JPH0423088B2 - - Google Patents

Info

Publication number
JPH0423088B2
JPH0423088B2 JP57195615A JP19561582A JPH0423088B2 JP H0423088 B2 JPH0423088 B2 JP H0423088B2 JP 57195615 A JP57195615 A JP 57195615A JP 19561582 A JP19561582 A JP 19561582A JP H0423088 B2 JPH0423088 B2 JP H0423088B2
Authority
JP
Japan
Prior art keywords
valve
steam
temperature
turbine bypass
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57195615A
Other languages
Japanese (ja)
Other versions
JPS5985403A (en
Inventor
Hiroyuki Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19561582A priority Critical patent/JPS5985403A/en
Publication of JPS5985403A publication Critical patent/JPS5985403A/en
Publication of JPH0423088B2 publication Critical patent/JPH0423088B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービンプラントにおけるター
ビンバイパス弁暖機装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine bypass valve warm-up device in a steam turbine plant.

〔発明の技術的背景〕[Technical background of the invention]

一般に、蒸気タービンプラントにおいては、タ
ービン起動時における蒸気発生器の安定性と過熱
防止を確保するため、蒸気発生器ではタービン起
動時でも必要最低限の蒸気を発生させておき、タ
ービン起動に必要以外の蒸気をバイパスさせて復
水器に回収させ、或はタービンの緊急停止時に蒸
気発生器で発生した蒸気をバイパスさせて復水器
に送給する等のために、タービンバイパス装置を
設けることが行なわれている。
Generally, in a steam turbine plant, in order to ensure the stability of the steam generator and prevent overheating when the turbine is started, the steam generator is made to generate the minimum amount of steam even when the turbine is started. A turbine bypass device may be installed to bypass the steam generated in the steam generator and to recover it in the condenser, or to bypass the steam generated in the steam generator and feed it to the condenser in the event of an emergency shutdown of the turbine. It is being done.

すなわち、第1図は上記タービンバイパス装置
を設けたタービンプラントの系統図であつて、原
子炉の如き蒸気発生器1で発生した蒸気は、主蒸
気隔離弁2、主蒸気止め弁3、および蒸気加減弁
4を経て高圧タービン5に供給される。上記高圧
タービン5に供給されそこで仕事を行なつた蒸気
は、湿分分離器6で湿分を除去された後、インタ
ーセプト弁7を経て低圧タービン8に流入して仕
事を行ない、発電機9を駆動し、その後復水器1
0で凝縮復水せしめられる。そしてこの復水は復
水ポンプ11によつて抽出され、図示しない給水
加熱器等を経て再び蒸気発生器1に還流される。
That is, FIG. 1 is a system diagram of a turbine plant equipped with the above-mentioned turbine bypass device, in which steam generated in a steam generator 1 such as a nuclear reactor is passed through a main steam isolation valve 2, a main steam stop valve 3, and a steam It is supplied to a high pressure turbine 5 via a regulating valve 4. The steam that is supplied to the high pressure turbine 5 and performs work there has its moisture removed by a moisture separator 6, and then flows into the low pressure turbine 8 via an intercept valve 7 to perform work and power the generator 9. drive, then condenser 1
At 0, the water is condensed. This condensate is then extracted by a condensate pump 11 and returned to the steam generator 1 via a feed water heater (not shown) or the like.

一方、主蒸気止め弁3の上流側には、タービン
バイパス弁12を有するタービンバイパス導管1
3の一端が接続されており、そのタービンバイパ
ス導管13の他端が減圧装置14および減温装置
15を介して復水器10に連接されている。
On the other hand, on the upstream side of the main steam stop valve 3, a turbine bypass conduit 1 having a turbine bypass valve 12 is provided.
3 is connected to the turbine bypass conduit 13, and the other end of the turbine bypass conduit 13 is connected to the condenser 10 via a pressure reducing device 14 and a temperature reducing device 15.

しかして、例えば電力系統の事故等によつて負
荷しや断が行なわれると、蒸気加減弁4が閉じら
れるとともに、タービンバイパス弁12が開らか
れ、蒸気発生器1から送給された蒸気はタービン
をバイパスしタービンバイパス導管13を経て復
水器10に流入され、原子炉スクラム等の非常停
止にまで発展することが防止される。
For example, when the load is turned on or off due to an accident in the electric power system, the steam control valve 4 is closed, the turbine bypass valve 12 is opened, and the steam supplied from the steam generator 1 is It bypasses the turbine and flows into the condenser 10 via the turbine bypass conduit 13, thereby preventing the situation from developing into an emergency shutdown such as a reactor scram.

このように、発電機9が負荷しや断したような
場合、蒸気加減弁4を急閉させるとともに、定格
蒸気流量を処理するバイパス弁12を急開させ、
これによつて蒸気発生器1での発生蒸気をしや断
することなく復水器10に吸収させるので、蒸気
発生器1の圧力上昇等を回避し、蒸気発生器を停
止させることなく、所内単独運転に移行させるこ
とができる。したがつて、所内単独運転状態で系
統事故の復旧を待ち、復旧後直ちに再併入てター
ビン駆動を開始することができる。
In this way, when the load on the generator 9 is cut off, the steam control valve 4 is suddenly closed, and the bypass valve 12, which handles the rated steam flow rate, is suddenly opened.
As a result, the steam generated in the steam generator 1 is absorbed into the condenser 10 without interruption, thereby avoiding a pressure increase in the steam generator 1, etc., and without stopping the steam generator. It is possible to shift to independent operation. Therefore, it is possible to wait for recovery from the system accident in the standalone operation state in the plant, and immediately rejoin the system and start driving the turbine after recovery.

〔背景技術の問題点〕[Problems with background technology]

第2図は上記タービンバイパス装置に使用され
るタービンバイパス弁12の縦断面図であつて、
弁ケーシング20は上流側蒸気室21および下流
側蒸気室22に区割されており、上記上流側蒸気
室21が連結管部21aを介して主蒸気管側のタ
ービンバイパス導管に接続され、下流側蒸気室2
2は連結管部22aを介して復水器側のタービン
バイパス導管に接続されている。
FIG. 2 is a longitudinal cross-sectional view of the turbine bypass valve 12 used in the turbine bypass device, and includes:
The valve casing 20 is divided into an upstream steam chamber 21 and a downstream steam chamber 22, and the upstream steam chamber 21 is connected to a turbine bypass conduit on the main steam pipe side via a connecting pipe section 21a, and steam room 2
2 is connected to a turbine bypass conduit on the condenser side via a connecting pipe section 22a.

また、上記上流側蒸気室21と下流側蒸気室2
2との連通口部には弁座23が設けられており、
その弁座23に、上流側蒸気室21内に配設され
た弁体24が着座し、その連通口をしや断し得る
ようにしてある。上記弁体24に装着された弁杆
25は、下流側蒸気室22を貫通し、弁棒ガイド
26に案内されて軸線方向に摺動可能とされ、弁
ケーシング20外に設けられた弁駆動装置(図示
せず)に連結されている。なお、図中符号27は
弁上蓋である。
In addition, the upstream steam chamber 21 and the downstream steam chamber 2
A valve seat 23 is provided at the communication port with the valve 2.
A valve body 24 disposed within the upstream steam chamber 21 is seated on the valve seat 23 so as to be able to close the communication port. A valve rod 25 attached to the valve body 24 passes through the downstream steam chamber 22 and is slidable in the axial direction while being guided by a valve rod guide 26, and is connected to a valve drive device provided outside the valve casing 20. (not shown). In addition, the code|symbol 27 in the figure is a valve upper cover.

ところで、このようなバイパス弁12において
は、弁が全閉している場合には、上流側蒸気室2
1は高温高圧の蒸気で満たされており、一方下流
側蒸気室22は復水器10に連通しているため、
復水器10の真空度に応じたかなり低温の飽和蒸
気で満たされている。
By the way, in such a bypass valve 12, when the valve is fully closed, the upstream steam chamber 2
1 is filled with high-temperature, high-pressure steam, while the downstream steam chamber 22 is in communication with the condenser 10.
The condenser 10 is filled with saturated steam at a fairly low temperature depending on the degree of vacuum.

したがつて、この場合上流側蒸気室21の室壁
は高温蒸気と接しているため高い温度レベルとな
り、下流側蒸気室22の室壁および連結管部22
aは、かなり低温の飽和蒸気と接しており、また
保温されているとはいえ周囲はプラント室内空気
温度であること、および高温側蒸気室21の室壁
からの熱伝導による影響はかなり少なくなつてい
ることから、温度レベルはプラント室内空気温度
より数十度高い程度の状態にある。また、弁座2
3が設けられている連通口部は、上流側蒸気室2
1からの熱伝導の影響によつて上記両者の中間の
温度レベルにある。
Therefore, in this case, the chamber wall of the upstream side steam chamber 21 is in contact with the high temperature steam, so the temperature level is high, and the chamber wall of the downstream side steam chamber 22 and the connecting pipe section 22
A is in contact with fairly low-temperature saturated steam, and although it is kept warm, the ambient temperature is the same as that of the air inside the plant, and the influence of heat conduction from the chamber wall of the high-temperature side steam chamber 21 is considerably reduced. Therefore, the temperature level is several tens of degrees higher than the indoor air temperature of the plant. Also, valve seat 2
3 is provided in the upstream steam chamber 2.
Due to the influence of heat conduction from 1, the temperature level is between the above two.

ところが、このような温度分布による熱応力
は、定常時にはメタル内外面温度差が低いために
かなり低いが、数百ミリ秒でバイパス弁12の弁
体24が弁座23から急速に離れて急開すると、
主蒸気管側からの高温蒸気が短時間のうちに下流
側蒸気室22に流入し、復水器側に流れていくた
め、瞬時のうちに、連通口部、下流側蒸気室22
および連通管部22aが高温蒸気と接し、熱衝撃
が加えられ、当該部にクラツクが生じる可能性が
ある。
However, although the thermal stress caused by such temperature distribution is quite low in steady state because the temperature difference between the inner and outer surfaces of the metal is low, the valve body 24 of the bypass valve 12 rapidly separates from the valve seat 23 in a few hundred milliseconds and suddenly opens. Then,
Since high-temperature steam from the main steam pipe side flows into the downstream side steam chamber 22 in a short time and flows to the condenser side, the high temperature steam flows from the communication port to the downstream side steam chamber 22 in an instant.
The communication pipe portion 22a may come into contact with high-temperature steam and receive a thermal shock, which may cause cracks in the portion.

さらに、タービンバイパス弁の信頼性を確認す
るために、毎週実施されている開閉テストにおい
ても、弁開時間が数秒と長いとはいえ、前述と同
様に熱応力によつてタービンバイパス弁の強度寿
命が高い割合で消費されてしまう等の問題点があ
る。
Furthermore, in the opening/closing tests that are conducted weekly to confirm the reliability of turbine bypass valves, even though the valve opening time is long (several seconds), as mentioned above, the strength of the turbine bypass valve is affected by thermal stress. There are problems such as a high rate of consumption.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、バイパス弁開閉
テスト時におけるタービンバイパス弁急開時に弁
ケーシング等に加わる熱衝撃を大幅に緩和し、発
生熱応力による強度寿命の低下を低減させるよう
にしたタービンバイパス弁暖機装置を得ることを
目的とする。
In view of these points, the present invention provides a turbine that significantly alleviates the thermal shock applied to the valve casing etc. when the turbine bypass valve suddenly opens during the bypass valve opening/closing test, and reduces the decrease in strength life due to generated thermal stress. The purpose is to obtain a bypass valve warming device.

〔発明の概要〕[Summary of the invention]

本発明は、タービンバイパス弁の上流側蒸気室
の蒸気温度と下流側蒸気室メタル温度との温度差
を検出する温度差検出装置と、タービンバイパス
弁テスト時における上記タービンバイパス弁の開
度変化を上記検出装置からの温度差信号によつて
変更する弁テスト制御装置とを設けたことを特徴
とするものであつて、上流側蒸気室内蒸気温度と
下流側蒸気室メタル温度との温度差に応じてター
ビンバイパス弁急開時における弁ケーシング等の
熱衝撃を緩和するとともに、一方弁テスト時にお
いてもタービンバイパス弁に高い熱応力が加わる
ことを防止するようにしたものである。
The present invention provides a temperature difference detection device that detects the temperature difference between the steam temperature in the upstream steam chamber of a turbine bypass valve and the downstream steam chamber metal temperature, and a temperature difference detection device that detects the temperature difference between the steam temperature in the upstream steam chamber and the downstream steam chamber metal temperature, and The valve test control device is characterized in that it is provided with a valve test control device that changes according to a temperature difference signal from the detection device, and the valve test control device changes the temperature according to the temperature difference between the steam temperature in the upstream steam chamber and the metal temperature in the downstream steam chamber. This is designed to alleviate thermal shock to the valve casing and the like when the turbine bypass valve is suddenly opened, and also to prevent high thermal stress from being applied to the turbine bypass valve during one-way valve tests.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図乃至第5図を参照して本発明の一
実施例について説明する。なお、第3図中第2図
と同一部分には同一符号を付し詳細な説明は省略
する。
An embodiment of the present invention will be described below with reference to FIGS. 3 to 5. Note that the same parts in FIG. 3 as in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

第3図において、弁ケーシング20には、上流
側蒸気室21内の蒸気温度を検出する第1の温度
検出器30および下流側蒸気室22のメタル温度
を検出する第2の温度検出器31がそれぞれ設け
られている。上記両温度検出器30および31で
検出された温度信号は、それぞれ温度差検出装置
32に加えられ、そこで互いに比較され温度差信
号が出力される。
In FIG. 3, the valve casing 20 includes a first temperature detector 30 for detecting the steam temperature in the upstream steam chamber 21 and a second temperature detector 31 for detecting the metal temperature in the downstream steam chamber 22. Each is provided. The temperature signals detected by both temperature detectors 30 and 31 are respectively applied to a temperature difference detection device 32, where they are compared with each other and a temperature difference signal is output.

一方、下流側蒸気室22には、例えば蒸気加減
弁4の弁棒漏えい蒸気管と連結された暖機蒸気供
給管33が接続開口せしめられており、その暖機
蒸気供給管33には調節弁34が設けられてい
る。ところで、上記調節弁34はバイパス弁暖機
制御装置35によつてその開度制御が行なわれる
ようにしてあり、そのバイパス弁暖機制御装置3
5には、前記温度差検出装置32からの温度差信
号が加えられ、その温度差信号に対応して調節弁
制御信号が前記調節弁34に加えられる。
On the other hand, the downstream side steam chamber 22 has a connection opening for a warm-up steam supply pipe 33 connected to, for example, a valve stem leakage steam pipe of the steam control valve 4, and the warm-up steam supply pipe 33 has a control valve. 34 are provided. By the way, the opening degree of the control valve 34 is controlled by a bypass valve warm-up control device 35.
5, a temperature difference signal from the temperature difference detection device 32 is applied, and a control valve control signal is applied to the control valve 34 in response to the temperature difference signal.

第4図はその作動説明図であつて、上流側蒸気
室21の蒸気温度をA、下流側蒸気室22のメタ
ル温度をCとする。いま、下流側蒸気室22のメ
タル温度が或る温度B以下であり、上記上流側蒸
気室21の蒸気温度Aと下流側蒸気室22のメタ
ル温度Cとの温度差が温度AとBとの差T1以上
であると、前記温度差検出装置32から出力され
る温度差信号が大であるため、前記バイパス弁暖
機制御装置35によつて調節弁34が開となり、
暖機蒸気供給管33を経て暖機蒸気が下流側蒸気
室22に供給され、下流側蒸気室22のメタル温
度Cが上昇する。そこで、上記メタル温度が温度
Bより高い温度Dとなり、上流側蒸気室21の蒸
気温度Aとの差がT2となると、バイパス弁暖機
制御装置35が調節弁閉信号を発生し、調節弁3
4は閉じられる。したがつて、下流側蒸気室メタ
ル温度Cはその後或程度上昇した後次第に低下
し、温度Bになり前記温度差がT1となると、再
び調節弁34が開となり、下流側蒸気室メタル温
度Cが上昇せしめられる。すなわち、前記温度差
がT1以上になると調節弁34が開らかれ、T2
なると閉じるように制御される。
FIG. 4 is an explanatory diagram of the operation, in which the steam temperature in the upstream steam chamber 21 is A, and the metal temperature in the downstream steam chamber 22 is C. Now, the metal temperature of the downstream steam chamber 22 is below a certain temperature B, and the temperature difference between the steam temperature A of the upstream steam chamber 21 and the metal temperature C of the downstream steam chamber 22 is equal to the temperature A and B. If the difference is T1 or more, the temperature difference signal output from the temperature difference detection device 32 is large, so the bypass valve warm-up control device 35 opens the control valve 34,
Warm-up steam is supplied to the downstream steam chamber 22 via the warm-up steam supply pipe 33, and the metal temperature C of the downstream steam chamber 22 increases. Therefore, when the metal temperature becomes a temperature D higher than the temperature B, and the difference between the temperature and the steam temperature A in the upstream steam chamber 21 becomes T2 , the bypass valve warm-up control device 35 generates a control valve closing signal, and the control valve closes. 3
4 is closed. Therefore, the downstream steam chamber metal temperature C rises to a certain extent and then gradually decreases to temperature B. When the temperature difference reaches T1 , the control valve 34 is opened again, and the downstream steam chamber metal temperature C is forced to rise. That is, the control valve 34 is controlled to be opened when the temperature difference becomes T1 or more, and closed when the temperature difference becomes T2 .

このように、プラントの通常運転時において
は、下流側蒸気室22のメタル温度に対応して、
弁座23の下流側に暖機蒸気が送入され、弁ケー
シング20の下流側蒸気室22の室壁等の温度レ
ベルが一定以上に維持され、弁急開時における弁
座下流側の熱衝撃が緩和される。
In this way, during normal operation of the plant, depending on the metal temperature of the downstream steam chamber 22,
Warming-up steam is sent to the downstream side of the valve seat 23, and the temperature level of the chamber wall of the downstream side steam chamber 22 of the valve casing 20 is maintained above a certain level, thereby preventing thermal shock on the downstream side of the valve seat when the valve is suddenly opened. is alleviated.

また、タービンバイパス弁制御装置(図示せ
ず)には、タービンバイパス弁12の開閉テスト
を行なう場合に作動してタービンバイパス弁12
の開閉制御を行なう弁テスト制御装置36が設け
られている(第3図)。この弁テスト制御装置3
6にはタービンバイパス弁の開閉テスト時にテス
ト要求信号aが加えられるとともに、前記温度差
検出装置32から温度差信号も加えられている。
Further, the turbine bypass valve control device (not shown) is configured to actuate the turbine bypass valve 12 when performing an opening/closing test of the turbine bypass valve 12.
A valve test control device 36 is provided for controlling the opening and closing of the valve (FIG. 3). This valve test control device 3
6 is applied with a test request signal a during an opening/closing test of the turbine bypass valve, and a temperature difference signal from the temperature difference detection device 32 is also applied thereto.

すなわち、暖機蒸気として蒸気加減弁の弁棒漏
えい蒸気を使用している場合、蒸気温度の低減も
考えられるため、自ずと低温蒸気室メタル温度の
最上昇値にも限界がある。したがつて、前記弁テ
スト制御装置36は、温度差検出装置32からの
温度差信号の大小によつて、第5図の如くタービ
ンバイパス弁12の開閉テスト時における弁開度
率を変更するようにしてある。
That is, when leaking steam from a valve stem of a steam control valve is used as warm-up steam, there is a possibility that the steam temperature may be reduced, so there is naturally a limit to the maximum value of the temperature of the low-temperature steam chamber metal. Therefore, the valve test control device 36 changes the valve opening rate during the opening/closing test of the turbine bypass valve 12, as shown in FIG. 5, depending on the magnitude of the temperature difference signal from the temperature difference detection device 32. It is set as.

第5図は、弁テスト制御装置36から出力され
る弁開度信号の変化線図であつて、上流側蒸気室
の蒸気温度と下流側蒸気室のメタル温度との温度
差が前記T2以上の場合には、タービンバイパス
弁12の開度変化が線Mのようになるような信号
が出される。すなわち、タービンバイパス弁の弁
開後微少開度Iで一定時間その開度を保持してそ
の間暖機蒸気を流した後、タービンバイパス弁を
全開する。一方、上記温度差がT2以下の場合に
は、線Lのように、タービンバイパス弁を微少開
度で一旦保持することなく、全開させる。
FIG. 5 is a change diagram of the valve opening signal output from the valve test control device 36, and shows that the temperature difference between the steam temperature in the upstream steam chamber and the metal temperature in the downstream steam chamber is equal to or greater than T 2 . In this case, a signal is output such that the opening degree of the turbine bypass valve 12 changes as shown by line M. That is, after opening the turbine bypass valve, the opening degree is maintained at a slight opening degree I for a certain period of time, during which warm-up steam is allowed to flow, and then the turbine bypass valve is fully opened. On the other hand, when the above-mentioned temperature difference is T2 or less, as shown by line L, the turbine bypass valve is not held at a slight opening but is fully opened.

したがつて、バイパス弁テスト時においても、
上流側蒸気室の蒸気温度と下流側蒸気室のメタル
温度の温度差が大きい場合には、タービンバイパ
ス弁の微少開度で暖機された後、全開されるの
で、弁テスト時における熱応力も低い値になり、
弁テストによる弁ケーシング等の強度寿命消費も
低減される。
Therefore, even during the bypass valve test,
If the temperature difference between the steam temperature in the upstream steam chamber and the metal temperature in the downstream steam chamber is large, the turbine bypass valve is warmed up by a small opening and then fully opened, reducing thermal stress during valve testing. becomes a low value,
The strength life consumption of valve casings and the like due to valve testing is also reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、弁テス
ト時においても、タービンバイパス弁の上流側お
よび下流側の温度差が或る値以上の場合には、暖
機蒸気を流した後全開され、熱応力の発生が低下
せしめられ、弁テスト時における強度寿命消費を
低減させ、信頼性を高めることができる等の効果
を奏する。
As explained above, according to the present invention, even during a valve test, if the temperature difference between the upstream side and the downstream side of the turbine bypass valve is more than a certain value, the turbine bypass valve is fully opened after flowing warm-up steam, The generation of thermal stress is reduced, strength life consumption during valve testing is reduced, and reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタービンバイパス装置を有するタービ
ンプラントの概略系統図、第2図はタービンバイ
パス弁の縦断面図、第3図は本発明のタービンバ
イパス弁暖機装置の系統図、第4図はその作動説
明図、第5図は弁テスト制御装置のバイパス弁開
度信号変化線図である。 12……タービンバイパス弁、20……弁ケー
シング、21……上流側蒸気室、22……下流側
蒸気室、23……弁座、24……弁体、30……
第1の温度検出器、31……第2の温度検出器、
32……温度差検出装置、33……暖機蒸気供給
管、34……調節弁、36……弁テスト制御装
置。
Fig. 1 is a schematic system diagram of a turbine plant having a turbine bypass device, Fig. 2 is a longitudinal sectional view of a turbine bypass valve, Fig. 3 is a system diagram of a turbine bypass valve warm-up device of the present invention, and Fig. 4 is its system diagram. The operation explanatory diagram, FIG. 5, is a bypass valve opening degree signal change diagram of the valve test control device. 12... Turbine bypass valve, 20... Valve casing, 21... Upstream steam chamber, 22... Downstream steam chamber, 23... Valve seat, 24... Valve body, 30...
First temperature detector, 31... second temperature detector,
32...Temperature difference detection device, 33...Warm-up steam supply pipe, 34...Control valve, 36...Valve test control device.

Claims (1)

【特許請求の範囲】 1 タービンバイパス弁の上流側蒸気室の蒸気温
度と下流側蒸気室メタル温度との温度差を検出す
る温度差検出装置と、上記温度差検出装置からの
温度差信号によつて、弁テスト時におけるタービ
ンバイパス弁の開度変化を変更せしめる弁テスト
制御装置とを設けたことを特徴とするタービンバ
イパス弁暖機装置。 2 温度差信号が所定値以上の場合には、タービ
ンバイパス弁が一定時間微少開度に保持された後
全開されるように、開度変化が変更されることを
特徴とする、特許請求の範囲第1項記載のタービ
ンバイパス弁暖機装置。
[Scope of Claims] 1. A temperature difference detection device that detects a temperature difference between the steam temperature in the upstream steam chamber and the downstream steam chamber metal temperature of the turbine bypass valve, and a temperature difference signal from the temperature difference detection device. A turbine bypass valve warm-up device comprising a valve test control device that changes the opening degree change of the turbine bypass valve during a valve test. 2. Claims characterized in that when the temperature difference signal is greater than or equal to a predetermined value, the change in opening degree is changed such that the turbine bypass valve is held at a slight opening degree for a certain period of time and then fully opened. The turbine bypass valve warm-up device according to item 1.
JP19561582A 1982-11-08 1982-11-08 Bypass-valve warming apparatus for turbine Granted JPS5985403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19561582A JPS5985403A (en) 1982-11-08 1982-11-08 Bypass-valve warming apparatus for turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19561582A JPS5985403A (en) 1982-11-08 1982-11-08 Bypass-valve warming apparatus for turbine

Publications (2)

Publication Number Publication Date
JPS5985403A JPS5985403A (en) 1984-05-17
JPH0423088B2 true JPH0423088B2 (en) 1992-04-21

Family

ID=16344107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19561582A Granted JPS5985403A (en) 1982-11-08 1982-11-08 Bypass-valve warming apparatus for turbine

Country Status (1)

Country Link
JP (1) JPS5985403A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018356A (en) * 1990-10-10 1991-05-28 Westinghouse Electric Corp. Temperature control of a steam turbine steam to minimize thermal stresses
JP4990992B2 (en) * 2010-03-12 2012-08-01 中国電力株式会社 Leak detection device and leak detection method for turbine bypass valve
JP5959454B2 (en) * 2013-03-08 2016-08-02 株式会社東芝 Steam turbine system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118902A (en) * 1978-03-08 1979-09-14 Toshiba Corp Steam cut-off valve warming equipment
JPS5575509A (en) * 1978-12-04 1980-06-06 Toshiba Corp By-pass system for turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118902A (en) * 1978-03-08 1979-09-14 Toshiba Corp Steam cut-off valve warming equipment
JPS5575509A (en) * 1978-12-04 1980-06-06 Toshiba Corp By-pass system for turbine

Also Published As

Publication number Publication date
JPS5985403A (en) 1984-05-17

Similar Documents

Publication Publication Date Title
JP3132834B2 (en) Gas turbine combustor steam cooling system
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JPH0423088B2 (en)
JPH01167699A (en) Variable delay apparatus for nuclear reactor trip
JPS59101506A (en) Control valve opening control device
JPS585412A (en) Controller for steam turbine plant with reheater
JPS6017997B2 (en) Heat exchanger protection device
JP2613608B2 (en) Pressure equalizing system around the self-pressure type main steam isolation valve
JPS6116210A (en) Method and device of operating steam turbine
JP3697316B2 (en) Moisture separator heater protection device for nuclear power plant
JPS6055681B2 (en) Steam turbine warm-up device for driving boiler feed water pump
JPH0364782B2 (en)
JPH05125908A (en) Water induction protector for steam turbine
JPH0475363B2 (en)
JPS5874804A (en) Controlling device for controlling steam turbine having turbine bypass system
JPS6154923B2 (en)
JPS63148006A (en) Boiler water quality regulator
JPS59107293A (en) Reactor isolation cooling system
JPS6155303A (en) Controlling device of steam turbine
JPS6232086Y2 (en)
JPS6046242B2 (en) Reactor
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS58217705A (en) Control device of steam turbine
JPS60164603A (en) Warmingup device for main steam control valve casing
JPH0459515B2 (en)