JPH04225767A - Defrosting control method of air-conditioner - Google Patents

Defrosting control method of air-conditioner

Info

Publication number
JPH04225767A
JPH04225767A JP41522190A JP41522190A JPH04225767A JP H04225767 A JPH04225767 A JP H04225767A JP 41522190 A JP41522190 A JP 41522190A JP 41522190 A JP41522190 A JP 41522190A JP H04225767 A JPH04225767 A JP H04225767A
Authority
JP
Japan
Prior art keywords
induction motor
slip
speed
signal
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41522190A
Other languages
Japanese (ja)
Other versions
JP2500527B2 (en
Inventor
Kenji Kawagishi
川岸 賢至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP41522190A priority Critical patent/JP2500527B2/en
Publication of JPH04225767A publication Critical patent/JPH04225767A/en
Application granted granted Critical
Publication of JP2500527B2 publication Critical patent/JP2500527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make the temperature of refrigerant gas discharged from a compressor much higher for remarkably shortening the defrosting operation time period by a method wherein during defrosting operation, a compressor driving induction motor is controlled so that it operates with a slippage larger than that in normal operation. CONSTITUTION:During heating operation of an air-conditioner, a defrosting timing detection signal is input to a control circuit 11 when an outdoor unit pipe temperature detector 12 detects a temperature lower than -15 deg.C, so that a four-way valve is changed over to defrosting operation side and an outdoor unit air fan is stopped. Then, when an induction motor 9 reaches the maximum operating frequency, a slippage control circuit 16 of the control circuit 11 calculates a large slippage frequency instruction signal from a speed signal detected by a speed detector 13, the defrosting timing detection signal and a reference frequency to operate the induction motor 9 at a high-power factor and a low efficiency, and the induction motor 9 is controlled via an FN change circuit 17, a base amplifier 18, and an inverter circuit 10c.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、暖房運転時に室外側
熱交換器に付着した霜を、この室外側熱交換器中を流れ
る熱冷媒により除去するようにした空気調和機の除霜制
御方式に関するものである。
[Industrial Application Field] This invention provides a defrosting control system for air conditioners in which frost adhering to an outdoor heat exchanger during heating operation is removed by a thermal refrigerant flowing through the outdoor heat exchanger. It is related to.

【0002】0002

【従来の技術】図7は例えば特公平1−20709号公
報に記載された従来の空気調和機を示す冷媒回路図であ
る。図において、(1)は圧縮機、(2)はアキュムレ
ータ、(3)は四方弁、(4)は室外側熱交換器、(5
)は膨張装置、(6)は室内側熱交換器、(7)は室外
機用送風ファン、(8)は室内機用送風ファンである。 これらは圧縮機(1)−四方弁(3)−室外側熱交換器
(4)−膨張装置(5)−室内側熱交換器(6)−四方
弁(3)−アキュムレータ(2)と冷媒管により順次環
状に接続され、冷房運転時には、実線矢印で示すように
圧縮機(1)からの高温高圧の冷媒ガスが、室外側熱交
換器(4)に送られ、ここで放熱して凝縮した後膨張装
置(5)を介して室内側熱交換器(6)で蒸発し吸熱し
て冷房が行なわれ、暖房運転時には、破線矢印で示すよ
うに圧縮機(1)からの高温高圧の冷媒ガスが、逆循環
して室内側熱交換器(6)に送られここで放熱しで暖房
が行なわれる。
2. Description of the Related Art FIG. 7 is a refrigerant circuit diagram showing a conventional air conditioner described in, for example, Japanese Patent Publication No. 1-20709. In the figure, (1) is a compressor, (2) is an accumulator, (3) is a four-way valve, (4) is an outdoor heat exchanger, and (5) is a four-way valve.
) is an expansion device, (6) is an indoor heat exchanger, (7) is a fan for the outdoor unit, and (8) is a fan for the indoor unit. These are compressor (1) - four-way valve (3) - outdoor heat exchanger (4) - expansion device (5) - indoor heat exchanger (6) - four-way valve (3) - accumulator (2) and refrigerant. They are sequentially connected in a ring by pipes, and during cooling operation, high-temperature, high-pressure refrigerant gas from the compressor (1) is sent to the outdoor heat exchanger (4), as shown by the solid arrow, where it radiates heat and condenses. After that, the indoor heat exchanger (6) passes through the expansion device (5) to evaporate and absorb heat to perform cooling. During heating operation, the high temperature and high pressure refrigerant from the compressor (1) is released as shown by the dashed arrow. The gas is reversely circulated and sent to the indoor heat exchanger (6) where it radiates heat and performs heating.

【0003】一般にこの種の冷凍サイクルを有する空気
調和機においては、暖房運転時除霜を行なう場合、四方
弁(3)を切換え暖房サイクルを冷房サイクルに切換え
送風ファン(7)(8)を停止することにより高温高圧
の冷媒ガスを室外側熱交換器(4)に流し、それに付着
した霜を除去している。また、除霜時に室内側熱交換器
(6)への冷媒回路をバイパスして圧縮機(1)から直
接冷媒ガスを室外側熱交換器(4)に流す方式も提案さ
れていた。
Generally, in an air conditioner having this type of refrigeration cycle, when defrosting is performed during heating operation, the four-way valve (3) is switched, the heating cycle is switched to the cooling cycle, and the blower fans (7) and (8) are stopped. By doing so, high-temperature, high-pressure refrigerant gas is allowed to flow to the outdoor heat exchanger (4), and frost adhering thereto is removed. Furthermore, a method has also been proposed in which the refrigerant circuit to the indoor heat exchanger (6) is bypassed during defrosting, and the refrigerant gas flows directly from the compressor (1) to the outdoor heat exchanger (4).

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
空気調和機の除霜方式では、除霜に多大の時間を必要と
し、その間暖房運転できないことにより室温の低下をま
ねき、快適性をそこねるという問題点があった。
[Problems to be Solved by the Invention] However, the conventional defrosting method for air conditioners requires a large amount of time to defrost, and heating operation cannot be performed during that time, resulting in a drop in room temperature and impairing comfort. There was a point.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、短時間で除霜が可能な空気調和
機の除霜方式を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a defrosting method for an air conditioner that can defrost the air in a short time.

【0006】[0006]

【課題を解決するための手段】この発明の第1の発明に
係る空気調和機の制御方式は、圧縮機駆動用の誘導電動
機の速度を検出する速度検出手段、この速度検出手段か
らの検出速度信号と、速度指令信号と、上記空気調和機
の除霜タイミング検出信号とから上記誘導電動機の所要
すベリを演算しすべり指令信号を出力するすべり演算手
段及びこのすべり演算手段からのすべり指令信号に応じ
たすべりになるよう上記誘導電動機の速度を制御する速
度制御手段を設け、上記すべり演算手段を、上記除霜タ
イミング検出信号の印加によりこの信号の無印加時に比
べ大きいすべりを指令する信号を出力するよう構成した
ものである。
[Means for Solving the Problems] A control method for an air conditioner according to a first aspect of the present invention includes a speed detection means for detecting the speed of an induction motor for driving a compressor, and a detected speed from the speed detection means. a slip calculation means for calculating a required slip of the induction motor from the signal, a speed command signal, and a defrosting timing detection signal of the air conditioner and outputting a slip command signal, and a slip command signal from the slip calculation means. A speed control means is provided for controlling the speed of the induction motor so as to achieve a corresponding slip, and the slip calculation means, upon application of the defrosting timing detection signal, outputs a signal commanding a larger slip than when this signal is not applied. It is configured to do so.

【0007】この発明の第2の発明に係る空気調和機の
制御方式は、上記第1の発明における速度検出手段の代
りに、圧縮機駆動用の誘導電動機の力率を検出する力率
検出手段を設け、すべり演算手段により、この力率検出
手段からの力率信号と、速度指令信号と、上記空気調和
機の除霜タイミング検出信号とから上記誘導電動機の所
要すベリを演算するようにしたものである。
A control system for an air conditioner according to a second aspect of the present invention includes a power factor detection means for detecting the power factor of an induction motor for driving a compressor, instead of the speed detection means in the first invention. is provided, and the slip calculation means calculates the required deviation of the induction motor from the power factor signal from the power factor detection means, the speed command signal, and the defrosting timing detection signal of the air conditioner. It is something.

【0008】[0008]

【作用】この発明の第1及び第2の発明における空気調
和機の制御方式は、除霜運転時に圧縮機駆動用の誘導電
動機が通常運転時より大きいすべリで運転されるので、
この電動機は高回転数、高力率、低動率、高入力電力で
運転され、圧縮機からの吐出冷媒ガスはスーパヒートが
つきより高温となって室外側熱交換器に送られ、除霜時
間が大幅に短縮される。
[Operation] In the air conditioner control system according to the first and second aspects of the present invention, during defrosting operation, the induction motor for driving the compressor is operated with a larger slip than during normal operation.
This electric motor is operated at high rotation speed, high power factor, low dynamic rate, and high input power, and the refrigerant gas discharged from the compressor is superheated and becomes even hotter and sent to the outdoor heat exchanger. is significantly shortened.

【0009】[0009]

【実施例】実施例1.以下この発明の一実施例を図につ
いて説明する。図1はこの発明の一実施例を示す構成図
で、図において、(1)は圧縮機、(2)はアキュムレ
ータ、(3)は四方弁、(4)は室外側熱交換器、(5
)は膨張装置、(6)は室内側熱交換器、(7)は室外
機用送風ファン、(8)は室内機用送風ファンで、以上
は図7で示す従来例と同様のものである。(9)は圧縮
機(1)を駆動する誘導電動機、(10)は誘導電動機
(9)に可変周波数の三相交流電力を供給するインバー
タ、(11)はインバータ(10)、送風ファン(7)
(8)及び四方弁(3)等を制御する制御回路、(12
)は室外側熱交換器(4)の配管温度を検出する室外機
配管温度センサでそれからの検出温度信号を除霜タイミ
ング検出信号として制御回路(11)に入力する。(1
3)は誘導電動機(9)の速度を検出し速度信号を制御
回路(11)に入力する速度センサである。
[Example] Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, (1) is a compressor, (2) is an accumulator, (3) is a four-way valve, (4) is an outdoor heat exchanger, and (5) is a four-way valve.
) is an expansion device, (6) is an indoor heat exchanger, (7) is a blower fan for the outdoor unit, and (8) is a blower fan for the indoor unit, which are similar to the conventional example shown in Fig. 7. . (9) is an induction motor that drives the compressor (1), (10) is an inverter that supplies variable frequency three-phase AC power to the induction motor (9), (11) is an inverter (10), and a blower fan (7). )
(8), a control circuit that controls the four-way valve (3), etc., (12
) is an outdoor unit piping temperature sensor that detects the piping temperature of the outdoor heat exchanger (4), and inputs the detected temperature signal therefrom to the control circuit (11) as a defrosting timing detection signal. (1
3) is a speed sensor that detects the speed of the induction motor (9) and inputs a speed signal to the control circuit (11).

【0010】図2は図1におけるインバータ(10)及
び制御回路(11)の詳細を示すブロック線図で、図に
おいて、(10a)はコンバータ回路、(10b)は平
滑コンデンサ、(10c)はインバータ回路、(10d
)は直流電流検出器、(14)は交流電源、(15)は
速度センサー(13)からの信号を波形整形する波形整
形回路、(16)は波形整形回路(15)から出力され
る誘導電動機(9)の瞬時回転数を示す速度信号frと
、基準周波数指令fo*と室外機配管温度センサ(12
)からの除霜タイミング検出信号とからすべり周波数指
令信号fs*を演算するすべり制御回路、(17)はす
べり周波数指令fs*からそれに応じた電圧指令信号V
*を演算し出力する速度−電圧変換回路、(18)は速
度−電圧変換回路(17)から出力される電圧指令信号
V*を増幅してインバータ回路(10c)に供給するベ
ースアンプ回路である。
FIG. 2 is a block diagram showing details of the inverter (10) and control circuit (11) in FIG. 1. In the figure, (10a) is the converter circuit, (10b) is the smoothing capacitor, and (10c) is the inverter circuit. circuit, (10d
) is a DC current detector, (14) is an AC power supply, (15) is a waveform shaping circuit that shapes the signal from the speed sensor (13), and (16) is an induction motor output from the waveform shaping circuit (15). (9) The speed signal fr indicating the instantaneous rotation speed, the reference frequency command fo*, and the outdoor unit piping temperature sensor (12
), the slip control circuit calculates the slip frequency command signal fs* from the defrosting timing detection signal from (17), and the voltage command signal V corresponding to it from the slip frequency command fs*.
A speed-voltage conversion circuit (18) is a base amplifier circuit that amplifies the voltage command signal V* output from the speed-voltage conversion circuit (17) and supplies it to the inverter circuit (10c). .

【0011】上記速度センサ(13)及び波形整形回路
(15)とにより速度検出手段を、すべり制御回路(1
6)によりすべり演算手段を、そして、速度−電圧変換
回路(17)、ベースアンプ回路(18)及びインバー
タ回路(10c)とにより速度制御手段をそれぞれ構成
している。
[0011] The speed sensor (13) and the waveform shaping circuit (15) function as a speed detection means, and the slip control circuit (1
6) constitutes a slip calculation means, and the speed-voltage conversion circuit (17), base amplifier circuit (18) and inverter circuit (10c) constitute a speed control means, respectively.

【0012】次に、この実施例の動作を図3、図4を参
照して説明する。図3は誘導電動機(9)の動作特性図
、図4は除霜運転動作の流れを示すフローチャートであ
る。図3において、横軸は誘導電動機(9)のすべり(
%)を示し、(19)は誘導電動機(9)への入力電力
(W)の、(20)は入力電流(A)の、(21)は誘
導電動機(9)の効率(%)の、(22)は誘導電動機
(9)のトルク(N・m)の、(23)は誘導電動機(
9)の力率(%)のそれぞれすべりに対する変化特性を
示す。なお、第1図における冷媒回路の冷房、暖房運転
動作については図7の場合と全く同じであるので説明は
省略する。
Next, the operation of this embodiment will be explained with reference to FIGS. 3 and 4. FIG. 3 is an operational characteristic diagram of the induction motor (9), and FIG. 4 is a flowchart showing the flow of defrosting operation. In Fig. 3, the horizontal axis represents the slip (
%), (19) is the input power (W) to the induction motor (9), (20) is the input current (A), and (21) is the efficiency (%) of the induction motor (9). (22) is the torque (N m) of the induction motor (9), (23) is the induction motor (
9) shows the change characteristics of the power factor (%) with respect to each slip. Note that the cooling and heating operations of the refrigerant circuit in FIG. 1 are exactly the same as those in FIG. 7, so a description thereof will be omitted.

【0013】まず、空気調和機の暖房運転時に、図4の
ステップ(24)において圧縮機運転積算時間50分経
過後、ステップ(25)で室外機配管温度センサ(12
)が−5℃以下の温度を検出すると、除霜タイミング検
出信号が制御回路(11)に入力されてステップ(26
)に進み、四方弁(3)が冷房運転側(図1実線矢印)
に切換えられ、ステップ(27)で室外機用送風ファン
(7)が停止する。次にステップ(28)において圧縮
機(1)即ち誘導電動機(9)が最高運転周波数になる
とステップ(29)に進み、制御回路(11)のすべり
制御回路(16)において、速度センサ(13)で検出
され波形整形回路(15)により整形された速度信号f
rと、上記除霜タイミング検出信号及び基準周波数指令
fo*とから、誘導電動機(9)が高力率で低効率で運
転されるような大きなすべりのすべり周波数指令信号f
s*が演算出力され、それに応じた電圧指令信号V*が
速度−電圧変換回路(17)から出力され、この電圧指
令に応じてベースアンプ回路(18)、インバータ回路
(10c)を介して誘導電動機(9)が制御される。
First, during heating operation of the air conditioner, after 50 minutes of accumulated compressor operation time has elapsed in step (24) in FIG. 4, the outdoor unit piping temperature sensor (12
) detects a temperature below -5°C, a defrost timing detection signal is input to the control circuit (11) and step (26
), and set the four-way valve (3) to the cooling operation side (solid line arrow in Figure 1).
In step (27), the outdoor unit ventilation fan (7) is stopped. Next, in step (28), when the compressor (1), that is, the induction motor (9) reaches the maximum operating frequency, the process proceeds to step (29), and in the slip control circuit (16) of the control circuit (11), the speed sensor (13) The speed signal f detected by the waveform shaping circuit (15)
From r, the defrosting timing detection signal and the reference frequency command fo*, a slip frequency command signal f with a large slip such that the induction motor (9) is operated with high power factor and low efficiency is determined.
s* is calculated and output, a corresponding voltage command signal V* is output from the speed-voltage conversion circuit (17), and in accordance with this voltage command, the voltage is inducted via the base amplifier circuit (18) and the inverter circuit (10c). An electric motor (9) is controlled.

【0014】すると誘導電動機(9)のすべりは増え、
図3に示すようにそれの動作点はAからBに移行し入力
が増大する。これにより圧縮機(1)は仕事率はあまり
増やさないで入力電力が注ぎ込まれ、吐出冷媒の圧力が
あまり上がらずに温度が上昇する。そうすれば圧縮機(
1)はヒータとして働き、それへの入力増加分はほぼ冷
媒の加熱分となり、室外側熱交換器(4)に付着した霜
は急速に除去される。除霜が開始されてから10分以上
経過するか(ステップ(30))、室外機配管温度が8
℃以上に上昇すると(ステップ(31))、ステップ(
32)(33)にて室外機用送風ファン(7)の運転が
再開され、四方弁(3)が暖房運転側(図1破線矢印)
に切換えられ、除霜運転が終了し暖房運転が再開される
Then, the slip of the induction motor (9) increases,
As shown in FIG. 3, its operating point shifts from A to B, and the input increases. As a result, input power is poured into the compressor (1) without increasing the power rate much, and the temperature of the discharged refrigerant increases without increasing its pressure much. Then the compressor (
1) acts as a heater, and the increase in input to it is almost equivalent to heating the refrigerant, and the frost adhering to the outdoor heat exchanger (4) is rapidly removed. Either 10 minutes or more have passed since defrosting started (step (30)), or the outdoor unit piping temperature has reached 8.
When the temperature rises above ℃ (step (31)), step (
32) At (33), the operation of the outdoor unit fan (7) is restarted, and the four-way valve (3) is set to the heating operation side (dashed line arrow in Figure 1).
defrosting operation is completed and heating operation is restarted.

【0015】実施例2.図5、図6はこの発明の他の実
施例を示し、図5はインバータ(10)及び制御回路(
11)の詳細を示すブロック線図、図6は除霜運転動作
の流れを示すフローチャートで、図において、(9)〜
(12)、(14)及び(18)は図2と同様のもので
あり、(34)は誘導電動機(9)の力率検出用の3相
変流器、(35)は変流器(34)からの電流信号によ
り誘導電動機(9)の瞬時力率に応じた力率信号Prを
求め出力する瞬時力率検知回路、(36)は瞬時力率検
知回路(35)からの力率信号Prから図3に示すよう
なこれに対応するすべり周波数(同期周波数からすべり
分低下した周波数)を演算しすべり周波数信号frを出
力するすべり周波数演算回路、(37)はすべり周波数
演算回路(36)から出力されるすべり周波数信号fr
と、基準周波数指令fo*と室外機配管温度センサ(1
2)からの除霜タイミング検出信号とからすべり周波数
指令信号fs*を演算する周波数制御回路、(38)は
すべり周波数指令fs*からそれに応じた電圧指令信号
V*を演算し出力する周波数−電圧変換回路である。な
お、図6の図4と同じステップは同一符号で示している
Example 2. 5 and 6 show other embodiments of the present invention, and FIG. 5 shows an inverter (10) and a control circuit (
11), and FIG. 6 is a flowchart showing the flow of the defrosting operation.
(12), (14), and (18) are the same as in Fig. 2, (34) is a three-phase current transformer for detecting the power factor of the induction motor (9), and (35) is a current transformer ( (34) is an instantaneous power factor detection circuit that calculates and outputs a power factor signal Pr corresponding to the instantaneous power factor of the induction motor (9) based on the current signal from (34), and (36) is the power factor signal from the instantaneous power factor detection circuit (35). A slip frequency calculation circuit (37) is a slip frequency calculation circuit (36) which calculates a corresponding slip frequency (a frequency lowered by the amount of slip from the synchronous frequency) from Pr as shown in FIG. 3 and outputs a slip frequency signal fr. The slip frequency signal fr output from
, reference frequency command fo* and outdoor unit piping temperature sensor (1
(2) is a frequency control circuit that calculates the slip frequency command signal fs* from the defrosting timing detection signal from (38), and (38) is a frequency-voltage circuit that calculates and outputs the corresponding voltage command signal V* from the slip frequency command fs*. It is a conversion circuit. Note that steps in FIG. 6 that are the same as those in FIG. 4 are indicated by the same reference numerals.

【0016】上記3相変流器(34)及び瞬時力率検知
回路(35)とにより力率検出手段を、すべり周波数演
算回路(36)及び周波数制御回路(37)とによりす
べり演算手段を、そして、周波数−電圧変換回路(38
)、ベースアンプ回路(18)及びインバータ回路(1
0c)とにより速度制御手段をそれぞれ構成している。
The three-phase current transformer (34) and the instantaneous power factor detection circuit (35) function as a power factor detection means, and the slip frequency calculation circuit (36) and the frequency control circuit (37) function as a slip calculation means. Then, the frequency-voltage conversion circuit (38
), base amplifier circuit (18) and inverter circuit (1
0c) respectively constitute a speed control means.

【0017】次に、この実施例の動作を図6を参照して
説明する。ステップ(24)から(28)迄は図4と同
様なので説明を省略する。ステップ(28)において圧
縮機(1)が最高運転周波数になるとステップ(39)
に進み、瞬時力率検知回路(35)において変流器(3
4)からの電流信号より誘導電動機(9)の瞬時力率に
応じた力率信号Prが求められてステップ(29)に進
み、すべり周波数演算回路(36)において、瞬時力率
検知回路(35)からの力率信号Prから図3に示すこ
れに対応するすべり周波数信号frが演算され、周波数
制御回路(37)において、すべり周波数演算回路(3
6)からのすべり周波数信号frと、上記除霜タイミン
グ検出信号及び基準周波数指令fo*とから、誘導電動
機(9)が高力率で低効率で運転されるような大きなす
べりのすべり周波数指令信号fs*が演算出力され、そ
れに応じた電圧指令信号V*が周波数−電圧変換回路(
38)から出力され、この電圧指令に応じてベースアン
プ回路(18)、インバータ回路(10c)を介して誘
導電動機(9)が制御される。以後の動作は図3の実施
例と同様である。
Next, the operation of this embodiment will be explained with reference to FIG. Steps (24) to (28) are the same as those in FIG. 4, so their explanation will be omitted. When the compressor (1) reaches the maximum operating frequency in step (28), step (39)
The current transformer (3) is connected to the instantaneous power factor detection circuit (35).
A power factor signal Pr corresponding to the instantaneous power factor of the induction motor (9) is determined from the current signal from the current signal from the induction motor (9), and the process proceeds to step (29). ) from the power factor signal Pr, the corresponding slip frequency signal fr shown in FIG.
From the slip frequency signal fr from 6), the defrosting timing detection signal and the reference frequency command fo*, a slip frequency command signal with a large slip such that the induction motor (9) is operated at a high power factor and low efficiency is determined. fs* is calculated and output, and the corresponding voltage command signal V* is sent to the frequency-voltage conversion circuit (
38), and the induction motor (9) is controlled via the base amplifier circuit (18) and the inverter circuit (10c) according to this voltage command. The subsequent operation is similar to the embodiment shown in FIG.

【0018】なお、上記実施例では除霜時に冷媒回路を
暖房運転から冷房運転に切換える、いわゆるリバース方
式についてのみ説明を行ったが、他の除霜方式、例えば
除霜時に室内側熱交換器への冷媒回路をバイパスして圧
縮機から直接冷媒ガスを室外側熱交換器に流す、いわゆ
るホットガスバイパス方式でもよく、上記の実施例とま
ったく同様の効果を奏する。
In the above embodiment, only the so-called reverse method, in which the refrigerant circuit is switched from heating operation to cooling operation during defrosting, was explained, but other defrosting methods, such as switching the refrigerant circuit to the indoor heat exchanger during defrosting, have been explained. A so-called hot gas bypass method may also be used, in which the refrigerant gas is passed directly from the compressor to the outdoor heat exchanger by bypassing the refrigerant circuit, and the same effect as in the above embodiment can be obtained.

【0019】[0019]

【発明の効果】以上のように、この発明の第1の発明に
よれば、圧縮機駆動用の誘導電動機の速度を検出する速
度検出手段、この速度検出手段からの検出速度信号と、
速度指令信号と、上記空気調和機の除霜タイミング検出
信号とから上記誘導電動機の所要すベリを演算しすべり
指令信号を出力するすべり演算手段及びこのすべり演算
手段からのすべり指令信号に応じたすべりになるよう上
記誘導電動機の速度を制御する速度制御手段を設け、上
記すべり演算手段を、上記除霜タイミング検出信号の印
加によりこの信号の無印加時に比べ大きいすべりを指令
する信号を出力するよう構成したので、除霜時に冷媒流
量が確保されかつ冷媒温度が上昇し、除霜時間の短縮化
が計られ、快適性が損なわれることのない空気調和機の
除霜制御方式が得られる効果がある。
As described above, according to the first aspect of the present invention, there is provided a speed detecting means for detecting the speed of an induction motor for driving a compressor, a detected speed signal from the speed detecting means,
A slip calculation means for calculating a required slip of the induction motor from a speed command signal and a defrosting timing detection signal of the air conditioner and outputting a slip command signal, and a slip in response to the slip command signal from the slip calculation means. Speed control means is provided for controlling the speed of the induction motor so that Therefore, the refrigerant flow rate is ensured during defrosting, the refrigerant temperature rises, the defrosting time is shortened, and a defrosting control method for air conditioners that does not impair comfort can be achieved. .

【0020】また、この発明の第2の発明によれば、上
記第1の発明における速度検出手段の代りに、圧縮機駆
動用の誘導電動機の力率を検出する力率検出手段を設け
、すべり演算手段により、この力率検出手段からの力率
信号と、速度指令信号と、上記空気調和機の除霜タイミ
ング検出信号とから上記誘導電動機の所要すベリを演算
するようにしたので、上記第1の発明と同様の効果を有
するものである。
According to the second invention of the present invention, a power factor detection means for detecting the power factor of the induction motor for driving the compressor is provided in place of the speed detection means in the first invention, and the slip The calculation means calculates the required torque of the induction motor from the power factor signal from the power factor detection means, the speed command signal, and the defrosting timing detection signal of the air conditioner. This invention has the same effect as invention No. 1.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1の発明の一実施例を示す構成図
FIG. 1 is a configuration diagram showing an embodiment of a first aspect of the present invention.

【図2】図1におけるインバータ及び制御回路の詳細を
示すブロック線図。
FIG. 2 is a block diagram showing details of the inverter and control circuit in FIG. 1;

【図3】この実施例の誘導電動機の動作特性図。FIG. 3 is an operational characteristic diagram of the induction motor of this embodiment.

【図4】この実施例の除霜運転動作の流れを示すフロー
チャート。
FIG. 4 is a flowchart showing the flow of defrosting operation in this embodiment.

【図5】この発明の第2の発明の一実施例におけるイン
バータ及び制御回路の詳細を示すブロック線図。
FIG. 5 is a block diagram showing details of an inverter and a control circuit in an embodiment of the second invention.

【図6】この実施例の除霜運転動作の流れを示すフロー
チャート。
FIG. 6 is a flowchart showing the flow of defrosting operation in this embodiment.

【図7】従来の空気調和機を示す冷媒回路図。FIG. 7 is a refrigerant circuit diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1      圧縮機 4      室外側熱交換器 6      室内側熱交換器 9      誘導電動機 1 Compressor 4 Outdoor heat exchanger 6 Indoor heat exchanger 9 Induction motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  交流電力により付勢される誘導電動機
で駆動される圧縮機、室内側熱交換器及び室外側熱交換
器を備えた空気調和機の暖房運転時に、上記室外側熱交
換器に付着した霜をこの室外側熱交換器中を流れる熱冷
媒により除去するようにした空気調和機の除霜制御方式
において、上記誘導電動機の速度を検出する速度検出手
段、この速度検出手段からの検出速度信号と、速度指令
信号と、上記空気調和機の除霜タイミング検出信号とか
ら上記誘導電動機の所要すベリを演算しすべり指令信号
を出力するすべり演算手段及びこのすべり演算手段から
のすべり指令信号に応じたすべりになるよう上記誘導電
動機の速度を制御する速度制御手段を設け、上記すべり
演算手段を、上記除霜タイミング検出信号の印加により
この信号の無印加時に比べ大きいすべりを指令する信号
を出力するよう構成したことを特徴とする空気調和機の
除霜制御方式。
Claim 1: During heating operation of an air conditioner equipped with a compressor driven by an induction motor powered by AC power, an indoor heat exchanger, and an outdoor heat exchanger, the outdoor heat exchanger is In a defrosting control method for an air conditioner in which attached frost is removed by a thermal refrigerant flowing through the outdoor heat exchanger, a speed detection means for detecting the speed of the induction motor, and a detection from the speed detection means. A slip calculation means for calculating a required slip of the induction motor from a speed signal, a speed command signal, and a defrosting timing detection signal of the air conditioner and outputting a slip command signal, and a slip command signal from the slip calculation means. A speed control means is provided for controlling the speed of the induction motor so that the speed of the induction motor becomes a slip according to the speed of the induction motor, and the slip calculation means is provided with a signal that instructs the slip to be larger than when this signal is not applied by applying the defrosting timing detection signal. A defrosting control method for an air conditioner, characterized in that it is configured to output.
【請求項2】  交流電力により付勢される誘導電動機
で駆動される圧縮機、室内側熱交換器及び室外側熱交換
器を備えた空気調和機の暖房運転時に、上記室外側熱交
換器に付着した霜をこの室外側熱交換器中を流れる熱冷
媒により除去するようにした空気調和機の除霜制御方式
において、上記誘導電動機の力率を検出する力率検出手
段、この力率検出手段からの検出力率信号と、速度指令
信号と、上記空気調和機の除霜タイミング検出信号とか
ら上記誘導電動機の所要すベリを演算しすべり指令信号
を出力するすべり演算手段及びこのすべり演算手段から
のすべり指令信号に応じたすべりになるよう上記誘導電
動機の速度を制御する速度制御手段を設け、上記すべり
演算手段を、上記除霜タイミング検出信号の印加により
この信号の無印加時に比べ大きいすべりを指令する信号
を出力するよう構成したことを特徴とする空気調和機の
除霜制御方式。
Claim 2: During heating operation of an air conditioner equipped with a compressor driven by an induction motor powered by AC power, an indoor heat exchanger, and an outdoor heat exchanger, the outdoor heat exchanger is In a defrosting control system for an air conditioner in which adhering frost is removed by a thermal refrigerant flowing through the outdoor heat exchanger, a power factor detection means for detecting the power factor of the induction motor; A slip calculation means for calculating a required slip of the induction motor from a detected power factor signal, a speed command signal, and a defrosting timing detection signal of the air conditioner and outputting a slip command signal; speed control means for controlling the speed of the induction motor so that the slip corresponds to the slip command signal; A defrosting control method for an air conditioner, characterized in that it is configured to output a command signal.
JP41522190A 1990-12-27 1990-12-27 Defrost control method for air conditioner Expired - Fee Related JP2500527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41522190A JP2500527B2 (en) 1990-12-27 1990-12-27 Defrost control method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41522190A JP2500527B2 (en) 1990-12-27 1990-12-27 Defrost control method for air conditioner

Publications (2)

Publication Number Publication Date
JPH04225767A true JPH04225767A (en) 1992-08-14
JP2500527B2 JP2500527B2 (en) 1996-05-29

Family

ID=18523607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41522190A Expired - Fee Related JP2500527B2 (en) 1990-12-27 1990-12-27 Defrost control method for air conditioner

Country Status (1)

Country Link
JP (1) JP2500527B2 (en)

Also Published As

Publication number Publication date
JP2500527B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JPH0343693A (en) Heat pump type heating
JP2723339B2 (en) Heat pump heating equipment
JPS6349640Y2 (en)
JPH0260942B2 (en)
JPS6222947A (en) Air conditioner
JP2500527B2 (en) Defrost control method for air conditioner
JPH023093Y2 (en)
JP2001224175A (en) Power supply unit
JPH03195877A (en) Defrosting control method in heat pump air compressor
JP6939094B2 (en) Power converter control device and refrigeration device
JPS6380153A (en) Air conditioning control system
JPH11237091A (en) Multi-room split type air conditioner
JPS61153332A (en) Defrosting control device
JPS61246537A (en) Air conditioner
JPH06265244A (en) Air conditioner
JP2000014131A (en) Power device
JPS5878036A (en) Air conditioning machine
JP3169485B2 (en) Air conditioner
JPS60259869A (en) Defrostation controller for heat pump type air conditioner
JPS6332256A (en) Heat pump system
JPS63233245A (en) Air conditioner
JPS58115238A (en) Control circuit of air conditioner
JPS6144255A (en) Air conditioner
JPH05240493A (en) Air conditioner
JPH0356089A (en) Controller for compressor of enclosed type

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees