JPH04221027A - Method for controlling induction heater - Google Patents

Method for controlling induction heater

Info

Publication number
JPH04221027A
JPH04221027A JP2404555A JP40455590A JPH04221027A JP H04221027 A JPH04221027 A JP H04221027A JP 2404555 A JP2404555 A JP 2404555A JP 40455590 A JP40455590 A JP 40455590A JP H04221027 A JPH04221027 A JP H04221027A
Authority
JP
Japan
Prior art keywords
strip
heating device
temperature
induction heating
target temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2404555A
Other languages
Japanese (ja)
Other versions
JP2523991B2 (en
Inventor
Tamotsu Kurita
栗田 保
Yutaka Seki
豊 関
Ikuyo Nomura
野村 育世
Yuichi Tsuji
辻 勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2404555A priority Critical patent/JP2523991B2/en
Publication of JPH04221027A publication Critical patent/JPH04221027A/en
Application granted granted Critical
Publication of JP2523991B2 publication Critical patent/JP2523991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To control an induction heater by providing the flexibility and readiness to the changes in the size of a strip and desired heating temp. or heating rate and considering the heat loss at a coil part as well as the free running part between the coils. CONSTITUTION:When the part of a strip for changing the desired heating temp. or heating rate or the part for changing the size of the strip reaches the inlet of an induction heater, the balance is calculated based on the strip size and the temps. detected by the atmosphere thermometers set at each coil part and free running part between the coils using a heat balance model equation considering the heat loss (temp. drop) produced while the strip travels from the inlet to outlet of the heater, and the required optimum power is supplied to the heater to obtain the desired heating temp. or heating rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、被加熱材を搬送しなが
ら加熱する誘導加熱装置の制御方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an induction heating apparatus that heats a material to be heated while conveying it.

【0002】0002

【従来の技術】一般に、搬送される物体を誘導加熱装置
にて加熱を行う場合の必要電力P(kW)は、数式1に
て求められる。
2. Description of the Related Art Generally, the required power P (kW) when an object to be transported is heated by an induction heating device is determined by Equation 1.

【0003】0003

【数1】[Math 1]

【0004】一方、誘導加熱装置を被加熱材が通過する
過程では、コイル中で加熱最中での熱放散やコイル間の
空走部通過時に於ける熱放散等の熱損失(温度降下)分
が発生する。特に、薄板(ストリップ)を移送しながら
加熱する場合には、ストリップがばたつきやすいこと、
また加熱効率をあげるためにはストリップとコイルとの
間の距離をできるだけ小さくする方が有利であることか
ら、その間隔は50〜100mm程度しかないことによ
り、ストリップとコイルあるいはコイルを保護する耐火
物とが接触しやすく、これを防ぐためにサポートロール
をコイル間に設置しなければならない。よって、そのた
めのコイル間空走部が2〜3m必要であり、そこでの熱
損失分が無視できず制御誤差の大きな原因となる。又、
既存の設備を改造して誘導加熱装置を設置する場合など
には既設物との干渉によりやむなく空走部が生じて同様
な問題が発生してしまうことがある。ここで、図1にレ
イアウトを示す誘導加熱装置を例にして、その制御誤差
を計算機シュミレーションにより試算してみる。表1が
その誘導加熱装置の諸元である。
On the other hand, during the process in which the material to be heated passes through the induction heating device, heat loss (temperature drop) occurs due to heat dissipation during heating in the coil and heat dissipation when passing through the free running section between the coils. occurs. In particular, when heating a thin plate (strip) while transferring it, the strip tends to flap.
In addition, in order to increase heating efficiency, it is advantageous to minimize the distance between the strip and the coil, so the distance between the strip and the coil is only about 50 to 100 mm. To prevent this, support rolls must be installed between the coils. Therefore, a distance of 2 to 3 m is required for the free running section between the coils, and the heat loss there cannot be ignored and becomes a major cause of control errors. or,
When installing an induction heating device by modifying existing equipment, interference with the existing equipment may unavoidably result in empty running sections, causing similar problems. Here, using the induction heating apparatus whose layout is shown in FIG. 1 as an example, the control error will be calculated by computer simulation. Table 1 shows the specifications of the induction heating device.

【0005】[0005]

【表1】[Table 1]

【0006】本例の誘導加熱装置は竪型連続焼鈍炉の1
パスに定格出力1000kWの誘導加熱装置(コイル)
を3基タンデム状に配置しており、ストリップの通板方
向の上流側から順番にNo.1誘導加熱装置33、No
.2誘導加熱装置34、No.3誘導加熱装置35と称
している。また、No.1誘導加熱コイル33CとNo
.2誘導加熱コイル34Cとの間に前述したストリップ
サポートロール36が設置されており、その区間が空走
部となっている。(第1空走部)さらに、最終段のNo
.3誘導加熱コイル35Cから温度管理用の誘導加熱装
置出口板温計38までの間も空走部となっている。(第
2空走部)また、37は誘導加熱装置入口の板温を測定
する誘導加熱装置入口板温計である。表2は計算機シュ
ミレーションに使用した各条件値である。
The induction heating device of this example is one of the vertical continuous annealing furnaces.
Induction heating device (coil) with a rated output of 1000kW on the path
Three units are arranged in tandem, and the No. 1 induction heating device 33, No.
.. 2 induction heating device 34, No. 3 induction heating device 35. Also, No. 1 induction heating coil 33C and No.
.. The above-mentioned strip support roll 36 is installed between the two induction heating coils 34C, and that section is a free running section. (1st empty running section) Furthermore, the No.
.. There is also an idle running section between the three induction heating coils 35C and the induction heating device outlet plate thermometer 38 for temperature control. (Second idle running section) Further, 37 is an induction heating device inlet plate thermometer for measuring the plate temperature at the induction heating device inlet. Table 2 shows each condition value used in the computer simulation.

【0007】[0007]

【表2】[Table 2]

【0008】計算機シュミレーションは、入側板温計か
ら出側板温計までのスパン(23m)を1m間隔で区切
り、入側板温計直下の板温を基準として、上流側より下
流側へ向かって、各区間での誘導加熱による温度上昇分
と熱放散による温度降下分を加えたもの(通電していな
いコイルを通過する場合や空走部を通過する場合は温度
降下分のみ)を出側板温計直下位置まで積算する熱収支
モデル式により収束計算を行って、加熱目標温度あるい
は目標昇温量を達成するときのコイルの設定電力値を求
める方法にて行った。また、各コイルへの電力設定配分
は各誘導加熱装置の最大投入電力に対して均等負荷率と
なるような配分とした。その試算結果を表3に示す。
[0008] In the computer simulation, the span (23 m) from the inlet plate thermometer to the outlet plate thermometer is divided into 1 m intervals, and each temperature is measured from the upstream side to the downstream side, with the plate temperature directly below the inlet plate thermometer as the reference. The sum of the temperature rise due to induction heating and the temperature drop due to heat dissipation in the section (when passing through a coil that is not energized or passing through an idle running section, only the temperature drop) is measured directly below the outlet plate thermometer. A convergence calculation was performed using a heat balance model equation that integrates up to the position, and the set power value of the coil when achieving the heating target temperature or the target temperature increase amount was determined. In addition, the power setting distribution to each coil was made such that the load ratio was equal to the maximum input power of each induction heating device. The trial calculation results are shown in Table 3.

【0009】[0009]

【表3】[Table 3]

【0010】例えば、炉速が100mpm でストリッ
プの温度を300℃から100℃昇温させる場合には、
熱損失分を考慮すれば3基合計で1266(kW)を必
要とする。一方、数式1の一般式にて求めた必要電力P
G (kW)は、下記の数式2に示すように、
For example, when increasing the temperature of the strip from 300°C to 100°C at a furnace speed of 100mpm,
Taking heat loss into consideration, a total of 1266 (kW) is required for the three units. On the other hand, the required power P calculated using the general formula of Equation 1
G (kW) is as shown in formula 2 below,

【0011】[0011]

【数2】[Math 2]

【0012】であり、303(kW)分の誤差があるこ
とが判る。そしてこの303(kW)分に相当する温度
誤差は約24℃にもなる。よって、誘導加熱装置でスト
リップの温度を制御する場合には、これらの熱損失分を
見込んだ電力値を誘導加熱装置に設定しなければ、その
分が誤差となり制御精度が確保できない。
It can be seen that there is an error of 303 (kW). The temperature error corresponding to this 303 (kW) is about 24°C. Therefore, when controlling the temperature of the strip with an induction heating device, unless the induction heating device is set to a power value that takes into account these heat losses, the amount will result in an error and control accuracy cannot be ensured.

【0013】一方、特開昭51−87836、特開昭5
2−62110、特開昭52−122941、特開昭5
2−122942、特開昭57−37679、特開昭5
9−59824号公報などの公知の誘導加熱装置の制御
方法では、制御誤差を誘導加熱装置出口に設置する板温
計により検出して、誘導加熱装置への電力設定値を修正
するいわゆるフィードバック制御により、熱損失分に起
因するもの以外の諸条件の変化に起因するものも含めて
、制御誤差を抑制する方式を採っている。
On the other hand, JP-A-51-87836, JP-A-5
2-62110, JP-A-52-122941, JP-A-5
2-122942, JP-A-57-37679, JP-A-5
In a known control method for an induction heating device such as that disclosed in Japanese Patent No. 9-59824, a control error is detected by a plate thermometer installed at the outlet of the induction heating device, and the power setting value for the induction heating device is corrected using so-called feedback control. , a method is adopted to suppress control errors, including those caused by changes in various conditions other than those caused by heat loss.

【0014】しかしながら、このフィードバック制御方
式は、制御結果を検知してから制御操作量すなわち電力
値の修正を行う制御方式であるから、ストリップ上のあ
る点がコイル内を通過して加熱されている間は当然制御
不可能でありまた、その点がコイルを出て板温計で測温
され、制御誤差が検知されてから制御が作動して誤差が
抑制されるまでの間のロスタイムも存在するので、これ
らの間に処理されたストリップは場合によっては規定の
温度誤差範囲を外れてしまう。すなわち、定常部におい
ては本方法は有効であるが、ストリップのサイズや加熱
目標温度あるいは目標昇温量の変更部直後においては、
目標とする温度制御精度を保証し得るものではなく、し
たがって、熱損失分を考慮した電力値の設定が必要であ
る。
However, since this feedback control method is a control method in which the control operation amount, that is, the power value is corrected after detecting the control result, a certain point on the strip passes through the inside of the coil and is heated. Of course, it is impossible to control the temperature at that point, and there is also a loss time between when the temperature at that point exits the coil and is measured with a plate temperature meter, and a control error is detected until the control is activated and the error is suppressed. Therefore, strips processed during these times may fall outside the specified temperature tolerance range. In other words, this method is effective in the steady state section, but immediately after the strip size, heating target temperature, or target temperature increase amount is changed,
It is not possible to guarantee the target temperature control accuracy, so it is necessary to set the power value in consideration of heat loss.

【0015】これに対して、特開昭54−29141号
公報では熱損失分を補償する電力値を被加熱材の入口温
度、速度、目標昇温量から導出するようにしている。し
かし、熱損失分は被加熱材のサイズや加熱途中でのその
時々の被加熱材の温度と周囲温度との差及び通過時間に
依存するものであるから、被加熱材の入口温度、速度、
目標昇温量のみからでは、被加熱材のサイズや目標昇温
量あるいは加熱目標温度の変更に対しては、目標制御精
度を確保できるに充分な電力設定値を導出し得るもので
はない。特に、ストリップの連続焼鈍炉に設置される誘
導加熱装置では、ストリップのサイズの変更点や加熱目
標温度あるいは目標昇温量の変更が頻繁に行われるが、
この方法では各変更点直後において所望の温度制御精度
を得ることができず用を成さない。
On the other hand, in Japanese Patent Application Laid-Open No. 54-29141, a power value for compensating for heat loss is derived from the inlet temperature of the material to be heated, the speed, and the target temperature increase amount. However, the amount of heat loss depends on the size of the material to be heated, the difference between the temperature of the material to be heated and the ambient temperature during heating, and the passage time.
From only the target temperature increase amount, it is not possible to derive a power setting value sufficient to ensure target control accuracy when changing the size of the material to be heated, the target temperature increase amount, or the heating target temperature. In particular, in induction heating equipment installed in continuous strip annealing furnaces, the size of the strip, the target heating temperature, or the target temperature increase amount are frequently changed.
This method is useless because the desired temperature control accuracy cannot be obtained immediately after each change point.

【0016】また、特開昭55−78490号公報では
コイル間での冷却(熱損失分)の影響を目標温度設定を
調整することで補正するとあるが、この従来技術におい
ても特開昭54−29141について述べたことと同様
の理由があることに加えて、ストリップが誘導加熱装置
を通過中には、コイル間での熱損失分のみならずコイル
内での熱損失分もあるので、それが考慮されてない分が
制御誤差となる。よって、この方法も特開昭54−29
141と同様に、特に、ストリップの連続焼鈍炉に設置
される誘導加熱装置のようにストリップのサイズに変更
点や加熱目標温度あるいは目標昇温量の変更が頻繁に行
われるものに対しては、所望の温度制御精度を得るため
の電力設定値の導出方法を提供するものではない。
Furthermore, in JP-A-55-78490, it is stated that the influence of cooling (heat loss) between coils is corrected by adjusting the target temperature setting; In addition to the same reasons as mentioned for 29141, as the strip passes through the induction heating device, there is heat loss not only between the coils but also within the coil. The amount not taken into consideration becomes a control error. Therefore, this method is also based on JP-A-54-29.
Similarly to 141, in particular, for devices where the size of the strip, heating target temperature, or target temperature increase amount is frequently changed, such as an induction heating device installed in a continuous annealing furnace for strip, It does not provide a method for deriving a power setting value to obtain desired temperature control accuracy.

【0017】[0017]

【発明が解決しようとする課題】これに対し、本発明は
、ストリップのサイズや加熱目標温度あるいは目標昇温
量などの加熱状況の変化に対して柔軟性、即応性をもち
、コイル間空走部のみならずコイル部での熱損失分をも
考慮した、加熱目標温度あるいは目標昇温量を得るため
の誘導加熱装置への電力設定値の導出方法を提供するも
のである。
[Problems to be Solved by the Invention] In contrast, the present invention has flexibility and responsiveness to changes in heating conditions such as strip size, heating target temperature, and target temperature increase amount, and eliminates the need for free running between coils. The present invention provides a method for deriving a power setting value for an induction heating apparatus in order to obtain a heating target temperature or a target temperature increase amount, taking into consideration not only the heat loss in the coil part but also the heat loss in the coil part.

【0018】[0018]

【課題を解決するための手段】すなわち本発明は、複数
の加熱コイルがタンデム状に配列されかつ少なくとも1
ケ所のコイル間にサポートロールが設置されて空走部を
もつ誘導加熱装置にて、ストリップを搬送しながら加熱
し、所定の加熱温度あるいは所定の昇温量を確保する誘
導加熱装置の制御方法において、ストリップの加熱目標
温度または目標昇温量の変更部あるいはストリップのサ
イズ変更部が誘導加熱装置の入口に到達した際に、スト
リップのサイズ、各コイル部およびコイル間空送部に設
置した雰囲気温度計により検出した温度値に基づいて、
ストリップが誘導加熱装置入口から出口までを通過する
間に生じる熱損失分(温度降下分)を考慮した熱収支モ
デル式を用いて収束計算を行い、加熱目標温度または目
標昇温量を達成する誘導加熱装置への必要最適電力設定
値を求め設定することを特徴とする誘導加熱装置の制御
方法である。
[Means for Solving the Problems] That is, the present invention provides a method in which a plurality of heating coils are arranged in tandem and at least one
In a control method for an induction heating device in which support rolls are installed between coils at multiple locations and the induction heating device has an idle running section, a strip is heated while being conveyed to ensure a predetermined heating temperature or a predetermined temperature increase amount. , When the strip heating target temperature or target temperature increase amount changing section or strip size changing section reaches the inlet of the induction heating device, the strip size, each coil section, and the ambient temperature installed in the inter-coil air feeding section Based on the temperature value detected by the meter,
A convergence calculation is performed using a heat balance model formula that takes into account the heat loss (temperature drop) that occurs while the strip passes from the inlet to the outlet of the induction heating device, and the induction method achieves the target heating temperature or target temperature increase. This is a method for controlling an induction heating device, characterized by determining and setting a required optimum power setting value for the heating device.

【0019】[0019]

【作用】本発明法によれば、熱損失分を考慮した電力設
定値を求めるにあたって、熱損失分の導出にあたり重要
な要因となる雰囲気温度を実測して用い、かつ、誘導加
熱装置通過中に、その各過程においてストリップに与え
られる熱量とストリップが失う熱量を熱収支モデル式に
より算出して、総じて、所望の加熱目標温度あるいは目
標昇温量を得ることのできる必要電力値を導出するよう
にしているので、加熱目標温度あるいは目標昇温量の変
更に対して、柔軟に精度良く対応することができる。ま
た、熱収支モデル式にはストリップのサイズが考慮され
ているので、サイズの変更に対しても同様に柔軟に精度
良く対応することができる。したがって、その結果、ス
トリップのサイズの変更や加熱目標温度あるいは目標昇
温量の変更が頻繁に行われても、所望の温度制御精度を
得ることができる。
[Operation] According to the method of the present invention, when determining the power setting value that takes heat loss into consideration, the ambient temperature, which is an important factor in deriving the heat loss, is actually measured and used, and the In each process, the amount of heat given to the strip and the amount of heat lost by the strip are calculated using a heat balance model formula, and the required power value that can obtain the desired heating target temperature or target temperature increase amount is derived as a whole. Therefore, it is possible to flexibly and accurately respond to changes in the heating target temperature or the target temperature increase amount. Furthermore, since the size of the strip is taken into consideration in the heat balance model equation, it is possible to respond flexibly and accurately to changes in size as well. Therefore, as a result, desired temperature control accuracy can be obtained even if the strip size, heating target temperature, or target temperature increase amount is frequently changed.

【0020】[0020]

【実施例】本発明の具体的な実施方法を図2,図3に示
す。図2において、1はストリップ、2は加熱コイルお
よびコイルカバー、3,4は加熱コイル2に接続された
整合コンデンサー、インバーター装置である。5は加熱
コイル内部雰囲気温度を計測する温度計、6は各コイル
間の空走部の温度を計測する温度計、7は加熱装置入口
のストリップ温度を計測する温度計、8は加熱装置出口
のストリップ温度を計測する温度計、9はストリップの
処理速度を計測する速度計、10は演算・判断処理装置
、11は上位計算機である。10と11は同一計算機で
実現してもよい。
[Example] A specific method of implementing the present invention is shown in FIGS. 2 and 3. In FIG. 2, 1 is a strip, 2 is a heating coil and a coil cover, 3 and 4 are matching capacitors connected to the heating coil 2, and an inverter device. 5 is a thermometer that measures the internal atmosphere temperature of the heating coil, 6 is a thermometer that measures the temperature of the free running part between each coil, 7 is a thermometer that measures the strip temperature at the heating device inlet, and 8 is a thermometer at the heating device outlet. 9 is a thermometer for measuring the strip temperature; 9 is a speedometer for measuring the processing speed of the strip; 10 is an arithmetic/judgment processing unit; and 11 is a host computer. 10 and 11 may be realized by the same computer.

【0021】また、図3には、演算・判断処理装置10
内での処理フローを示す。ストリップ1のサイズ変更部
あるいは目標加熱温度または目標昇温量の変更部が誘導
加熱装置入口温度計7に達したときに処理フローがスタ
ートし(12)、ストリップの処理速度計9よりストリ
ップ1の実測速度を、また加熱装置入口の板温計7より
ストリップ1の加熱装置入口での実績温度を、また、各
温度計5,6よりコイル部およびコイル間空走部での雰
囲気温度の実測値を演算・判断処理装置10に取り込む
と共に、上位計計算機11からもストリップの断面積、
単位長当たりの表面積等の各データを演算・判断処理装
置10に取り込む(13)。
FIG. 3 also shows an arithmetic/judgment processing device 10.
This shows the processing flow within. The processing flow starts when the size change part of the strip 1 or the target heating temperature or target temperature increase change part reaches the induction heating device inlet thermometer 7 (12), and the strip processing speed meter 9 indicates that the temperature of the strip 1 is Also, the actual temperature at the inlet of the heating device for strip 1 from the plate thermometer 7 at the inlet of the heating device, and the actual measured value of the ambient temperature at the coil section and the free running section between the coils from each thermometer 5 and 6. is input into the arithmetic/judgment processing device 10, and the cross-sectional area of the strip is also input from the host computer 11.
Each data such as surface area per unit length is taken into the arithmetic/judgment processing device 10 (13).

【0022】次に、14で温度積分計算の初期値T0 
を誘導加熱装置入口温度TE とし、また15にて温度
積分計算回数Nの初期値を0にセットして、a式計算部
17、b式計算部18、c式計算部19にて第1区間で
の温度上昇量(温度降下量)を算出した後積分計算回数
Nを1増す(20)。ここで、c式計算部19の処理に
おいては、13で演算・判断処理装置10に取り込んだ
温度計5,6により実測した雰囲気温度TG を用いる
。なお、上記の各計算部17,18,19における計算
式は下記の数式3を用いる。
Next, in step 14, the initial value T0 for temperature integral calculation is set.
is set as the induction heating device inlet temperature TE, and the initial value of the number of temperature integral calculations N is set to 0 in step 15. After calculating the amount of temperature increase (amount of temperature decrease) at , the number of integral calculations N is incremented by 1 (20). Here, in the processing of the c-formula calculation unit 19, the ambient temperature TG actually measured by the thermometers 5 and 6 taken into the arithmetic/judgment processing device 10 in step 13 is used. Note that the following formula 3 is used as the calculation formula in each of the calculation units 17, 18, and 19.

【0023】[0023]

【数3】[Math 3]

【0024】以降、Nが誘導加熱装置パス長さL(加熱
装置入口温度計測点から加熱装置出口温度管理点ー通常
、加熱装置出口温度計測点ーまでの距離)を温度計算1
区間の長さlで割った値の整数分NMAX 以上になる
まで、15,16,17,18,19,20,21,2
9の順序で計算処理を繰り返す。但し、ここで、加熱コ
イル部でない区間すなわち空走部に相当する区間の計算
をする場合には、加熱コイル区間判断部16にて分岐し
、T0 がT2 に置き換えられ(28)、17,18
をバイパスして19に連結される。
Hereinafter, N is the induction heating device path length L (distance from the heating device inlet temperature measurement point to the heating device outlet temperature control point - usually the heating device exit temperature measurement point). Temperature calculation 1
15, 16, 17, 18, 19, 20, 21, 2
Repeat the calculation process in the order of 9. However, when calculating a section that is not a heating coil section, that is, a section corresponding to an idle running section, the heating coil section judgment section 16 branches, and T0 is replaced with T2 (28), 17, 18.
It is connected to 19 by bypassing.

【0025】一方、電力簡易算出部25にて前に示した
数式1により、加熱目標温度あるいは目標昇温量を得る
ための必要総電力の粗値を求め、各誘導加熱装置への電
力配分方式に応じて、電力仮配分部26にて各誘導加熱
装置への粗電力設定値PPRO を計算しておく。そし
て、各誘導加熱装置(コイル)に該当する区間の計算処
理において各々に対応する粗電力設定値PPRO を用
いる。また、各計算処理に用いる粗電力設定値PPRO
 以外の諸データについても該当区間のものを用いるこ
とは言うまでもなく、また、各区間での比熱Cはその区
間での平均温度の関数とする。
On the other hand, the simple power calculation unit 25 calculates the rough value of the total power required to obtain the heating target temperature or the target temperature increase amount using the formula 1 shown above, and determines the power distribution method to each induction heating device. Accordingly, the power provisional distribution unit 26 calculates the crude power set value PPRO to each induction heating device. Then, in the calculation process for the section corresponding to each induction heating device (coil), the corresponding crude power setting value PPRO is used. In addition, the crude power setting value PPRO used for each calculation process
It goes without saying that other data for the relevant section are used, and the specific heat C in each section is a function of the average temperature in that section.

【0026】そしてNがNMAX に達したときには、
以上の温度積分計算処理(温度上昇量又は温度降下量の
積分計算)を終了し(21)、最終計算値をTD とし
て(22)、TD と設定TD との差ERR を算出
する(23)。 ここで、ERR が制御偏差許容値Aを越えるならば(
24)、電力修正部27にてERR に相当する分だけ
必要総電力の粗値を修正して再度電力仮配分を行う(2
6)と共に、修正後の粗電力設定値PPRO を用いて
再度前述した温度計算処理を行う。こうして、ERR 
がA以下になるまで以上の処理を繰り返す。ERR が
A以下になったら、そのときの各誘導加熱装置へ粗電力
設定値PPRO を正式な電力設定値PSET として
(30)、各誘導加熱装置(インバーター装置)へ出力
して(31)、終了する(32)。
[0026] When N reaches NMAX,
The above temperature integral calculation process (integral calculation of temperature increase amount or temperature decrease amount) is completed (21), the final calculated value is set as TD (22), and the difference ERR between TD and the setting TD is calculated (23). Here, if ERR exceeds the control deviation tolerance value A (
24) The power correction unit 27 corrects the rough value of the total required power by an amount corresponding to the ERR and performs temporary power allocation again (2
6), the temperature calculation process described above is performed again using the corrected crude power set value PPRO. In this way, E.R.R.
The above process is repeated until A becomes less than or equal to A. When ERR becomes below A, output the crude power setting value PPRO to each induction heating device as the official power setting value PSET (30) and output it to each induction heating device (inverter device) (31), and end. Do (32).

【0027】以上が、本発明の具体的実施方法であるが
、処理の中で用いるNMAX および制御偏差許容値A
について補足するならば、NMAX は要求される制御
精度と計算機への負荷を考慮して決めるのが望ましく、
また、更に、制御精度に大きく影響するコイル部での加
熱効率やコイル部及び空走部での総括熱伝達係数等の未
知パラメータは、コイル部や空送部等各ゾーン後との区
画において、カルマンフィルタ等を使用して推定、学習
することにより効果的に求めることができる。
The above is a concrete implementation method of the present invention. NMAX and control deviation tolerance value A used in the process
As a supplementary note, it is desirable to determine NMAX by considering the required control accuracy and the load on the computer.
Furthermore, unknown parameters such as the heating efficiency in the coil section and the overall heat transfer coefficient in the coil section and the free running section, which greatly affect control accuracy, are It can be effectively determined by estimation and learning using a Kalman filter or the like.

【0028】また、制御偏差許容値Aは、温度計算式に
用いる諸データの誤差や温度計算式そのものの精度を考
慮して、実際の制御偏差許容値よりも小さく設定する方
が望ましいが、過度に小さくし過ぎると計算が収束しな
い危険性が高く、又、計算機への負荷が大きくなるなど
弊害が生じるので、これらを考慮して設定しなければな
らない。
Furthermore, it is preferable to set the control deviation allowable value A to be smaller than the actual control deviation allowable value, taking into account the errors in various data used in the temperature calculation formula and the accuracy of the temperature calculation formula itself. If it is set too small, there is a high risk that the calculation will not converge, and there will be problems such as an increase in the load on the computer, so these must be taken into consideration when setting.

【0029】なお、目標昇温量に対して電力設定値を導
出する場合には、図3の23において、ERR =(T
D −TEJ)−ΔTSET とすればよい。なお、T
D は計算加熱温度、TEJは誘導加熱装置入口実測板
温、ΔTSET は目標昇温量である。
Note that when deriving the power setting value for the target temperature increase amount, at 23 in FIG. 3, ERR = (T
D - TEJ) - ΔTSET. In addition, T
D is the calculated heating temperature, TEJ is the actually measured plate temperature at the entrance of the induction heating device, and ΔTSET is the target temperature increase amount.

【0030】[0030]

【発明の効果】以上述べた本発明法によれば、熱損失分
を考慮した電力設定値を求めるにあたって、熱損失分の
導出に当たり重要な要因となる雰囲気温度を実測して用
い、かつ、誘導加熱装置通過中に、その各過程において
ストリップに与えられる熱量とストリップが失う熱量を
熱収支モデル式により算出して、総じて、所望の加熱目
標温度あるいは目標昇温量を得ることのできる必要電力
値を導出するようにしているので、加熱目標温度あるい
は目標昇温量の変更に対して、柔軟に精度よく対応する
ことができ、また、熱収支モデル式にはストリップのサ
イズが考慮されているので、サイズの変更に対しても同
様に柔軟に精度よく対応することができるので、ストリ
ップのサイズの変更や加熱目標温度あるいは目標昇温量
の変更が頻繁に行なわれる場合でも所望の温度制御精度
を得ることができる。
[Effects of the Invention] According to the method of the present invention described above, when determining a power setting value that takes heat loss into consideration, the ambient temperature, which is an important factor in deriving the heat loss, is actually measured and used. Calculate the amount of heat given to the strip and the amount of heat lost by the strip in each process while passing through the heating device using a heat balance model formula, and calculate the required power value that can obtain the desired heating target temperature or target temperature increase amount as a whole. This allows us to respond flexibly and accurately to changes in the heating target temperature or target temperature increase amount, and since the heat balance model formula takes the strip size into account. , it is possible to respond flexibly and accurately to changes in size, so even if the strip size, heating target temperature, or target temperature increase amount is frequently changed, the desired temperature control accuracy can be maintained. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】誘導加熱装置のレイアウト図。FIG. 1 is a layout diagram of an induction heating device.

【図2】本発明の具体的な実施方法を説明する図。FIG. 2 is a diagram illustrating a specific implementation method of the present invention.

【図3】本発明方法の制御フロー図。FIG. 3 is a control flow diagram of the method of the present invention.

【符号の説明】[Explanation of symbols]

1  ストリップ 2  加熱コイル 3  整合コンデンサー 4  インバーター 5〜8  温度計 9  速度計 10  演算・判断処理装置 11  上位計算機 1 Strip 2 Heating coil 3 Matching capacitor 4 Inverter 5-8 Thermometer 9 Speedometer 10 Arithmetic/judgment processing device 11 Upper-level computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数の加熱コイルがタンデム状に配列
されかつ少なくとも1ケ所のコイル間にサポートロール
が設置されて空走部をもつ誘導加熱装置にて、ストリッ
プを搬送しながら加熱し、所定の加熱温度あるいは所定
の昇温量を確保する誘導加熱装置の制御方法において、
ストリップの加熱目標温度または目標昇温量の変更部あ
るいはストリップのサイズ変更部が誘導加熱装置の入口
に到達した際に、ストリップのサイズ、各コイル部およ
びコイル間空送部に設置した雰囲気温度計により検出し
た温度値に基づいて、ストリップが誘導加熱装置入口か
ら出口までを通過する間に生じる熱損失分(温度降下分
)を考慮した熱収支モデル式を用いて収束計算を行い、
加熱目標温度または目標昇温量を達成する誘導加熱装置
への必要最適電力設定値を求め設定することを特徴とす
る誘導加熱装置の制御方法。
Claim 1: A strip is heated while being conveyed by an induction heating device in which a plurality of heating coils are arranged in tandem, a support roll is installed between at least one coil, and has an idle running section. In a method of controlling an induction heating device to ensure a heating temperature or a predetermined temperature increase amount,
When the strip heating target temperature or target temperature increase amount changing section or the strip size changing section reaches the inlet of the induction heating device, the strip size, each coil section, and the atmosphere thermometer installed in the inter-coil air feeding section are detected. Based on the temperature value detected by
A method for controlling an induction heating device, comprising determining and setting an optimum power setting value required for the induction heating device to achieve a heating target temperature or a target temperature increase amount.
JP2404555A 1990-12-20 1990-12-20 Control method for induction heating device Expired - Lifetime JP2523991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2404555A JP2523991B2 (en) 1990-12-20 1990-12-20 Control method for induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2404555A JP2523991B2 (en) 1990-12-20 1990-12-20 Control method for induction heating device

Publications (2)

Publication Number Publication Date
JPH04221027A true JPH04221027A (en) 1992-08-11
JP2523991B2 JP2523991B2 (en) 1996-08-14

Family

ID=18514216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2404555A Expired - Lifetime JP2523991B2 (en) 1990-12-20 1990-12-20 Control method for induction heating device

Country Status (1)

Country Link
JP (1) JP2523991B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694732A (en) * 2015-03-20 2015-06-10 江苏金基特钢有限公司 Steel wire induction-heating device
JP2021109990A (en) * 2020-01-08 2021-08-02 Jfeスチール株式会社 Plate temperature control method, heating control device and method for producing metal plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694732A (en) * 2015-03-20 2015-06-10 江苏金基特钢有限公司 Steel wire induction-heating device
JP2021109990A (en) * 2020-01-08 2021-08-02 Jfeスチール株式会社 Plate temperature control method, heating control device and method for producing metal plate

Also Published As

Publication number Publication date
JP2523991B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
KR100740795B1 (en) Improved flat glass annealing lehrs
KR101197430B1 (en) Strip material treatment apparatus
JP6146553B1 (en) Steel plate temperature control device and temperature control method
CN108495941B (en) The temperature control equipment and temprature control method of steel plate
RU2008136018A (en) METHOD AND DEVICE FOR REGULATING THE COOLING TUNNEL FURNACE FOR TUNNEL FURNACE
JPH04221027A (en) Method for controlling induction heater
JP4208505B2 (en) Winding temperature controller
TW202037419A (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JPS5831405A (en) Temperature controlling system in heating furnace
JP3072680B2 (en) Heating furnace temperature control method and apparatus
JP2833461B2 (en) Metal strip temperature control method
JP2018123364A (en) Method and apparatus for controlling temperature of steel sheet
JP2607795B2 (en) Method and apparatus for adjusting processing conditions of continuous furnace
JP7207335B2 (en) Plate temperature control method, heating control device, and metal plate manufacturing method
JP2022077626A (en) Coating film dryer, and drying method
JPH08199248A (en) Device for controlling temperature in continuous annealing apparatus
JPS63171215A (en) Method for controlling rolled stock with water cooling
JPS62238328A (en) Equipment for controlling heating
JP2000144255A (en) Method for controlling temperature of induction heating furnace
JPS6131947B2 (en)
JP2004269909A (en) Method for heating steel material and its program

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960402