JPH04283615A - Gyroscope apparatus - Google Patents

Gyroscope apparatus

Info

Publication number
JPH04283615A
JPH04283615A JP3048431A JP4843191A JPH04283615A JP H04283615 A JPH04283615 A JP H04283615A JP 3048431 A JP3048431 A JP 3048431A JP 4843191 A JP4843191 A JP 4843191A JP H04283615 A JPH04283615 A JP H04283615A
Authority
JP
Japan
Prior art keywords
angle
output
azimuth
angular velocity
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3048431A
Other languages
Japanese (ja)
Other versions
JP3044357B2 (en
Inventor
Kazuteru Sato
一輝 佐藤
Tsurashi Yamamoto
山本 貫志
Mikio Morohoshi
諸星 幹雄
Noriyuki Akaha
赤羽 紀之
Atsushi Kawakami
川上 温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP3048431A priority Critical patent/JP3044357B2/en
Priority to US07/848,388 priority patent/US5349531A/en
Priority to GB9205289A priority patent/GB2254511B/en
Priority to NO920960A priority patent/NO304046B1/en
Priority to DE4208158A priority patent/DE4208158C2/en
Publication of JPH04283615A publication Critical patent/JPH04283615A/en
Application granted granted Critical
Publication of JP3044357B2 publication Critical patent/JP3044357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry
    • G01S19/55Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Gyroscopes (AREA)
  • Power Steering Mechanism (AREA)
  • Sawing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

PURPOSE:To make it possible to measure an accurate azimuth angle by providing a slant correcting means for a navigating body using the outputs of a roll angle and a pitch angle based on a satellite radiowave between the output side of an oscillating gyroscope and an adder. CONSTITUTION:The outputs of a roll angle and a pitch angle which are the output of a GPS-angle operating part 6 are connected to a slant correcting part 12. The outputted angular velocity error of an oscillating gyroscope 10 caused by the change in attitude angle of a navigating body is corrected. The result is inputted into an integrator 13 through an adder E. Meanwhile, the output of the azimuth angle which is computed in the operating part 6 is compared with the integrated value of the outputs of the gyroscope 10 in a comparator C. The remaining difference angle is negatively fed back to the adder E through a compensating and operating part 14. In this constitution of the system, the azimuth angle obtained by integrating the outputted angular velocity from the gyroscope 10 follows the azimuth angle from the operating part 6. Even if the output period of the operating part 6 becomes long, the period is interpolated with the azimuth angle with the gyroscope 10. Therefore, the continuous, accurate azimuth angle can be outputted all the time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、船舶、自動車等の航行
体の方位角、位置及び速度等を検出するジャイロ装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gyro device for detecting the azimuth, position, speed, etc. of a navigation object such as a ship or an automobile.

【0002】0002

【従来の技術】従来、船舶等には、周知の如く、方位を
計測する装置として、ジャイロコンパス及び磁気コンパ
スが有り、如何なる条件下においても、常に自船の方位
を計測し、安全な航行が可能となるようになされていた
。しかしながら、ジャイロコンパスは、その起動時間が
約1時間以上と長くかかること、また、磁気コンパスは
、地磁気の北を示すことから、その示す方位は真北から
偏移しているという欠点を有していた。
[Prior Art] Conventionally, as is well known, ships and the like have gyro compasses and magnetic compasses as devices for measuring direction, and they can always measure the direction of the own ship under any conditions and ensure safe navigation. It was made possible. However, the gyro compass has the disadvantage that it takes a long time to start up, approximately one hour or more, and since the magnetic compass indicates the north of the earth's magnetic field, the direction it indicates is deviated from true north. was.

【0003】近年、これらの欠点を一掃し、常時、船舶
等の航行体の位置を検出するシステムとして、衛星によ
る電波を利用したGPS(Global Positi
oning System )航法が提案されている。 これは、常時、3個以上の衛星からのデータにより、三
次元的に航行体の位置を計測するものであり、衛星の打
ち上げが終了する1990年代には、民間用のコードで
あるC/Aコードを用いて運用されるものと期待されて
いる。しかしながら、上述、通常の計測によるGPSの
信号処理においては、航行体の位置が計測できるだけで
あり、その位置計測誤差が大きいために方位角を計測す
ることはできなかった。 これに対し、ディファレンシャルGPSと称される測量
で用いられてきた衛星電波の位相差を計測する2位置差
高精度同時計測法により、航行体の方位角を算出する手
法が発表されている。以下、図3をもとに、その計測原
理を説明する。
[0003] In recent years, GPS (Global Positioning System), which uses radio waves from satellites, has been developed as a system to eliminate these drawbacks and constantly detect the position of navigational objects such as ships.
oning System) navigation has been proposed. This system constantly measures the position of a navigation object in three dimensions using data from three or more satellites. It is expected that it will be operated using code. However, in the above-mentioned GPS signal processing using normal measurement, only the position of the navigation object can be measured, but the azimuth cannot be measured because the position measurement error is large. In contrast, a method has been announced that calculates the azimuth of a navigation object using a two-position difference high-precision simultaneous measurement method that measures the phase difference of satellite radio waves, which has been used in surveying and is called differential GPS. Hereinafter, the measurement principle will be explained based on FIG. 3.

【0004】図3に於いて、1及び2は例えば船舶、自
動車、飛行機等の航行体(図示せず)に取り付けた受信
アンテナであり、基線長である両アンテナ1及び2間の
距離Lは、既知であるとする。これらのアンテナ1、2
からの電波は、GPS方位演算部3に供給されており、
以下に述べる演算により航行体の方位角成分φを算出す
る。いま、図3に示す如く、1つの衛星5からの電波を
、アンテナ1及び2で同時に受信した場合を考える。 この時、衛星5の位置とアンテナ1、2間の距離Lによ
り、アンテナ1で受信した電波とアンテナ2で受信した
電波との間には、図3に於いて、Dで示す距離差がある
。この距離差Dは、搬送波の特定の電波に着目すること
により、その位相差(時間差)として計測することがで
きるから、これに、その電波の波長を乗ずることにより
、距離差Dを求めることができる。Dが求まれば、Lが
既知であるから、
In FIG. 3, 1 and 2 are receiving antennas attached to a navigation object (not shown) such as a ship, a car, or an airplane, and the distance L between the antennas 1 and 2, which is the baseline length, is , is known. These antennas 1 and 2
The radio waves from are supplied to the GPS direction calculation unit 3,
The azimuth angle component φ of the vehicle is calculated by the calculation described below. Now, consider a case where radio waves from one satellite 5 are received simultaneously by antennas 1 and 2, as shown in FIG. At this time, due to the position of satellite 5 and the distance L between antennas 1 and 2, there is a distance difference between the radio waves received by antenna 1 and the radio waves received by antenna 2, as shown by D in FIG. . This distance difference D can be measured as a phase difference (time difference) by focusing on a specific radio wave of the carrier wave, so by multiplying this by the wavelength of the radio wave, the distance difference D can be calculated. can. If D is found, since L is known,

【0005】[0005]

【数1】ψ=COS−1(D/L)[Math. 1] ψ=COS-1(D/L)

【0006】として、観測衛星5に対する基線長L、従
って航行体の方位角ψを求めることができる。なお、本
計測においては、必ずしも、受信コードを復調する必要
はない。一方、衛星5と受信アンテナ1、2とを結ぶ線
と真北(N)とのなす方位角θは、以下のようにして求
めることができる。即ち、アンテナ1で衛星5からの電
波を受信した後、少なくとも他の2つ以上の衛星(図示
せず)の電波を受信する。そして、これらの受信電波の
C/Aコードを復調し、衛星から発信された電波の発信
時刻と受信時刻とを知ることにより、衛星からの電波の
伝搬時間を求め、それに電波の波長を乗ずることにより
、衛星からアンテナ1、従って航行体までの距離を求め
る。一つの衛星から等距離にあたる位置は、その距離を
半径とする球面上であるから、上述、3個の衛星からの
3個の球面を求め、その交点を求めることにより、受信
アンテナ1の位置を決定することができる。アンテナ1
の位置が求まれば、衛星5の位置は既知であるから、ア
ンテナ1〜衛星5間位置ベクトルの方向余弦より、方位
角θを求めることができる。このアンテナ1の位置を求
めるための、電波受信から位置演算のプロセスを実行す
る要素が、アンテナ1よりの電波を受けるGPS位置演
算部4であり、これよりの位置データ及びアンテナ1、
2よりの受信データを基に、前述のψの演算及び(ψ+
θ)の演算を行う要素が、GPS方位演算部3である。 このようにして、GPS方位演算部3で演算された基線
長L、従って航行体の方位角は(θ+ψ)となり、これ
がデジタル信号として出力される。
The baseline length L with respect to the observation satellite 5 and, therefore, the azimuth angle ψ of the navigation object can be determined as follows. Note that in this measurement, it is not necessarily necessary to demodulate the received code. On the other hand, the azimuth angle θ between the line connecting the satellite 5 and the receiving antennas 1 and 2 and true north (N) can be determined as follows. That is, after the antenna 1 receives radio waves from the satellite 5, it receives radio waves from at least two other satellites (not shown). Then, by demodulating the C/A code of these received radio waves and knowing the transmission time and reception time of the radio waves transmitted from the satellite, the propagation time of the radio waves from the satellite is determined and multiplied by the wavelength of the radio waves. The distance from the satellite to the antenna 1, and therefore to the navigation object, is determined by: A position that is equidistant from one satellite is on a spherical surface whose radius is that distance, so by finding the three spherical surfaces from the three satellites and finding their intersection, we can determine the position of the receiving antenna 1. can be determined. antenna 1
If the position of the satellite 5 is determined, the azimuth angle θ can be determined from the direction cosine of the position vector between the antenna 1 and the satellite 5, since the position of the satellite 5 is known. The element that executes the process of position calculation from radio wave reception in order to find the position of the antenna 1 is the GPS position calculation unit 4 that receives the radio waves from the antenna 1.
Based on the received data from step 2, calculate ψ and (ψ +
The element that calculates θ) is the GPS direction calculation unit 3. In this way, the base line length L calculated by the GPS azimuth calculating section 3, and therefore the azimuth of the vehicle, becomes (θ+ψ), which is output as a digital signal.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の衛星を利用した方位角計測装置では、方位角計
測のための演算時間がかかりすぎるため、連続的に方位
角を計測することができず、このため、例えば船舶が旋
回運動を行った場合等には、時間遅れのために、誤差を
生ずるという問題点があった。また、GPS電波には、
その衛星の配置上、計測誤差が大きくなる領域及び時刻
が存在すること、また太陽活動に起因する磁気異常のた
め、計測が困難となる場合がある等の欠点を有していた
。かかる欠点を補う方法として、角速度センサ(例えば
レートジャイロ)と前述のGPSを用いた方位角計測装
置を組み合わせた方位角計測法が提案されている。しか
しながら上述角速度センサとGPS方位角計測装置を組
み合わせた計測法では、角速度センサの角速度検出軸(
以下入力軸と称する)が、旋回中に傾斜した場合には、
角速度センサの検出方位角に誤差を生ずるという欠点が
あった。このため、本発明は、従来の装置の持つ問題点
を解決した新規な方位角計測用のジャイロ装置を提供す
るものである。
[Problem to be Solved by the Invention] However, with the above-mentioned conventional azimuth measurement device using a satellite, it is not possible to measure the azimuth continuously because it takes too much calculation time to measure the azimuth. Therefore, when a ship makes a turning movement, for example, there is a problem in that an error occurs due to a time delay. In addition, GPS radio waves,
Due to the placement of the satellite, there are regions and times where measurement errors are large, and magnetic anomalies caused by solar activity can make measurements difficult. As a method to compensate for this drawback, an azimuth angle measurement method has been proposed that combines an angular velocity sensor (for example, a rate gyro) and an azimuth angle measurement device using the above-mentioned GPS. However, in the measurement method that combines the angular velocity sensor and the GPS azimuth measurement device described above, the angular velocity detection axis of the angular velocity sensor (
If the input shaft (hereinafter referred to as the input shaft) tilts during turning,
This method has the drawback of causing an error in the azimuth angle detected by the angular velocity sensor. Therefore, the present invention provides a novel gyro device for azimuth angle measurement that solves the problems of conventional devices.

【0008】[0008]

【課題を解決するための手段】本発明によるジャイロ装
置は、例えば図面に示す如く、航行体に設置されるべき
衛星5からの電波を受信するための3つ以上の受信アン
テナ1、2、16と、アンテナからの受信電波を用いて
航行体の方位角、ロール角、ピッチ角及び位置を演算す
る手段4、3と、航行体のヨー軸を入力軸として航行体
に設置した角速度センサ10と、この角速度センサの出
力を入力とする加算器Eと、出力を積分する積分器13
と、この積分器13の出力とこの衛星電波を受信するこ
とにより得られた方位角とを比較する比較手段Cと、こ
の比較手段Cの偏差を補償するための補償手段14と、
この補償手段14の出力を加算器Eの負入力端にフィー
ドバックする手段とを有するジャイロ装置において、こ
の角度センサ10の出力側と加算器Eとの間にこの衛星
電波によるロール角及びピッチ角演算出力を用いた航行
体の傾斜補正手段12を挿入したものである。
[Means for Solving the Problems] A gyro device according to the present invention has three or more receiving antennas 1, 2, 16 for receiving radio waves from a satellite 5 to be installed on a navigation vehicle, as shown in the drawings, for example. , means 4 and 3 for calculating the azimuth, roll angle, pitch angle, and position of the vehicle using radio waves received from the antenna; and an angular velocity sensor 10 installed on the vehicle using the yaw axis of the vehicle as an input axis. , an adder E which inputs the output of this angular velocity sensor, and an integrator 13 which integrates the output.
, a comparing means C for comparing the output of the integrator 13 and the azimuth obtained by receiving the satellite radio wave, and a compensating means 14 for compensating for the deviation of the comparing means C.
In a gyro device having means for feeding back the output of the compensating means 14 to the negative input terminal of the adder E, roll angle and pitch angle are calculated between the output side of the angle sensor 10 and the adder E using the satellite radio waves. A navigation body inclination correction means 12 using the output is inserted.

【0009】[0009]

【作用】上述した本発明のジャイロ装置によれば、方位
角の出力値は、GPS衛星の方位角演算手段の出力周期
値に関係なく、また、航行体の姿勢角に関係なく連続し
て方位角を計測することができる。このため、船舶等の
航行体の運動による方位角計測値の時間遅れもなく、極
めて正確に方位角を計測することができる。
[Operation] According to the above-described gyro device of the present invention, the azimuth output value is continuously outputted regardless of the output cycle value of the azimuth calculation means of the GPS satellite and regardless of the attitude angle of the vehicle. Angles can be measured. Therefore, the azimuth angle can be measured extremely accurately without any time delay in the azimuth angle measurement value due to the movement of a navigation object such as a ship.

【0010】0010

【実施例】以下、図面を参照して、本発明によるジャイ
ロ装置の一実施例を説明する。図2は、GPSによる方
位角、ロール角及びピッチ角の計測の概略線図、図1は
図2のGPSによる角度測定値を用いた実施例を示す構
成図である。なお、図1において、図3に対応する部分
には同一符号を付しその詳細な説明は省略する。図2は
、図3で説明したGPSによる被測定角度を方位角以外
のロール角及びピッチ角を計測できるようにしたもので
ある。航行体(例えば船舶)にGPSからの電波を受信
するように設置した受信アンテナ1を基準に、ある基線
長L1 だけ離した点に、受信アンテナ2を、また基線
長L2 だけ離した点に受信アンテナ16を同一平面上
にそれぞれの基線長間の既知の角、Θをもって設置する
。 これらの具体的数値は、例えばL1 =L2=1m、Θ
=90°でありL1 方向を船首尾線方向とする。この
ようにして設置された受信アンテナ1、2、16の出力
は、GPS角度演算部6に入力され、図3で説明した原
理によりGPS位置演算部4の出力を用いて方位角、ロ
ール角及びピッチ角を3次元的に計測、演算する。図2
で計測した方位角、ロール角及びピッチ角出力を用いて
図1に示すシステムを構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a gyro device according to the present invention will be described below with reference to the drawings. FIG. 2 is a schematic diagram of measurement of azimuth angle, roll angle, and pitch angle by GPS, and FIG. 1 is a configuration diagram showing an example using the angle measurement values by GPS in FIG. 2. In FIG. 1, parts corresponding to those in FIG. 3 are designated by the same reference numerals, and detailed explanation thereof will be omitted. In FIG. 2, the angle to be measured by the GPS explained in FIG. 3 can be changed to a roll angle and a pitch angle other than the azimuth angle. Based on the receiving antenna 1 installed on a navigational object (for example, a ship) to receive radio waves from GPS, the receiving antenna 2 is placed at a point separated by a certain baseline length L1, and the receiving antenna 2 is placed at a point separated by a baseline length L2. The antennas 16 are installed on the same plane with a known angle, Θ, between their respective baseline lengths. These specific values are, for example, L1 = L2 = 1m, Θ
=90°, and the L1 direction is the bow-stern direction. The outputs of the receiving antennas 1, 2, and 16 installed in this way are input to the GPS angle calculation unit 6, and the azimuth, roll angle, and Measure and calculate pitch angle three-dimensionally. Figure 2
The system shown in FIG. 1 is configured using the azimuth angle, roll angle, and pitch angle outputs measured in .

【0011】図1に於いて、10は、航行体、例えば船
舶等の船体のヨー軸を入力軸とするよう船体に固定され
た振動ジャイロの如き角速度センサである。振動ジャイ
ロ10は、振動している物体に振動ベクトルと垂直方向
に角速度が動くと、振動ベクトル及び角速度ベクトルの
両ベクトルに垂直な方向にコリオリの力が作用するとい
う力学原理に基づき、コリオリの力から角速度の大きさ
と方向とを検出し、アナログ電圧で角速度を出力する回
転体を用いないレートジャイロである。尚、角速度セン
サとして振動ジャイロ10を用いると、これは回転体を
用いていないため、長寿命、起動時間が短い、低消費電
力である等の特徴がある。振動ジャイロ10の出力角速
度は、A/D変換器11に供給されて、ディジタル変換
された後、後述の傾斜補正部12により、ジャイロ入力
軸の傾斜補正され、加算器Eを介して積分器13に入力
される。積分器13は、角速度を積分する機能を有して
おり、その出力は角度を示す。積分器13の出力角度は
、振動ジャイロ10の入力軸が鉛直軸となるように設置
されているので、航行体の方位角ということができる。
In FIG. 1, reference numeral 10 denotes an angular velocity sensor such as a vibrating gyroscope fixed to a vessel such as a vessel such as a ship so that its input axis is the yaw axis of the vessel. The vibrating gyroscope 10 is based on the mechanical principle that when an angular velocity moves in a direction perpendicular to a vibration vector on a vibrating object, a Coriolis force acts in a direction perpendicular to both the vibration vector and the angular velocity vector. This is a rate gyro that does not use a rotating body and detects the magnitude and direction of angular velocity from the ground, and outputs the angular velocity as an analog voltage. Note that when the vibrating gyroscope 10 is used as an angular velocity sensor, since it does not use a rotating body, it has features such as long life, short startup time, and low power consumption. The output angular velocity of the vibrating gyro 10 is supplied to the A/D converter 11 and converted into digital data, and then the tilt correction section 12, which will be described later, corrects the tilt of the gyro input axis. is input. The integrator 13 has a function of integrating angular velocity, and its output indicates an angle. The output angle of the integrator 13 can be said to be the azimuth angle of the navigation vehicle since the input axis of the vibrating gyro 10 is installed as a vertical axis.

【0012】一方、図2で説明した、GPS角度演算部
6で算出した方位角出力は振動ジャイロ10の出力を積
分することによって得られた方位角と、比較器Cで比較
演算され、その残差角は、補償演算部14に入力される
。補償演算部14は、例えば、比例ゲインK+積分で構
成されており、残差角をK倍する作用を有している。 このK倍された補償演算部14からの出力は、積分器1
3の入力側の加算器Eに、反対符号でフィードバックさ
れる。このように系を構成すると、振動ジャイロ10の
出力角速度を積分した方位角が、GPS角度演算部6か
らの方位角に追従する。したがって、GPS角度演算部
6の出力周期が長くなっても、その間は、振動ジャイロ
10による方位角で補間されるため、常に連続した正確
な方位角を出力することができる。
On the other hand, the azimuth angle output calculated by the GPS angle calculation unit 6, which was explained in FIG. The difference angle is input to the compensation calculation section 14. The compensation calculation unit 14 is composed of, for example, a proportional gain K+integration, and has the function of multiplying the residual angle by K. The output from the compensation calculation unit 14 multiplied by K is the output from the integrator 1
3 is fed back to the adder E on the input side with the opposite sign. When the system is configured in this way, the azimuth angle obtained by integrating the output angular velocity of the vibrating gyro 10 follows the azimuth angle from the GPS angle calculation unit 6. Therefore, even if the output period of the GPS angle calculation section 6 becomes long, the azimuth angle is interpolated by the vibrating gyro 10 during that period, so that a continuous and accurate azimuth angle can be output.

【0013】なお、GPS角度演算部6の出力であるロ
ール角及びピッチ角出力は、傾斜補正部12に接続され
航行体の姿勢角の変化による振動ジャイロ10の出力角
速度誤差を補正し、水平面内の運動を正しく検出できる
ようにしている。この機能は、航行体が例えば、角αの
ローリングをしながら旋回した場合を考えると、ジャイ
ロが検出する旋回角速度ωは、角αだけ傾斜した面内で
あるから、水平面内の角速度はω− cosαとなる。 角速度を積分した方位角は水平面内の角度であるから船
体に固定したジャイロ出力ωを用いた場合には、真値と
の間に1−cos αの誤差が生ずる。航行体が、ピッ
チングしながら旋回した場合も同様でありピッチング角
により誤差が生ずる。本、航行体の姿勢角による誤差を
上述のような原理でGPSからの信号により補正する要
素が、傾斜補正部12であり、これにより高精度な方位
計測が可能となる。図1において積分器13よりの方位
角及びGPS位置演算部4よりの位置出力データを表示
する要素が表示器15である。尚本発明は上述実施例に
限ることなく本発明の要旨を逸脱することなく、その他
種々の構成が採り得ることは勿論である。
The roll angle and pitch angle outputs of the GPS angle calculating section 6 are connected to an inclination correcting section 12, which corrects the output angular velocity error of the vibrating gyroscope 10 due to changes in the attitude angle of the navigation object, and corrects them in the horizontal plane. The motion of the robot can be detected correctly. This function works because if we consider a case where a navigation object turns while rolling at an angle α, the turning angular velocity ω detected by the gyro is in a plane tilted by an angle α, so the angular velocity in a horizontal plane is ω− It becomes cosα. Since the azimuth angle obtained by integrating the angular velocity is an angle in the horizontal plane, when the gyro output ω fixed to the hull is used, an error of 1-cos α will occur between it and the true value. The same is true when the navigation object turns while pitching, and errors occur depending on the pitching angle. The inclination correction unit 12 is an element that corrects the error due to the attitude angle of the navigation object using the signal from the GPS based on the above-mentioned principle, which enables highly accurate azimuth measurement. In FIG. 1, a display 15 is an element that displays the azimuth from the integrator 13 and the position output data from the GPS position calculation section 4. It goes without saying that the present invention is not limited to the above-described embodiments, and that various other configurations can be adopted without departing from the gist of the present invention.

【0014】[0014]

【発明の効果】以上、説明したように、本発明によれば
、以下に列挙する効果が得られる。 (1)  船舶等の航行体の方位角を高精度で連続して
得ることができる。 (2)  方位角を時間遅れなく計測することができる
。 (3)  GPS衛星から得られる方位角の誤差が増大
した場合にも、連続して高精度な方位角を得ることがで
きる。 (4)  振動ジャイロを用いれば、長寿命、低消費電
力、起動時間が短い。 (5)  方位角のみならず、位置、速度をも正確に計
測することができる。
[Effects of the Invention] As explained above, according to the present invention, the following effects can be obtained. (1) The azimuth angle of a navigation object such as a ship can be obtained continuously with high accuracy. (2) Azimuth can be measured without time delay. (3) Even if the error in the azimuth angle obtained from GPS satellites increases, it is possible to continuously obtain highly accurate azimuth angles. (4) If a vibrating gyroscope is used, it will have a long life, low power consumption, and short start-up time. (5) It is possible to accurately measure not only azimuth, but also position and speed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明ジャイロ装置の一実施例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an embodiment of a gyro device according to the present invention.

【図2】図1の説明に供する線図である。FIG. 2 is a diagram for explaining FIG. 1;

【図3】方位角の計測原理の説明に供する線図である。FIG. 3 is a diagram for explaining the principle of measuring azimuth angles.

【符号の説明】[Explanation of symbols]

1、2、及び16  受信アンテナ 3  方位演算部 4  位置演算部 5  衛星 6  角度演算部 10  振動ジャイロ 12  傾斜補正部 13  積分器 14  補償演算部 15  表示部 C  比較器 E  加算器 1, 2, and 16 receiving antennas 3 Direction calculation section 4 Position calculation section 5 Satellite 6 Angle calculation section 10 Vibration gyro 12 Inclination correction section 13 Integrator 14 Compensation calculation section 15 Display section C Comparator E Adder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  航行体に所定の距離をおいて設置され
るべき第1、第2及び第3の衛星受信アンテナと、該ア
ンテナで受信した衛星電波及びその位相差を用いて上記
航行体の方位角、ロール角、ピッチ角及び位置を演算す
る演算手段と、航行体のヨー軸を入力軸となすよう航行
体に固定した角速度センサと、該角度速度センサの出力
を入力する加算器と、該加算器の出力を積分する積分手
段と、該積分手段の出力と上記衛星電波を受信すること
により得られる方位角とを比較する比較手段と、該比較
手段の偏差を補償するための補償手段と、該補償手段の
出力を上記加算器の負入力端にフィードバックする手段
とを有するジャイロ装置において、上記、角速度センサ
の出力側と上記加算器との間に上記衛星電波によるロー
ル角及びピッチ角演算出力を用いた航行体の傾斜補正手
段を挿入したことを特徴とするジャイロ装置。
Claim 1: First, second, and third satellite receiving antennas to be installed at a predetermined distance from the navigation object, and satellite radio waves received by the antennas and the phase difference thereof are used to transmit signals to the navigation object. a calculation means for calculating an azimuth angle, a roll angle, a pitch angle, and a position; an angular velocity sensor fixed to the navigation vehicle so that the yaw axis of the navigation vehicle serves as an input axis; and an adder for inputting the output of the angular velocity sensor; an integrating means for integrating the output of the adder; a comparing means for comparing the output of the integrating means with an azimuth obtained by receiving the satellite radio waves; and a compensating means for compensating for deviations of the comparing means. and means for feeding back the output of the compensating means to the negative input terminal of the adder, wherein a roll angle and a pitch angle by the satellite radio waves are provided between the output side of the angular velocity sensor and the adder. A gyro device characterized in that a means for correcting the inclination of a navigation object using a calculation output is inserted.
JP3048431A 1991-03-13 1991-03-13 Gyro device Expired - Lifetime JP3044357B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3048431A JP3044357B2 (en) 1991-03-13 1991-03-13 Gyro device
US07/848,388 US5349531A (en) 1991-03-13 1992-03-09 Navigation apparatus using a global positioning system
GB9205289A GB2254511B (en) 1991-03-13 1992-03-11 Gyro apparatus
NO920960A NO304046B1 (en) 1991-03-13 1992-03-12 Gyro apparatus
DE4208158A DE4208158C2 (en) 1991-03-13 1992-03-13 Gyro system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048431A JP3044357B2 (en) 1991-03-13 1991-03-13 Gyro device

Publications (2)

Publication Number Publication Date
JPH04283615A true JPH04283615A (en) 1992-10-08
JP3044357B2 JP3044357B2 (en) 2000-05-22

Family

ID=12803164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048431A Expired - Lifetime JP3044357B2 (en) 1991-03-13 1991-03-13 Gyro device

Country Status (4)

Country Link
JP (1) JP3044357B2 (en)
DE (1) DE4208158C2 (en)
GB (1) GB2254511B (en)
NO (1) NO304046B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507101A (en) * 1993-12-23 1997-07-15 カール オーセン Camera guide mechanism
JP2001120151A (en) * 1999-10-27 2001-05-08 Nec Corp Automatic agrochemical spraying device with radio controlled helicopter using gps
JP2001166030A (en) * 1999-12-07 2001-06-22 Japan Radio Co Ltd Radar antenna azimuth measuring device
WO2018066291A1 (en) * 2016-10-07 2018-04-12 古野電気株式会社 Bearing calculation device, bearing calculation method, and bearing calculation program
CN108958064A (en) * 2017-05-17 2018-12-07 上海微小卫星工程中心 Posture guidance law error judgement method, system and electronic equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662975B2 (en) * 1994-07-22 2005-06-22 日本無線株式会社 Tracking array antenna device
US5543804A (en) * 1994-09-13 1996-08-06 Litton Systems, Inc. Navagation apparatus with improved attitude determination
DE19637355A1 (en) * 1996-09-13 1998-03-19 Teves Gmbh Alfred Yaw rate sensor for motor vehicle travel stability regulation
US5877723A (en) * 1997-03-05 1999-03-02 Caterpillar Inc. System and method for determining an operating point
DE19945120C2 (en) 1999-09-21 2001-12-06 Mannesmann Vdo Ag Method of navigating a vehicle
DE19945121C2 (en) * 1999-09-21 2001-12-13 Mannesmann Vdo Ag Method of navigating a vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754280A (en) * 1982-09-10 1988-06-28 The Charles Stark Draper Laboratory, Inc. Attitude sensing system
US4647935A (en) * 1984-12-06 1987-03-03 Starnav Corporation Apparatus for determining the magnitude of phase discontinuities introduced into a received signal at known instants
FR2611399B1 (en) * 1987-02-27 1994-06-17 Lmt Radio Professionelle LANDING ASSISTANCE SYSTEM USING NAVIGATION SATELLITES
JPH02196975A (en) * 1989-01-26 1990-08-03 Nissan Motor Co Ltd Gps navigation device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507101A (en) * 1993-12-23 1997-07-15 カール オーセン Camera guide mechanism
JP2001120151A (en) * 1999-10-27 2001-05-08 Nec Corp Automatic agrochemical spraying device with radio controlled helicopter using gps
JP2001166030A (en) * 1999-12-07 2001-06-22 Japan Radio Co Ltd Radar antenna azimuth measuring device
WO2018066291A1 (en) * 2016-10-07 2018-04-12 古野電気株式会社 Bearing calculation device, bearing calculation method, and bearing calculation program
CN108958064A (en) * 2017-05-17 2018-12-07 上海微小卫星工程中心 Posture guidance law error judgement method, system and electronic equipment
CN108958064B (en) * 2017-05-17 2021-10-01 上海微小卫星工程中心 Attitude guidance law error judgment method and system and electronic equipment

Also Published As

Publication number Publication date
DE4208158C2 (en) 1998-03-19
GB2254511B (en) 1995-04-26
DE4208158A1 (en) 1992-09-17
GB2254511A (en) 1992-10-07
GB9205289D0 (en) 1992-04-22
NO920960D0 (en) 1992-03-12
NO920960L (en) 1992-09-14
NO304046B1 (en) 1998-10-12
JP3044357B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US4402049A (en) Hybrid velocity derived heading reference system
JP4586172B2 (en) Inertial navigation system
US5933110A (en) Vessel attitude determination system and method
US6029111A (en) Vehicle navigation system and method using GPS velocities
US5349531A (en) Navigation apparatus using a global positioning system
CN110133700B (en) Shipborne integrated navigation positioning method
JP2014077769A (en) Sensor tilt determination device and program
JP3044357B2 (en) Gyro device
US9217639B1 (en) North-finding using inertial navigation system
JPH0926328A (en) Position determination apparatus
JP2006153816A (en) Apparatus for detecting azimuth and attitude of object
JP2946050B2 (en) Gyro device
JP2946051B2 (en) Gyro device
JPH05288559A (en) Gyroscope device
JP2012202749A (en) Orientation detection device
JP2013253928A (en) Attitude information calculation device, and attitude information calculation method
Dai et al. Heading-determination using the sensor-fusion based maritime PNT Unit
JPH1194573A (en) Position attitude measuring device for mobile body
JP2711931B2 (en) Gyro device
JPH0666920A (en) Apparatus and method for measuring three-dimensional position
RU2523670C1 (en) Integrated inertial-satellite system of orientation and navigation for marine facilities
JP6321914B2 (en) Mobile body information calculation device, mobile body information acquisition device, mobile body, mobile body information calculation method, mobile body information acquisition method, mobile body information calculation program, and mobile body information acquisition program
JPH0949737A (en) Navigation signal outputting method
JPH10186016A (en) Method of measuring rocking of navigating body
KR100341801B1 (en) Urban vehicle navigation system using multiple antennas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

EXPY Cancellation because of completion of term