere, and the obtained fired body is After further crushing and rubber pressing again,
A synthetic powder is obtained by calcining and pulverizing under similar conditions. By molding this in a predetermined manner and sintering it, a high oxygen ion conductor with excellent conductivity can be obtained.

[実施例] 実施例 本実施例においては、Bi2O3としてキシダ化学
(株)製99.9%粉末、Nb2O5としてキシダ化学(株)製
99.9%粉末、Y2O3として日本イツトリウム(株)製
99.9%粉末をそれぞれ出発原料として用いた。
[Example] Example In this example, Bi 2 O 3 was used as Bi 2 O 3 .
99.9% powder manufactured by Kishida Chemical Co., Ltd. as Nb 2 O 5
99.9% powder, manufactured by Nippon Yztrium Co., Ltd. as Y 2 O 3
99.9% powder was used as the starting material, respectively.

Bi2O3粉末に安定化剤としてNb2O5粉末、Y2O3
粉末をそれぞれ所定量複合添加し、分散剤に特級
C6H6を用い、メノウ乳鉢により湿式混合を30分
間行ない、70℃に保たれた恒温槽にて充分乾燥し
た。
Bi2O3 powder with Nb2O5 powder , Y2O3 as stabilizer
A special grade dispersant is created by adding a predetermined amount of each powder in combination.
Wet mixing was performed using C 6 H 6 in an agate mortar for 30 minutes, and the mixture was thoroughly dried in a constant temperature bath kept at 70°C.

混合粉末を2gずつ秤量し、直径12mmの金型を
用いて300Kg/cm2で単軸加圧成形し、ゴム型に真
空封入後、油を圧媒に用いて3トン/cm2でラバー
プレス形成し、仮焼用ペレツト数個を作成した。
Weigh out 2g of the mixed powder, uniaxial pressure molding at 300Kg/cm 2 using a mold with a diameter of 12mm, vacuum sealing in a rubber mold, and rubber press at 3 tons/cm 2 using oil as a pressure medium. Several pellets for calcination were made.

得られたペレツトをメノウ乳鉢により湿式粉砕
(C6H6)後、充分乾燥させ、上記と同様の手法に
より仮焼用ペレツトを成形し、再び大気雰囲気に
おいて800℃、5時間焼成し、空冷した。
The obtained pellets were wet-pulverized (C 6 H 6 ) in an agate mortar, thoroughly dried, formed into pellets for calcination using the same method as above, fired again at 800°C in the air for 5 hours, and air-cooled. .

2回の仮焼を行なつたペレツトをメノウ乳鉢に
より湿式粉砕(C6H6)後、充分乾燥させ、合成
粉末とした。
The pellets, which had been calcined twice, were wet-ground (C 6 H 6 ) in an agate mortar and thoroughly dried to obtain a synthetic powder.

得られた合成粉末の組成は(Bi2O30.85
(Nb2O50.15(従来品)、(Bi2O30.85(Nb2O50.0
5

(Y2O30.10(本発明組成品)及び(Bi2O30.92
(Nb2O50.04(Y2O30.04(比較品)であつた。
The composition of the obtained synthetic powder is (Bi 2 O 3 ) 0.85
(Nb 2 O 5 ) 0.15 (conventional product), (Bi 2 O 3 ) 0.85 (Nb 2 O 5 ) 0.0
Five

(Y 2 O 3 ) 0.10 (composition of the present invention) and (Bi 2 O 3 ) 0.92
(Nb 2 O 5 ) 0.04 (Y 2 O 3 ) 0.04 (comparative product).

上述の従来品、本発明品及び比較品の合成粉末
をCu−Kα線を用いたX線回析により分析した結
果を第1図に記載する。
The results of analyzing the synthetic powders of the conventional product, the present invention product, and the comparative product described above by X-ray diffraction using Cu-Kα rays are shown in FIG.

第1図において、Nb2O5及びY2O3の含有量が
それぞれ4モル%である比較品は立方晶系δ相の
他に正方晶系β相が混在していることを示してい
る。β相の混在は上述の理由から好ましいもので
はない。
In Figure 1, the comparative product in which the content of Nb 2 O 5 and Y 2 O 3 is 4 mol% each shows that the tetragonal β phase is mixed in addition to the cubic δ phase. . The presence of β phase is not preferable for the reasons mentioned above.

これに対してNb2O5の含有量が5モル%、
Y2O3の含有量が10モル%である本発明組成品は
δ相単相が得られていることが判る。また、従来
品もδ相単相の回折パターンが得られた。
On the other hand, the content of Nb 2 O 5 is 5 mol%,
It can be seen that the composition of the present invention in which the content of Y 2 O 3 is 10 mol % has a single δ phase. Furthermore, a single-phase δ-phase diffraction pattern was also obtained for the conventional product.

次に、本発明組成の合成粉末を仮焼用ペレツト
を作成した時と同様の手法により焼結用ペレツト
を成形(直径12mm、厚さ約1.5mm)。得られたペレ
ツトを高純度Al2O3製ボートに入れ、大気雰囲気
において850℃、5時間焼成し、空冷した。得ら
れた焼結体の両面を#1500のエメリー紙で鏡面研
摩して市販Ptペーストをスクリーン印刷により
塗布後、焼き付け、多孔質性電極として取り付け
た試料についてインピーダンスアナライザーを用
いた複素インピーダンス法から得られた結晶粒内
の全導電率と酸素濃淡電池法により求めた平均酸
素イオン輪率とから算出した酸素イオン導電率の
温度依存性を第2図にプロツトした。なお、第2
図には従来の(Bi2O3)−(Nb2O5)系を使用した
ものについてのデータも併記する。
Next, pellets for sintering (diameter 12 mm, thickness approximately 1.5 mm) were formed from the synthetic powder having the composition of the present invention using the same method used to create pellets for calcining. The obtained pellets were placed in a high-purity Al 2 O 3 boat, calcined at 850° C. for 5 hours in the air, and cooled in air. Both sides of the obtained sintered body were mirror-polished with #1500 emery paper, a commercially available Pt paste was applied by screen printing, and the sample was baked and attached as a porous electrode. The temperature dependence of the oxygen ion conductivity calculated from the total conductivity within the crystal grains and the average oxygen ion ring rate determined by the oxygen concentration cell method is plotted in FIG. In addition, the second
The figure also shows data regarding the use of the conventional (Bi 2 O 3 )-(Nb 2 O 5 ) system.

第2図から明らかなように、(Bi2O3)−
(Nb2O5)−(Y2O3)3元系固溶体よりなる本発明
の高酸素イオン導電体は従来の(Bi2O3)−
(Nb2O5)2元系固溶体に比較して500〜800℃の
温度範囲において、より高い酸素イオン導電率を
示している。
As is clear from Figure 2, (Bi 2 O 3 )−
The high oxygen ionic conductor of the present invention consisting of a (Nb 2 O 5 )-(Y 2 O 3 ) ternary solid solution is different from the conventional (Bi 2 O 3 )-
(Nb 2 O 5 ) It shows higher oxygen ion conductivity in the temperature range of 500 to 800°C compared to the binary solid solution.

なお、本実施例では3価の希土類酸化物として
Y2O3を使用した場合のみを記載したが、その他
の3価の希土類酸化物をいずれか1種をNb2O5
適量複合添加させても、同様の効果により高い酸
性イオン導電率が得られることは言うまでもな
い。
In addition, in this example, as the trivalent rare earth oxide
Although only the case where Y 2 O 3 is used is described, even if an appropriate amount of any one of the other trivalent rare earth oxides is added in combination with Nb 2 O 5 , high acidic ion conductivity can be achieved due to the same effect. Needless to say, you can get it.

[発明の効果] 以上、説明してきたように、本発明による導電
性の優れた高酸素イオン導電体を電解質として用
いると、従来の材質に比較して広い温度範囲にお
いて、より高い導電率を有していることから、燃
料電池発電システム、水蒸気電解システム、酸素
ポンプによる工業用ガスの脱酸素あるいは酸素富
化システム、酸素濃淡電池型、限界電流型または
電解効果トランジスタ型酸素センサー等において
大きな実用性をもつものと思われる。
[Effects of the Invention] As explained above, when the highly conductive oxygen-rich ion conductor of the present invention is used as an electrolyte, it has higher conductivity over a wide temperature range compared to conventional materials. Therefore, it is of great practical use in fuel cell power generation systems, steam electrolysis systems, industrial gas deoxidation or oxygen enrichment systems using oxygen pumps, oxygen concentration cell type, limiting current type or field effect transistor type oxygen sensors, etc. It seems that it has.

まず、燃料電池発電に関しては、従来の安定化
ZrO2を電解質に用いて1000℃で作動させた場合
と比較すると本発明の高酸素イオン導電体では同
一の電流値を得るのに約550℃までの低温化が可
能となる。この温度は2世代と呼ばれる溶融塩型
の作動温度にほぼ等しく、また、導電率もこのタ
イプのものに匹敵することにより、従来問題とな
つていた1000℃を超える高温という過酷な使用環
境が緩和されることなる。更に、溶融塩型のもの
に比較すると腐食の問題が解決でき且つセルの構
造自身がコンパクトになる可能性があり、固体電
解質型の燃料電池の実用化に大きな効果をもつも
のと思われる。
First, regarding fuel cell power generation, conventional stabilization
Compared to the case where ZrO 2 is used as an electrolyte and operated at 1000°C, the high oxygen ion conductor of the present invention allows the temperature to be lowered to about 550°C to obtain the same current value. This temperature is almost the same as the operating temperature of the 2nd generation molten salt type, and the conductivity is also comparable to this type, which alleviates the harsh operating environment of high temperatures exceeding 1000°C, which was a problem in the past. It will be done. Furthermore, compared to molten salt type fuel cells, the problem of corrosion can be solved and the cell structure itself can be made more compact, which is thought to have a great effect on the practical application of solid electrolyte type fuel cells.

その他水、蒸気電解、酸素ポンプ、各種の酸素
センサーについても燃料電池の場合と同様に導電
率が向上することにより、低温作動化が可能とな
り、電解質として固体であるが故の特性を充分に
生かし得るであろうことが期待される。
In addition, water, steam electrolysis, oxygen pumps, and various oxygen sensors will also be able to operate at lower temperatures by improving their conductivity, just as in the case of fuel cells, making full use of the properties of solid electrolytes. It is hoped that it will be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来品、本発明組成品及び比較品の合
成粉末のX線回折図形であり、第2図は本発明に
係る(Bi2O3)−(Nb2O5)−(Y2O3)系の高酸素イ
オン導電体と従来材の(Bi2O3)−(Nb2O5)系の
導電体の酸素イオン導電率の温度依存性をプロツ
トしたグラフである。
Figure 1 shows the X-ray diffraction patterns of the synthetic powders of the conventional product, the composition of the present invention, and the comparative product, and Figure 2 shows the (Bi 2 O 3 )-(Nb 2 O 5 )-(Y 2 ) composition of the present invention. 3 is a graph plotting the temperature dependence of the oxygen ion conductivity of a high oxygen ion conductor based on O 3 ) and a conventional conductor based on (Bi 2 O 3 )-(Nb 2 O 5 ).

Claims (1)

【特許請求の範囲】 1 Bi2O3を主成分とし、Nb2O5と3価の希土類
酸化物を複合添加して固溶させることを特徴とす
る導電性の優れた高酸素イオン導電体。 2 Bi2O3を主成分とし、Nb2O55〜10モル%と
3価の希土類酸化物としてY2O35〜20モル%を複
合添加して固溶させることを特徴とする導電性の
優れた高酸素イオン導電体。
[Claims] 1. A high-oxygen ion conductor with excellent electrical conductivity, characterized by containing Bi 2 O 3 as a main component and adding Nb 2 O 5 and a trivalent rare earth oxide as a solid solution. . 2. A conductive material containing Bi 2 O 3 as a main component, in which 5 to 10 mol % of Nb 2 O 5 and 5 to 20 mol % of Y 2 O 3 as a trivalent rare earth oxide are added as a solid solution. High oxygen ion conductor with excellent properties.
JP63037576A 1988-02-22 1988-02-22 High oxygen ion conductor with excellent conductivity Granted JPH01215723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037576A JPH01215723A (en) 1988-02-22 1988-02-22 High oxygen ion conductor with excellent conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037576A JPH01215723A (en) 1988-02-22 1988-02-22 High oxygen ion conductor with excellent conductivity

Publications (2)

Publication Number Publication Date
JPH01215723A JPH01215723A (en) 1989-08-29
JPH0458414B2 true JPH0458414B2 (en) 1992-09-17

Family

ID=12501363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037576A Granted JPH01215723A (en) 1988-02-22 1988-02-22 High oxygen ion conductor with excellent conductivity

Country Status (1)

Country Link
JP (1) JPH01215723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266613A1 (en) * 2021-06-15 2022-12-22 Wisconsin Alumni Research Foundation Oxygen ion transport materials and related devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266613A1 (en) * 2021-06-15 2022-12-22 Wisconsin Alumni Research Foundation Oxygen ion transport materials and related devices

Also Published As

Publication number Publication date
JPH01215723A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US4931214A (en) Oxidic bodies with ionic and electronic conductivity
Ishihara et al. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide
Chan et al. Nonstoichiometry in SrTiO3
Ishihara et al. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor
US6821498B2 (en) Oxygen ion conducting materials
Moos et al. Solubility of lanthanum in strontium titanate in oxygen-rich atmospheres
Kertesz et al. Structure and electrical conductivity of La0. 84Sr0. 16MnO3
JP2882104B2 (en) Proton conductor and method for producing the same
JPH06124711A (en) Ceramic electrode material
US5213911A (en) Solid-oxide fuel cell electrolyte
Zha et al. Processing and electrical properties of doped-LaGaO3 by gelcasting
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
KR100365369B1 (en) Ceramic Material for Use in the Separation of Oxygen from Gas Mixture
Thangadurai et al. AA′ 2M3O10 (A= K, Rb, Cs; A′= Ca; M= Nb) layered perovskites: low-temperature proton conductors in hydrogen atmospheres
Yoshioka Structure and Electrical Properties of A‐site‐Deficient Perovskite Compounds in the La2/3TiO3‐La1/3NbO3 System
JPH0458414B2 (en)
US20230357045A1 (en) Perovskite structure, method for producing and application in electrodes and solid oxide cells
JPH04219364A (en) Lanthanum chromite complex oxide and applications
JP3877809B2 (en) Proton conductive ceramics
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
Doshi et al. Oxygen pumping characteristics of oxide ion electrolytes at low temperatures
JPH08253363A (en) Baceo3-based ionically conductive ceramics and its production
JP4428735B2 (en) Oxide ion conductor and solid oxide fuel cell
CN116745923A (en) Perovskite structure, preparation method thereof and application of perovskite structure in electrode and solid oxide battery