JPH04126503A - Method and device for flocculation - Google Patents

Method and device for flocculation

Info

Publication number
JPH04126503A
JPH04126503A JP30779290A JP30779290A JPH04126503A JP H04126503 A JPH04126503 A JP H04126503A JP 30779290 A JP30779290 A JP 30779290A JP 30779290 A JP30779290 A JP 30779290A JP H04126503 A JPH04126503 A JP H04126503A
Authority
JP
Japan
Prior art keywords
water
treated
injection
liquid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30779290A
Other languages
Japanese (ja)
Inventor
Kazuji Fukunaga
福永 和二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP30779290A priority Critical patent/JPH04126503A/en
Publication of JPH04126503A publication Critical patent/JPH04126503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To effectively separate a supernatant liq. by using a flocculator with one end opened to the dispersion chamber of a liq. feed chamber and the other end to a separation chamber and having plural mixing pipes and providing a scraping arm on the water surface of the separation chamber and a supernatant water outlet under the water surface. CONSTITUTION:A dispersion chamber 3 is provided in a liq. feed chamber to be fed with water 2 to be treated, one end of a mixing pipe 5 with both ends opened is provided in the dispersion chamber 3 and used as the inlet for the water, an injection pipe 6 is coaxially furnished in each of the plural mixing pipes 5, and the discharge port 11 of the injection pipe is directed downward in the mixing pipe 5. A partition 8 is provided between the dispersion chamber 3 and separation chamber, the liq. 10 injected from the discharge port 11 is joined to the water 2 introduced into the single- pipe part 13 of the mixing pipe 5, the fine particles in the water are brought into contact with the liq. and cleaned, collision between the fine particles is repeated, and a giant floc is formed in the mixing pipe 5. The floating material contg. oil on the water surface in the separation chamber is discharged by a scraping arm 14. The outlet 17 for the supernatant liq. is set under the water surface, and the supernatant liq. is reutilized as the process water for food processing.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は魚、鳥、獣の解体工程液およびその排液、魚
、鳥、獣肉加工工程液およびその排液、魚、動植物性油
脂の採取工程液およびその加工排液、油脂を使用する菓
子、総菜製造工程液およびその排水から油脂・油滴(以
下「油脂」と略称する)および血液、微生物、蛋白質そ
の他の沈降性微細粒子を含む被処理水、その他の産業工
程から排出される油脂および微細粒子を含む被処理水よ
り油脂と微細粒子と上澄液とに凝集分離する凝集方法お
よび凝集装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to fish, poultry, and animal butchering liquids and their effluents, fish, poultry, and meat processing liquids and their effluents, fish, animal and vegetable fats and oils. Collecting process fluids and processing effluents, confectionery and delicatessen manufacturing process fluids that use oils and fats, and their effluents, including oils and oil droplets (hereinafter referred to as "fats and oils"), blood, microorganisms, proteins, and other sedimentary fine particles. The present invention relates to a flocculation method and a flocculation apparatus for coagulating and separating oil, fat, fine particles, and supernatant liquid from treated water and treated water containing oil, fat, and fine particles discharged from other industrial processes.

[従来の技術] 被処理水中の油脂と微細粒子を被処理水から分離する装
置としては油水分離槽と沈澱槽が用いられている。それ
ぞれ独立した分離室を備え、油水分離槽は被処理水が供
給される給液筒をへて油水分離室の排出口に至る間に浮
力の作用または加圧水の気泡に付着した油脂を浮上させ
て分離している。浮力による浮上分離は分散した微細油
滴の場合、上昇速度が小さく巨大な分離室を必要とする
[Prior Art] An oil-water separation tank and a settling tank are used as devices for separating fats and oils and fine particles in the water to be treated from the water to be treated. Each oil-water separation tank is equipped with an independent separation chamber, and the oil-water separation tank uses the action of buoyancy or floats oil and fat attached to air bubbles in the pressurized water while the water to be treated passes through the liquid supply cylinder and reaches the outlet of the oil-water separation chamber. Separated. In the case of dispersed fine oil droplets, flotation separation using buoyancy requires a huge separation chamber because the rising speed is low.

分離室を小型にするには加圧水の気泡による浮上方法が
採られるが、大半の沈降性微細粒子も気泡に捕捉され、
沈降性粒子をも1つの浮上分離室で処理することになる
ので、動力費がかさむ。
To make the separation chamber smaller, a flotation method using bubbles of pressurized water is used, but most of the settling fine particles are also captured by the bubbles.
Since sedimentary particles are also processed in one flotation separation chamber, power costs increase.

沈澱槽は、被処理水が供給される給液筒を経て、分離室
の溢流堰に至る間に重力の作用下に微細粒子を沈降させ
、該微細粒子の凝集作用は汚泥表面がもつ局所的荷電分
布による結合に委ねられている。被処理水の再利用また
は生物処理において、油脂の存在は再利用においては微
生物が疎水化して微量の油脂でも生存増殖するため再利
用水として利用しにくい。凝集剤の添加を好まない再利
用水にあっては、大量の酸化剤を使用して増殖微生物を
殺菌するか、微生物を分離する膨大な設備費を要する高
級分離機が採用されているが、食品加工工程で汚濁物を
洗浄するのに使用した工程排水を凝集処理して得られる
上澄液を食品加工工程で再使用することは食品の再汚染
の可能性が高いので実施されていない。
The sedimentation tank allows fine particles to settle under the action of gravity while passing through a liquid supply cylinder to which the water to be treated is supplied and reaching the overflow weir of the separation chamber. It is left to bonding due to the physical charge distribution. In the reuse or biological treatment of water to be treated, the presence of fats and oils makes it difficult to use the water as reuse water because microorganisms become hydrophobic and can survive and proliferate even in a small amount of fats and oils. For recycled water that does not require the addition of flocculants, large amounts of oxidizing agents are used to sterilize growing microorganisms, or high-grade separators that require enormous equipment costs to separate microorganisms are used. Reusing the supernatant liquid obtained by coagulating process wastewater used to wash contaminants in the food processing process in the food processing process has a high possibility of re-contaminating the food, so it is not practiced.

生物処理において油脂が資化速度以上に系内に流入する
と活性汚泥にバルキング現象が認められ、活性汚泥が処
理水と共に系外に流出することが多い。その結果曝気槽
内の活性汚泥濃度が低下し、処理水質が悪くなることが
多い。
In biological treatment, when fats and oils flow into the system at a rate higher than the assimilation rate, a bulking phenomenon is observed in the activated sludge, and the activated sludge often flows out of the system together with the treated water. As a result, the activated sludge concentration in the aeration tank decreases, often resulting in poor treated water quality.

[発明が解決しようとする課題] この発明は、再利用水質の向上を図るにあたり、凝集剤
を添加しなくても、固液分離性能を現在の1.000倍
以上に向上させ、1ミクロン前後の微生物、分散した浮
上性微細油脂を被処理水中の電解質を凝集剤に利用して
一瞬のうちに巨大フロックを形成させ、凝集分離するも
のである。
[Problem to be solved by the invention] In order to improve the quality of reused water, this invention improves the solid-liquid separation performance by more than 1.000 times the current level without adding a flocculant, and improves the solid-liquid separation performance to around 1 micron. Microorganisms, dispersed floating fine oils and fats are used as a coagulant to form giant flocs in an instant using the electrolyte in the water to be treated, which is then coagulated and separated.

浮上性油脂が約数百a+g/l以下の被処理水では1つ
の分離室で油脂を凝集浮上させ、沈降性微細粒子を凝集
沈降させて分離できる。したがって分離室の小型軽量化
が図れ、油水分離槽の分離室、沈澱槽の分離室として併
用使用できる。油脂が数百■g/lを越える被処理水の
ときは油脂の油水分離室と沈降性微細粒子を沈降する分
離室を独立して設けるのも良いが、従来の簡単な油水分
離槽を設けて油脂を数百tsg/ 1以下にして、併用
分離室を設置する方が性能を発揮するうえで望ましい場
合が多い。
In treated water containing floatable oils and fats of less than about several hundred a+g/l, the oils and fats can be flocculated and floated in one separation chamber, and the sedimentable fine particles can be flocculated and separated. Therefore, the separation chamber can be made smaller and lighter, and can be used in combination as a separation chamber of an oil-water separation tank and a separation chamber of a sedimentation tank. When the amount of oil and fat in the water to be treated exceeds several hundred g/l, it is good to install an oil-water separation chamber for oil and fat and a separation chamber for settling fine sedimentary particles separately, but it is better to install a conventional simple oil-water separation tank. In order to achieve good performance, it is often desirable to reduce the oil and fat content to several hundred tsg/1 or less and install a combined separation chamber.

浮上性、沈降性微細粒子が100*g/l以下の時は粒
子間距離が大きく、粒子間に衝突しうるにたる表面電位
差があっても粒子間に衝突する機会が少なく、たとえフ
ロック形成してもフロックは小さく凝集除去効果は低い
ことが多い。
When the number of floating and settling fine particles is 100*g/l or less, the distance between particles is large, and even if there is a surface potential difference that can cause collision between particles, there is little chance of collision between particles, and even if flocs are formed. However, the flocs are small and the flocculation removal effect is often low.

魚、鶏、家鴨などの家禽や牛、豚、羊などの家畜の解体
工程において生成する汚物、細菌汚染した工程液を凝集
処理して上澄液を再利用する。
The filth and bacteria-contaminated process liquid generated during the slaughtering process of poultry such as fish, chickens, and ducks, and livestock such as cows, pigs, and sheep is coagulated and the supernatant liquid is reused.

本発明は、1ミクロン前後の微細粒子(微生物を含む)
を99.99%凝集除去する性能の良い装置を安価で提
供することを目的としている。
The present invention deals with fine particles (including microorganisms) of around 1 micron.
The purpose is to provide an inexpensive device with good performance that can remove 99.99% of coagulation.

[課題を解決するための手段] 本発明者は先に微細粒子を含む被処理水より微細粒子を
凝集させて巨大フロックを形成し、沈降させて、上澄液
とを効率的に分離する装置および凝集方法について発明
し特願昭63−155624号(特開1−52010号
公報蓼照)として出願した。
[Means for Solving the Problems] The present inventor first developed a device that aggregates fine particles from water to be treated containing fine particles to form a huge floc, causes it to settle, and efficiently separates it from a supernatant liquid. and an aggregation method, and filed an application as Japanese Patent Application No. 155624/1983 (Japanese Patent Application Laid-open No. 1-52010).

本発明は前記凝集装置に改良を加えて、微細粒子の他に
微細油脂粒子を含む被処理水を処理して巨大な油脂粒を
浮上分離し、一方沈降性の微細粒子は巨大フロックを形
成させて沈降分離し、上澄液を再利用出来るようにした
機能を持つ凝集分離装置を提供するものである。
The present invention improves the flocculation device, treats water containing fine oil particles in addition to fine particles, and floats and separates giant oil particles, while allowing sedimentary fine particles to form giant flocs. The purpose of the present invention is to provide a flocculation separation device having a function of performing sedimentation separation and reusing the supernatant liquid.

本発明の凝集装置は、特願昭63−155624号明細
書に記載した凝集装置と同様、被処理水を供給する給液
室に、被処理水を分散する分散室と分散室内に開口する
混合管を設け、混合管内に注入管を挿入し、注入管吐出
口より注入液を混合管内に注入する流れと、混合管内に
流入してくる被処理水の流れとが接触して、その界面の
浮上性油脂粒子および沈降性微細粒子それぞれの粒子間
に電解質濃度差を生じさせ、それに基づく、反発電位エ
ネルギーの低下が、1〜5X 10−’+wmの衝突困
難な微細粒子間にも、激しい衝突を繰り返させ、混合管
吐出口までに、0.5〜1ffiII+の巨大な浮上性
フロックと沈降性フロックを形成する。この混合液は、
分離室に送られ浮上性フロックと沈降性フロックとに分
離すン る。
The flocculation apparatus of the present invention is similar to the flocculation apparatus described in Japanese Patent Application No. 63-155624, and includes a liquid supply chamber for supplying water to be treated, a dispersion chamber for dispersing the water to be treated, and a mixing chamber opened in the dispersion chamber. A pipe is provided, an injection pipe is inserted into the mixing pipe, and the flow of injected liquid into the mixing pipe from the injection pipe outlet comes into contact with the flow of the water to be treated flowing into the mixing pipe, and the interface between A difference in electrolyte concentration is created between the floating oil particles and the settling fine particles, and the resulting reduction in repulsion potential energy causes severe collisions even between fine particles of 1 to 5X 10-'+wm, which are difficult to collide with. This is repeated to form huge floating flocs and settling flocs of 0.5 to 1 ffiII+ up to the mixing tube outlet. This mixture is
The flocs are sent to a separation chamber and separated into floating flocs and settling flocs.

分離室内に送られた混合液中の油脂は浮上し、掻き出し
腕木により分離室から排除され、また沈降性の微細粒子
の巨大フロックは分離室の底部に設けられた排出口から
排出され、必要に応じて循環再使用される。上澄液は分
離室の液面下に設けた上澄液排出口から系外に取り出さ
れる。
The oil and fat in the mixed liquid sent into the separation chamber floats to the surface and is removed from the separation chamber by a scraper arm, while the huge floc of settling fine particles is discharged from the outlet provided at the bottom of the separation chamber and is removed as needed. be reused accordingly. The supernatant liquid is taken out of the system through a supernatant liquid outlet provided below the liquid level in the separation chamber.

本発明の凝集方法は、上記の凝集装置を使用して、被処
理水を油脂を主成分とする浮上粒子と沈降性粒子と上澄
液とに分離する方法の発明であって、混合管内の混合液
(被処理水と注入液)の流速を10<Re<105に、
注入液の注入管内の流速を5<Re<104に維持して
、混合管内で両液を接触させて凝集分離作用をほぼ完了
させるものである。断面形状が角型の混合管、注入管を
用いた凝集装置では、Reの算出にあたり混合管(角型
)、注入管(角型)の直径として水力相当直径Deqを
使用する。すなわちD eq= 4 A/LI[A:流
れの断面積、U:浸辺長]で算出する。
The flocculation method of the present invention is an invention of a method of separating treated water into floating particles mainly composed of oil and fat, sedimentary particles and supernatant liquid using the above-mentioned flocculation device, and the method comprises: The flow rate of the mixed liquid (water to be treated and injection liquid) is set to 10<Re<105,
The flow rate of the injection liquid in the injection tube is maintained at 5<Re<104, and both liquids are brought into contact with each other in the mixing tube to almost complete the coagulation and separation action. In a flocculation device using a mixing tube and an injection tube having a rectangular cross-sectional shape, the hydraulic equivalent diameter Deq is used as the diameter of the mixing tube (square) and injection tube (square) in calculating Re. That is, it is calculated by D eq = 4 A/LI [A: flow cross-sectional area, U: immersion side length].

本発明の凝集装置により処理される被処理水とは魚、鳥
、獣の解体工程液およびその排液、魚、鳥、獣肉加工工
程液およびその排液、魚、動植物性油脂の採取工程液お
よびその加工排液、油脂を使用する食品加工(菓子、総
菜製造、その他)工程液およびその排液、そして上記各
工程液および各排液の生物処理液を被処理水という。
The water to be treated by the flocculation device of the present invention is liquid from the slaughtering process of fish, birds, and animals and its effluent, liquid from the processing process of fish, birds, and meat and its effluent, and liquid from the collection process of fish, animal and vegetable oils and fats. Processing liquids thereof, liquids from food processing (confectionery, delicatessen production, etc.) processes that use oils and fats, liquids thereof, and biologically treated liquids of the above-mentioned process liquids and wastewaters are referred to as treated water.

注入液は生物処理上澄水、物理化学処理上澄水、低濃度
汚染産業廃水、海水、水道水、蒸留水、潅がい用水およ
び/または工業用水(湖沼水、河川水、地下水等)がも
ちいられる。被処理水の電解質濃度が低く、注入液の電
解質濃度と差がないときは、被処理水に電解質を添加す
るか、注入液として電解質を含む水溶液、例えばアルカ
リ土類金属塩水溶液、アルカリ金属塩水溶液、アルミニ
ウム塩、鉄塩、高分子凝集剤水溶液を用いることもでき
る。
As the injection liquid, biological treatment supernatant water, physicochemical treatment supernatant water, low concentration contaminated industrial wastewater, seawater, tap water, distilled water, irrigation water and/or industrial water (lake water, river water, groundwater, etc.) can be used. If the electrolyte concentration of the water to be treated is low and there is no difference from the electrolyte concentration of the injection solution, add an electrolyte to the water to be treated, or use an aqueous solution containing an electrolyte as the injection solution, such as an aqueous alkaline earth metal salt solution, an alkali metal salt. Aqueous solutions, aluminum salts, iron salts, and polymer flocculant aqueous solutions can also be used.

なお、被処理水中の微細粒子濃度が低いときには凝集助
剤を添加すると、除去を目的とする微細粒子の間に多数
の微細な凝集助剤を介在させることになり、目的微細粒
子間(凝集助剤を含む)の衝突効果を高め本発明の装置
の処理能力を高めることができる。凝集助剤として珪藻
土、骨炭粉末、炭素粉末(石炭、ヤシ殻炭、活性炭)、
炭酸マグネシウム粉末、リン酸カルシウム粉末、雲母、
長石、白土、陶石、滑石、ベントナイト、カオリン、粘
土、ドロマイト、マグネシア、ケイ酸マグネシウム、ク
ロム、クロムマグネシア、マグネシアクロムアルミナ、
ケイ石、ロウ石、酸化チタン、アルミン酸石灰、ケイ酸
2石灰、スピネル、ジルコン等の窯業原料微粉末、微粉
砕繊維、非水溶性有機物質の微粉末などである。
Note that if a flocculation aid is added when the concentration of fine particles in the water to be treated is low, a large number of fine flocculation aids will be interposed between the fine particles to be removed. The throughput of the apparatus of the present invention can be increased by increasing the impact effect of the materials (including agents). Diatomaceous earth, bone charcoal powder, carbon powder (coal, coconut shell charcoal, activated carbon) as coagulation aids,
Magnesium carbonate powder, calcium phosphate powder, mica,
Feldspar, white clay, pottery stone, talc, bentonite, kaolin, clay, dolomite, magnesia, magnesium silicate, chromium, chromium magnesia, magnesia chromium alumina,
These include fine powders of ceramic raw materials such as silica stone, waxite, titanium oxide, lime aluminate, dicalcium silicate, spinel, and zircon, finely pulverized fibers, and fine powders of water-insoluble organic substances.

混合管の環状部に多孔質材を装着することにより、多孔
質材下流の環状部において、多孔質材の穴を貫通した液
がそれ′ぞれ等速度を得ることになり、混合管、注入管
の長さを短くしても凝集分離性能が低下しないから凝集
装置の小型化を図ることができる。
By attaching a porous material to the annular part of the mixing tube, the liquid that has passed through the holes in the porous material will have a uniform velocity in the annular part downstream of the porous material, and the mixing pipe and injection Even if the length of the tube is shortened, the flocculation and separation performance does not deteriorate, so the flocculation device can be made smaller.

以下この発明を添付の図面に基づいて説明する。The present invention will be explained below based on the accompanying drawings.

第1図は本発明の凝集装置の1例であって縦型の装置を
示す模式図である。該凝集装置において、被処理水2)
が供給される部屋を給液室1)と呼ぶ、給液室に分散室
3)を設ける。分散室内に1ないし複数の混合管5)(
第1図では2本図示)を設け、分散室に両端が開口した
混合管5)の一端を設けて被処理水の供給口とし、他端
は分離室4)に直接凝集物を吐出する混合管吐出口15
)とし、複数の混合管に注入管6)を、それぞれ中心軸
を合一して1本づつ設けた装置の図である。第2図(丸
型管)第7図(角型管)は混合管と注入管の関係を示し
た図の一例である。注入管吐出口11)は混合管下流に
向けて開口している。分散室と分離室の間に隔壁8)を
設けて、注入管吐出口11)から供給される注入液10
)の流れと、混合管と注入管とでつ(られた環状部12
)から注入管吐出口の下流の混合管の単管部13)に流
入する被処理水の流れとが接して流れ、その界面で、被
処理水の微細粒子と注入液で接触洗浄した微細粒子との
間に激しい衝突が繰り返され、混合管を通過する間に巨
大フロックを形成する。沈澱したフロックは集泥装置2
4)で集泥し、汚泥排出口18)から、油脂を含む浮上
物質は掻き出し腕木14)で排出する。複数の混合管の
被処理水供給口を同じ水位に維持して、各混合管の流入
水量を均等化する。
FIG. 1 is an example of the aggregation apparatus of the present invention, and is a schematic diagram showing a vertical type apparatus. In the flocculation device, the water to be treated 2)
The room in which the liquid is supplied is called a liquid supply chamber 1), and a dispersion chamber 3) is provided in the liquid supply chamber. One or more mixing tubes 5) in the dispersion chamber (
A mixing pipe 5) with both ends open in the dispersion chamber is provided as a supply port for the water to be treated, and the other end is used to discharge the aggregates directly into the separation chamber 4). Pipe outlet 15
), and is a diagram of a device in which a plurality of mixing pipes are provided with one injection pipe 6) with their central axes merging. Figure 2 (round tube) and Figure 7 (square tube) are examples of diagrams showing the relationship between the mixing tube and the injection tube. The injection pipe discharge port 11) opens toward the downstream side of the mixing pipe. A partition wall 8) is provided between the dispersion chamber and the separation chamber, and the injection liquid 10 is supplied from the injection pipe outlet 11).
) and the annular section 12 connected to the mixing tube and the injection tube.
) flows in contact with the flow of the water to be treated flowing into the single pipe section 13) of the mixing pipe downstream of the injection pipe outlet, and at the interface, the fine particles of the water to be treated contact with the fine particles washed by the injection liquid. There are repeated violent collisions between the two, forming huge flocs while passing through the mixing tube. The settled flocs are sent to the mud collector 2.
The sludge is collected in step 4), and the floating substances containing oil and fat are scraped out and discharged from the sludge discharge port 18) with the arm 14). The water supply ports of the plurality of mixing pipes are maintained at the same water level to equalize the amount of water flowing into each mixing pipe.

混合管の本数は被処理水量と注入液量との混合液7)の
総量が、各混合管内を通過する流速が10<Re<10
5に保つように決め、注入液の注入管内の流速も5< 
Re< 105に保持する。
The number of mixing tubes is such that the total amount of the mixed liquid 7) of the amount of water to be treated and the amount of injection liquid passes through each mixing tube at a flow rate of 10<Re<10.
5, and the flow rate of the injection liquid in the injection tube was also set to 5 <
Maintain Re<105.

微細粒子の少ない希薄混合液を処理する混合管または大
量の液を処理する大径の混合管には多孔質材を装填した
環状注入管(21)を挿入して、注入液吐出口(11)
において注入液と混合液と接する面積を大きくする(第
3、第4図参照)。それだけ短時間に洗浄微細粒子個数
が増え、未洗浄微細粒子との衝突が容易となり、フロッ
ク形成能力が向上する。また注入管吐出口の′下流に混
合管直径の1710〜8倍の距離に注入管直径よりやや
大きめに縮小混合管(22)により混合管直径を狭め(
第5図参照)、洗浄微細粒子と未洗浄微細粒子との衝突
効果をあげ、フロック形成能力が向上する。縮小した混
合管は拡大混合管(23) (第6図参照)により混合
管直径を拡大して吐出速度をおとして堆積汚泥に外乱を
与えるのを少なくする。
An annular injection tube (21) loaded with a porous material is inserted into a mixing tube that processes a dilute mixed liquid with few fine particles or a large diameter mixing tube that processes a large amount of liquid, and an injected liquid discharge port (11) is inserted into the mixing tube.
In this case, the area in contact with the injection liquid and the mixed liquid is increased (see Figures 3 and 4). The number of washed fine particles increases in a correspondingly short time, and collision with unwashed fine particles becomes easier, improving floc formation ability. In addition, the mixing tube diameter is narrowed by a mixing tube (22) that is slightly larger than the injection tube diameter at a distance of 1710 to 8 times the mixing tube diameter downstream of the injection tube outlet (
(see FIG. 5), the effect of collision between the washed fine particles and the unwashed fine particles is increased, and the ability to form flocs is improved. The diameter of the reduced mixing tube is expanded by an enlarged mixing tube (23) (see Figure 6) to reduce the discharge speed and to reduce disturbance to the accumulated sludge.

固液分離性能が向上するのは、被処理水中の微細粒子が
、注入液と接して、(0,1〜5)X 10−’mmの
微細粒子間に電解質濃度差が生じ、それに基づく、反発
電位の低下が、微細粒子間に激しい凝集作用をもたらし
、混合凝集作用が繰り返され混合管下流に向かって巨大
フロックを形成する。従ってバルキング汚泥でも、巨大
フロックを形成することになる。−船釣に両液の電解質
(イオン)濃度差の大きい時に、凝集微細粒子間、フロ
ック粒子間の結合力は強いようである。望ましくは、注
入液と被処理水の電解質濃度差が01mg/1以上であ
るとフロックを形成しやすくなり、10mg/1以上あ
るとフロック形成能力は強い。2X 105mg/1以
上でもフロックを形成するが、薬剤費が大きくなり経済
的でない。
The solid-liquid separation performance is improved because when the fine particles in the water to be treated come into contact with the injection liquid, a difference in electrolyte concentration occurs between the fine particles of (0,1 to 5) x 10 mm, and based on this, The decrease in repulsion potential brings about a strong agglomeration effect between the fine particles, and the mixing aggregation effect is repeated to form a huge floc toward the downstream side of the mixing tube. Therefore, even bulking sludge will form huge flocs. - When fishing by boat, when there is a large difference in electrolyte (ion) concentration between the two solutions, the bonding force between aggregated fine particles and floc particles seems to be strong. Desirably, if the electrolyte concentration difference between the injection solution and the water to be treated is 01 mg/1 or more, flocs will be easily formed, and if it is 10 mg/1 or more, the floc-forming ability will be strong. 2X 105 mg/1 or more will form flocs, but the drug cost will increase and it is not economical.

被処理水が海水の場合に、注入液に水を使用するのが得
策であるが、安価な水を入手出来ないとき被処理水に多
価金属塩を添加して注入液として使用すると多価金属塩
濃度はアルカリ金属塩のl/10〜1/200でおなじ
凝集効果を上げることができるから、2X 105鵬g
/l以下に収めることができる。
When the water to be treated is seawater, it is a good idea to use water as an injection solution, but when cheap water is not available, adding polyvalent metal salts to the water to be treated and using it as an injection solution can cause polyvalent The same aggregation effect can be achieved at a metal salt concentration of 1/10 to 1/200 of the alkali metal salt, so 2X 105g
/l or less.

混合管内の流速がRe>105になれば、フロックは形
成しない。Re < 105になれば、フロックは形成
する。10>Reになれば、1本あたりの混合管処理中
が少なく、処理コストが大になる。形成したフロックは
混合管内の流速が105< Re < 105になって
一旦破壊されるととがあっても、Re<105に保持す
ればフロックは形成する。注入液の注入管内、またはそ
れからの吐出速度がRe>105になれば、フロックを
形成しない。Re < 105に維持すれば、フロック
の成長は促進される。Re < 5なれば、1本あたり
の注入管処理量が少なく、処理コストが大になる。
If the flow rate in the mixing tube is Re>105, no flocs will form. If Re < 105, flocs will form. If 10>Re, the number of times each mixing tube is being processed is small, and the processing cost increases. Even if the formed flocs are destroyed once the flow velocity in the mixing tube becomes 105<Re<105, the flocs will still be formed if Re<105 is maintained. If the injection velocity of the injection liquid into or from the injection tube is Re>105, no flocs will be formed. If Re<105 is maintained, floc growth is promoted. If Re<5, the amount of injection tubes to be processed per tube will be small and the processing cost will be high.

注入液量は被処理水にたいし200%以下、望ましくは
30〜1%である。1%以下では凝集効果は低い、20
0%以上でもフロック形成能力は変わらない。200%
をこえると、分離室への負荷が大きすぎ、注入液が増加
しただけの効果は認められない。
The amount of injection liquid is 200% or less, preferably 30 to 1% of the water to be treated. If it is less than 1%, the flocculation effect is low, 20
Even at 0% or more, the floc-forming ability remains unchanged. 200%
If it exceeds , the load on the separation chamber will be too large and the effect of increasing the amount of injected liquid will not be observed.

汚濁物質の濃度の小さい被処理水は微細粒子間の距離が
100オーゲストロング以上ある場合が多く、粒子間の
距離が100オーゲストロングより大きいと粒子間の衝
突が少なくてフロックが小さく、凝集性能が著しく低下
する。そのため被処理水中の粒子直径と前後する直径で
比重の大きい凝集助剤、また凝集分離した汚泥(凝集助
剤を含む)50〜lX105B/lを被処理水に加え、
衝突効果を高めて巨大フロックを形成させて凝集分離す
るものである。
In treated water with a low concentration of pollutants, the distance between fine particles is often 100 Augestrons or more, and if the distance between particles is larger than 100 Augestlongs, there are fewer collisions between particles, resulting in smaller flocs and agglomeration. Performance will be significantly degraded. Therefore, a coagulation aid with a diameter around the diameter of the particles in the water to be treated and a large specific gravity, and 50 to 105 B/l of coagulated and separated sludge (including the coagulation aid) are added to the water to be treated.
This enhances the collision effect to form giant flocs, which are then coagulated and separated.

注入管、混合管環状部とに装着する多孔質材(19)(
20)は注入液・被処理水中の微細粒子の直径の大きさ
によって多孔質材の穴径を変えることになる。
A porous material (19) attached to the injection pipe and the mixing pipe annular part (
In 20), the pore diameter of the porous material is changed depending on the diameter of the fine particles in the injection liquid/water to be treated.

被処理水中の固形粒子は安価なろ過板で除去しておく、
ここでの微細粒子直径は11n11〜0.1ミクロンを
さす。多孔質材を装着して凝集装置の小型化をはかるに
は、多孔質材の各式を通過した注入液・被処理水ができ
るだけ等速度であることが必要である。多孔質材は抗菌
性の0.01〜5mm径の粉粒体、0.01〜3nm穴
径の金属製、無機製、高分子樹脂製の多孔板、織物、編
み物、不織布、網、スポンジ(連続微細気泡径)これら
素材をそれぞれ単独または層状に組み合わせたものがあ
げられる。多孔質材の装填高さを01〜500mm、水
道水管内平均速度1om/seaにおける圧力損失を0
.01〜10.0OOo+mに収めるのが望ましい。圧
力損失が0.01in以下は整流効果が少なく 、10
.000mm以上は所要動力が大きく不経済である。
Solid particles in the water to be treated are removed using an inexpensive filter plate.
The fine particle diameter here refers to 11n11 to 0.1 micron. In order to reduce the size of the flocculation device by installing a porous material, it is necessary that the injection liquid and the water to be treated that pass through each type of porous material have as uniform a velocity as possible. Porous materials include antibacterial powder and granules with a diameter of 0.01 to 5 mm, porous plates made of metal, inorganic, and polymeric resins with pore diameters of 0.01 to 3 nm, woven fabrics, knitted fabrics, nonwoven fabrics, nets, sponges ( Continuous fine cell diameter) These materials may be used alone or in combination in layers. The loading height of the porous material is 01 to 500mm, and the pressure loss at an average velocity in the tap water pipe of 1om/sea is 0.
.. It is desirable to keep it within 01 to 10.0OOo+m. If the pressure loss is less than 0.01 inch, the rectification effect is small, and 10
.. 000 mm or more requires a large amount of power and is uneconomical.

実施例−1 鶏25000羽の解体工場において、鶏の無頭体を冷却
、殺菌する冷却槽の冷却に次亜塩素ソーダ含有冷却清水
(0℃)を1羽あたり3リツトルを交流接触させて供給
し、1分間80羽の無頭体温35℃を15℃に冷却して
いる。排出汚濁液(BOD370+++g/I、553
50mg/l、油分18++g/I)に対し、残留塩素
ll1g/lに調節して一般細菌102個/1111以
下に管理している。供給冷却清水を1別当たり1リツト
ルに減らし、かつ凝集槽から排出する汚濁液の水質を現
状以下にするために、冷却水排出口から排出汚濁液を循
環ポンプで抜き取り、本発明の第1図の凝集装置の被処
理水供給口に24m3/hrの割合で循環供給して、浮
上性物質(油脂)を分離室の最上部から分離し、一方沈
降性微細粒子[(血液、蛋白、微生物)平均直径0.3
〜5ミクロン1を底部より排除し、−ヒ澄(循環)液は
分離室の水面下30cmから冷却槽の供給冷却清水供給
口に戻した。この時使用した凝集装置は混合管(直径1
20m+n長さ1800mm)と注入管(直径251!
lIw長さ1300+n+n)を1セツトとして48(
6列8本)セットを分散室(1,4mx 1.6m)に
配置し、分散室水位を分離室(直径2.3m高さ2.7
m)水位より45mm上に設置した。
Example-1 At a slaughtering factory for 25,000 chickens, 3 liters of cooled water containing sodium hypochlorite (0°C) was supplied per chicken by AC contact to cool the cooling tank that cools and sterilizes the headless bodies of chickens. The headless body temperature of 80 birds was cooled from 35°C to 15°C for one minute. Discharged polluted liquid (BOD370+++g/I, 553
50mg/l, oil content 18++g/I), residual chlorine is adjusted to 11g/l and controlled to below 102/1111 general bacteria. In order to reduce the amount of cooled fresh water supplied to 1 liter per unit and to reduce the water quality of the polluted liquid discharged from the coagulation tank to below the current level, the discharged polluted liquid is extracted from the cooling water outlet using a circulation pump. The water is circulated at a rate of 24 m3/hr to the water supply port of the flocculation device to separate floating substances (oils and fats) from the top of the separation chamber, while separating fine sedimentary particles [(blood, proteins, microorganisms)]. Average diameter 0.3
-5 microns were removed from the bottom, and the arsenal (circulating) liquid was returned to the cooling bath supply cooling fresh water inlet from 30 cm below the water surface of the separation chamber. The flocculation device used at this time was a mixing tube (diameter 1
20m+n length 1800mm) and injection pipe (diameter 251!
lIw length 1300+n+n) is set as 48(
A set of 8 pieces in 6 rows is placed in a dispersion chamber (1.4 m x 1.6 m), and the water level in the dispersion chamber is adjusted to the separation chamber (diameter 2.3 m height 2.7 m).
m) Installed 45 mm above the water level.

一方同じ凝集装置に混合管と注入管セット28(セット
)を使用し凝集助剤としてベントナイト(1〜20ミク
ロン)を被処理水濃度が6000mg/lを維持するよ
う凝集装置の被処理水供給口に連続供給した結果を表−
1に示す。注入管に装着した多孔質材は2系列とも細孔
径(15ミクロン)のガラス製ろ過板(251直径)を
使用した。
On the other hand, using the mixing tube and injection pipe set 28 (set) in the same coagulation device, bentonite (1 to 20 microns) was added as a coagulation aid to the treated water supply port of the coagulation device to maintain the concentration of the treated water at 6000 mg/l. The table shows the results of continuous supply to -
Shown in 1. The porous material attached to the injection tube was a glass filter plate (251 diameter) with a pore diameter (15 microns) in both series.

なお凝集装置使用中は次亜塩素酸ナトリウムの使用を中
止した。
The use of sodium hypochlorite was discontinued while the flocculation equipment was in use.

表−1 凝集助剤        なしベントナイト添加量  
 mg/l       −6000混合管直径 II
III112o12゜“ 長さ  mi+      
 1800   1800注入管直径 m+n    
   25    25セツト数   set    
   48    28分離室直径 m       
2.3   2.3〃 高さ  m        2
.7    2.7被処理水上澄循環水 透視度  cn    4   30    32細菌
数     4X10”  lXl0”   7X10
5SS  ll1g/l   2g6 7.6  4.
8循環水It m3/set、hr     O,50
0,857分離室水 面積負荷m 3 /lr、 1日      139 
  139ベントナイトを使用した場合は、巨大フロッ
クを形成し、無添加に比べて1セツト当たりの循環水量
は1.7倍になり、フロックの沈降性能が向上し凝集分
離能力は大幅に向上する。細菌は99.99%除去する
ことが分かる。
Table-1 Amount of bentonite added without coagulation aid
mg/l -6000 mixing tube diameter II
III112o12゜" Length mi+
1800 1800 injection tube diameter m+n
25 25 set number set
48 28 Separation chamber diameter m
2.3 2.3 Height m2
.. 7 2.7 Treated water supernatant circulating water visibility cn 4 30 32 Bacteria count 4X10” lXl0” 7X10
5SS ll1g/l 2g6 7.6 4.
8 Circulating water It m3/set, hr O, 50
0,857 Separation room water area load m 3 /lr, 1 day 139
When 139 bentonite is used, huge flocs are formed, and the amount of circulating water per set is 1.7 times that of no additive, and the sedimentation performance of the flocs is improved, and the coagulation and separation ability is greatly improved. It can be seen that 99.99% of bacteria are removed.

実施例−2 上記実施例−1と同じ装置を使用してベントナイトの被
処理水濃度が6000鳳g/lに維持するよう継続添加
運転をした後、分離室底から被処理水濃度の4倍に濃縮
した汚泥を汚泥排出口から被処理水供給口に返送し、ベ
ントナイトを補充しつつ被処理水中の汚泥濃度を800
0Il+g/lに高めて継続運転した成績を表−2に示
す。注入管に装着した多孔質材は実施例−1と同じ25
+amガラスろ過板を使用した。
Example-2 Using the same equipment as in Example-1 above, after continuous addition operation to maintain the concentration of bentonite in the water to be treated at 6000 g/l, the concentration of bentonite in the water to be treated was 4 times higher than the concentration in the water to be treated from the bottom of the separation chamber. The concentrated sludge is returned from the sludge discharge port to the treated water supply port, and bentonite is replenished and the sludge concentration in the treated water is reduced to 800%.
Table 2 shows the results of continued operation at 0Il+g/l. The porous material attached to the injection pipe was the same as in Example-1.
A +am glass filtration plate was used.

凝集装置使用中は次亜塩素酸ナトリウムの使用を中止し
た。
The use of sodium hypochlorite was discontinued while the flocculation equipment was in use.

表−2 被処理水 上澄循環水 添加剤         ベントナイト汚泥添加濃度B
/I        6000   8000透視度 
cm     4    32    33細菌数  
   4.8x10@1.6xlO″   98SS 
  B/]   286   4.8    4.2被
処理水に凝集助剤として添加したベントナイトと凝集沈
毅汚泥(ベントナイト+沈降性微細粒子)を凝集助剤と
して循環使用する場合との間に有意差が認められない。
Table-2 Treated water Supernatant circulating water additive Bentonite sludge addition concentration B
/I 6000 8000 visibility
cm 4 32 33 number of bacteria
[email protected]″ 98SS
B/] 286 4.8 4.2 A significant difference was observed between bentonite added as a coagulation aid to treated water and the case where coagulation-sedimentation sludge (bentonite + settling fine particles) was recycled as a coagulation aid. I can't.

実施例−3 環状部に多孔板を混合管入り口から200の位置に装着
した混合管(直径120mm長さ100100Oと多孔
板を装着した注入管(直径25mm長さ600+am)
を単管部長さ400mmになるようセットし、1セツト
を直径300II1m深さ300ma+の分散室底板に
固定し、分散室水位を分離室(直径400IIII11
長さ270011m)水位より40mm高く設け、分散
室に珪藻土6000w+g/lを添加した被処理水0.
857+++’/hrを供給し、実施例−1の凝集装置
混合管(直径120mm長さ180h+m)に注入管(
直径25mm長さ1300IIm)を単管部長さ500
mmになるようにセットし、1セツトを上記分散室底板
に固定し、この分散室を上記分離室に設置した。珪藻上
6000mg/]を添加した被処理水を分散室に0.8
57a+’/hrを供給し、上澄液排出口の水質結果を
表−3に示す。注入管に装着した多孔質材は合成樹脂製
の細孔径15ミクロンの連続気泡スポンジ直径25a+
a厚み5Ill+1を使用した。混合管に装着した多孔
質材は厚さ3fflIl直径(外径)120ma+内径
3hm合成樹脂製の環状板に細孔径0.8s園の穴31
2個あけたA板と細孔径3IIII+の穴78個あけた
B板を4III11の間隔をあけてA板とB板とを層状
に重ね混合管の流れの上流側にB板を配置して注入管を
内径に混合管を外径に密着して装着した。
Example-3 Mixing tube with a perforated plate attached to the annular part at a position 200 mm from the mixing tube entrance (diameter 120 mm, length 100100 O) and injection tube equipped with a perforated plate (diameter 25 mm, length 600 + am)
Set the single pipe length to 400mm, fix one set to the bottom plate of the dispersion chamber with a diameter of 300III 1m and a depth of 300ma+, and adjust the water level of the dispersion chamber to the separation chamber (diameter 400III11
Length: 270,011 m) The water to be treated is placed 40 mm higher than the water level, and the dispersion chamber is filled with 6,000 w+g/l of diatomaceous earth.
857+++'/hr, and the injection tube (
Diameter 25mm length 1300IIm) single pipe length 500mm
One set was fixed to the bottom plate of the dispersion chamber, and this dispersion chamber was installed in the separation chamber. The water to be treated containing 6,000 mg/] of diatoms was added to the dispersion chamber at a rate of 0.8
57a+'/hr was supplied, and the water quality results at the supernatant outlet are shown in Table 3. The porous material attached to the injection tube is an open-cell sponge made of synthetic resin with a pore diameter of 15 microns and a diameter of 25 mm.
a thickness of 5Ill+1 was used. The porous material attached to the mixing tube has a thickness of 3fflI, a diameter (outer diameter) of 120ma + an inner diameter of 3hm, and a synthetic resin annular plate with a pore diameter of 0.8s.
Plate A with two holes and plate B with 78 holes with a pore diameter of 3III+ are stacked in a layered manner with an interval of 4III11, and plate B is placed on the upstream side of the flow of the mixing tube and injected. The tube was attached to the inner diameter and the mixing tube was tightly attached to the outer diameter.

凝集装置使用中は次亜塩素酸ナトリュムの使用を中止し
た。
The use of sodium hypochlorite was discontinued while the flocculation equipment was in use.

表−3 混合管多孔板     なし    装着〃 直径 a
m     120    120〃 長さ m+a 
   1800    1000注入管直径 am  
’   25     25〃長さ  ■ta    
 1300     600単管部長さ am    
 5QO−400セツト数         1.  
    1分離室直径 am     40Q    
 400〃 高さ 鵬■    2700    27
00循環水量 m3/hr、set O,8570,8
57分離室水 面積負荷膳3/m′日  164     164処 
  理   水 透視度  cm     32     35細菌数 
      180    197S S     m
g/+      4.4      5.7混合管に
多孔質材を装着することになって、混合管と注入管の長
さを短く出来る。
Table-3 Mixing pipe perforated plate None Installation Diameter a
m 120 120 Length m+a
1800 1000 Injection tube diameter am
'25 25〃length ■ta
1300 600 Single pipe length am
5QO-400 sets 1.
1 separation chamber diameter am 40Q
400〃 Height Peng ■ 2700 27
00 Circulating water amount m3/hr, set O, 8570, 8
57 Separation room water area load 3/m'day 164 164 places
Science Water visibility cm 32 35 Bacteria count
180 197S S m
g/+ 4.4 5.7 By attaching a porous material to the mixing tube, the lengths of the mixing tube and injection tube can be shortened.

実施例−4 鶏25000羽の解体工場において、鶏の無頭体を60
℃湯漬は槽に約5000羽/時の速度で供給し約55秒
間浸漬して次工程の羽毛の剥離を容易にし、同時に汚物
洗浄をしている。洗浄液は現在無頭鶏が持ち出す湯量を
補充する液量を使用しているに過ぎない。したがって槽
内には血液と脱糞による汚物での汚れが大きく、鶏肉の
汚れの大半はこの工程で発生している。
Example-4 In a slaughtering factory for 25,000 chickens, 60 headless chickens were removed.
For soaking in water at °C, feathers are fed into the tank at a rate of about 5,000 birds/hour and immersed for about 55 seconds to facilitate the removal of the feathers in the next step, and at the same time to clean dirt. Currently, the amount of cleaning liquid used is just enough to replenish the amount of hot water taken out by headless chickens. Therefore, the inside of the tank is heavily contaminated with blood and feces, and most of the dirt on the chicken is generated during this process.

この槽の汚濁液は本発明の凝集装置を使用して凝集除去
(清澄、除菌)シ、上澄液を6リツトル/羽の比率で循
環し、上澄(循環)液に無頭鶏が持ち出す湯量を補充し
て洗浄再使用することにより鶏・肉の汚染を著しく低減
することができる。
The polluted liquid in this tank is coagulated and removed (clarified and sterilized) using the flocculation device of the present invention, and the supernatant liquid is circulated at a ratio of 6 liters/feather. By replenishing the amount of hot water taken out and reusing it for cleaning, contamination of chicken and meat can be significantly reduced.

湯漬は槽の排出汚濁液は(BOD3170mg/I、5
52350mg/l、油分38膳g/1)一般細菌10
@個/mlを含有している。
The polluted liquid discharged from the tank for hot water soaking is (BOD3170mg/I, 5
52350mg/l, oil 38g/1) General bacteria 10
Contains @ pieces/ml.

湯漬槽排出口から排出汚濁液を循環ポンプで抜き取り、
本発明の第1図の凝集装置の被処理水供給口に30m’
/hrの割合で循環供給して、浮上性物質(油脂)を分
離室の最上部から分離し、一方沈降性微細粒子[(血液
、蛋白、微生物)平均直径0.3〜5ミクロン]を底部
より排除し、上澄(循環)液は分離室の水面下30cm
から排出し湯漬槽の供給口に戻した。この時使用した凝
集装置は混合管(直径120IIII11長さ1000
mm)と注入管(直径25au++長さ1300m+n
)を1セツトとして48(6列8本)セットを分散室(
1,4nx 1.6m)に配置し、分散室水位を分離室
(直径2.3m高さ2.7m)水位より45mm上に設
置した。
Remove the discharged polluted liquid from the immersion tank outlet using a circulation pump,
30 m' to the treated water supply port of the flocculation device shown in Fig. 1 of the present invention.
/hr to separate floating substances (oils and fats) from the top of the separation chamber, while separating fine sedimentary particles [(blood, proteins, microorganisms) with an average diameter of 0.3 to 5 microns] from the bottom. The supernatant (circulating) liquid is placed 30cm below the water surface in the separation chamber.
It was discharged from the tank and returned to the supply port of the soaking tank. The agglomeration device used at this time was a mixing tube (diameter 120III11 length 1000mm).
mm) and injection tube (diameter 25au++ + length 1300m+n
) is one set, and 48 (6 rows and 8 wires) sets are placed in the dispersion room (
The dispersion chamber water level was set 45 mm above the separation chamber (diameter 2.3 m height 2.7 m) water level.

浸漬槽汚濁液を凝集装置の被処理水供給口に連続供給し
た結果を表−4に示す。注入管に装着した多孔質材は細
孔径(15ミクロン)のガラス製ろ過板(251直径)
を使用した。
Table 4 shows the results of continuously supplying the immersion tank polluted liquid to the treated water supply port of the flocculation device. The porous material attached to the injection tube is a glass filter plate (251 diameter) with a pore diameter (15 microns).
It was used.

表−4 混合管直径 am          120〃 長さ
  mm           1800注入管直径 
raI1125 〃      mm              13
00セツト数               48分離
室直径 m          23ワ 高さ  1 
         2.7被処理液上澄循環水 透視度   am     0.5   33細菌数 
 個/ml   1.2X 1067X 105S S
    u;/l     2350   0.8循環
水量ra’/set、hr   −0,63分離室水 面積負荷 m3/m’日        173[発明
の効果] 本発明の凝集分離装置は特願昭63−15562号明細
書に記載した凝集装置に僅かな改良を行うこと1こよっ
て油脂と微細粒子(微生物を含む)とを含む被処理水か
ら油脂、微細粒子と上澄液を効率的に分離することがで
き、しかもこの装置を用いて得られた上澄液には実質的
に油脂分を含まないため、微生物の増殖を抑え、微生物
を99.99%凝集沈降分離除去する性能をもちその上
澄液は食品加工工程水として再利用できる。
Table-4 Mixing tube diameter am 120〃 Length mm 1800 Injection tube diameter
raI1125 mm 13
00 Number of sets 48 Separation chamber diameter m 23 wa Height 1
2.7 Transparency of treated liquid supernatant circulating water am 0.5 33 Number of bacteria
pieces/ml 1.2X 1067X 105S S
u;/l 2350 0.8 Circulating water amount ra'/set, hr -0,63 Separation chamber water area load m3/m'day 173 [Effects of the invention] The coagulation separation apparatus of the present invention is disclosed in Japanese Patent Application No. 15562/1983. By making slight improvements to the flocculation device described in the specification, it is possible to efficiently separate fats and oils, fine particles, and supernatant liquid from treated water containing fats and oils and fine particles (including microorganisms). Furthermore, since the supernatant obtained using this device contains virtually no oil or fat, it has the ability to suppress the growth of microorganisms and remove 99.99% of microorganisms by coagulation, sedimentation, and separation. Can be reused as food processing water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の凝集装置(縦型)の断面図である。 第2図は本発明の注入管と混合管の断面図である。 第3図は本発明の混合管に環状注入管を挿入した断面図
である。 第4図は本発明の混合管に環状注入管を挿入したA−A
横断図である。 第5図は本発明の混合管縮小管の断面図である。 第6図は本発明の縮小混合管・拡大混合管を連結した混
合管の断面図である。 1 第7図は本発明の凝集装置の縦断面図である。 第8図は第7図の装置をB−Hの位置で切断した横断面
図 (いずれも丸型混合管、丸型注入管を用いた第3図
、第4図に相応します。)1、給液室 2.被処理水3
1分散室、41分離室5、混合管 6.注入管 7.混
合液 8.隔壁9、注入液供給管lO0注入液11.注
入管吐出口12環状部 13単管部 14.掻き出し腕
木15、混合管吐出口16.浮上性物質17上澄液排出
口18.汚泥排出口19.注入管多孔質材20.混合管
多孔質材21環状注入管22縮小混合管、23拡大混合
管、24.集泥装置
FIG. 1 is a sectional view of the agglomeration device (vertical type) of the present invention. FIG. 2 is a cross-sectional view of the injection tube and mixing tube of the present invention. FIG. 3 is a sectional view of the annular injection tube inserted into the mixing tube of the present invention. Figure 4 shows A-A with the annular injection tube inserted into the mixing tube of the present invention.
It is a cross-sectional view. FIG. 5 is a sectional view of the mixing tube reduction tube of the present invention. FIG. 6 is a sectional view of a mixing tube in which a contracting mixing tube and an expanding mixing tube of the present invention are connected. 1 FIG. 7 is a longitudinal sectional view of the agglomeration device of the present invention. Figure 8 is a cross-sectional view of the device shown in Figure 7 cut at the B-H position (both correspond to Figures 3 and 4, which use a round mixing tube and a round injection tube).1 , liquid supply chamber 2. Water to be treated 3
1 dispersion chamber, 41 separation chamber 5, mixing tube 6. Injection tube 7. Mixed liquid 8. Partition wall 9, injection liquid supply pipe lO0 injection liquid 11. Injection tube discharge port 12 annular portion 13 single tube portion 14. Scraping arm 15, mixing pipe outlet 16. Floating substances 17 Supernatant liquid outlet 18. Sludge discharge port 19. Injection tube porous material 20. Mixing tube porous material 21 annular injection tube 22 contracting mixing tube, 23 expanding mixing tube, 24. Sludge collecting device

Claims (1)

【特許請求の範囲】 1)給液室1)と)分離室4)とからなり、該給液室に
被処理水を分散させる分散室3)と一端が分散室に、他
端が分離室に開口した1ないし複数本の混合管5)を設
け、さらに該混合管内に注入液を注入する注入管6)を
1ないし複数本設けた構造を有する凝集装置において、
分離室の水面に浮上した凝集物を排出するための掻き出
し腕木14)と上澄液を排出するための排出口17)を
分離室の水面下に設けた凝集分離装置。 2)請求項1に記載の凝集分離装置を用いて油脂と微細
粒子とを含む被処理水から油脂と微細粒子と上澄液とを
それぞれ分離するにあたり、混合管内の被処理水と注入
液とからなる混合液の流れを10<Re<10^5、注
入管内の注入液の流れを5<Re<10^4の範囲に保
持することを特徴とする被処理水から微細粒子と油脂と
を分離する凝集分離方法。 3)注入液量は被処理水量の1〜200%とする請求項
第2項記載の凝集分離方法。 4)注入液中の電解質濃度と被処理水中の電解質濃度と
の差を0.1mg/1ないし2×10^5mg/lの範
囲とする請求項第2項記載の凝集分離方法。 5)注入液中の電解質濃度が被処理水中の電解質濃度よ
り低い請求項第2項記載の凝集分離方法。 6)注入液中の電解質濃度が被処理水中の電解質濃度よ
り高い請求項第2項記載の凝集分離方法。 7)被処理水に凝集助剤を50〜1×10^5mg/l
を添加する請求項第2項記載の凝集分離方法。 8)凝集剤分離した汚泥(凝集助剤を含む)を被処理水
に添加して循環使用する請求項第7項記載の凝集分離方
法 9)環状管内に多孔質材を装着する請求項第1項記載の
凝集装置。 10)環状注入管を混合管に挿入装着する請求項第1項
記載の凝集装置。 11)混合管直径を注入管吐出口下流で縮小する請求項
第1項記載の凝集装置。 12)混合管直径を注入管吐出口下流で縮小した後拡大
する請求項第1項記載の凝集装置。
[Claims] 1) Consisting of a liquid supply chamber 1) and) a separation chamber 4), a dispersion chamber 3) for dispersing the water to be treated in the liquid supply chamber, one end of which is the dispersion chamber, and the other end of which is the separation chamber. In a flocculation device having a structure in which one or more mixing tubes 5) are provided with an opening, and one or more injection tubes 6) are provided for injecting the injection liquid into the mixing tubes,
This flocculation separation device is provided with a scraping arm 14) for discharging aggregates floating on the water surface of the separation chamber and a discharge port 17) for discharging the supernatant liquid below the water surface of the separation chamber. 2) In separating fats and oils, fine particles, and supernatant liquid from the water to be treated containing fats and oils and fine particles using the coagulation separation device according to claim 1, the water to be treated and the injection liquid in the mixing pipe are separated from each other. Fine particles and fats and oils are removed from the water to be treated by maintaining the flow of the mixed liquid in the range of 10<Re<10^5 and the flow of the injection liquid in the injection pipe in the range of 5<Re<10^4. Coagulation separation method to separate. 3) The coagulation separation method according to claim 2, wherein the amount of injected liquid is 1 to 200% of the amount of water to be treated. 4) The coagulation separation method according to claim 2, wherein the difference between the electrolyte concentration in the injection solution and the electrolyte concentration in the water to be treated is in the range of 0.1 mg/1 to 2×10^5 mg/l. 5) The coagulation separation method according to claim 2, wherein the electrolyte concentration in the injection liquid is lower than the electrolyte concentration in the water to be treated. 6) The coagulation separation method according to claim 2, wherein the electrolyte concentration in the injection liquid is higher than the electrolyte concentration in the water to be treated. 7) Add flocculation aid to the water to be treated at a concentration of 50 to 1 x 10^5 mg/l.
3. The coagulation separation method according to claim 2, wherein: 8) The coagulation separation method according to claim 7, wherein the sludge (including a flocculation aid) separated from the flocculant is added to the water to be treated and used for circulation.9) Claim 1, wherein a porous material is installed in the annular pipe. Agglomeration device as described in section. 10) The aggregation device according to claim 1, wherein the annular injection pipe is inserted into the mixing pipe. 11) The agglomerating device according to claim 1, wherein the diameter of the mixing tube is reduced downstream of the injection tube outlet. 12) The agglomerating device according to claim 1, wherein the diameter of the mixing tube is reduced downstream of the injection tube discharge port and then expanded.
JP30779290A 1990-05-25 1990-11-13 Method and device for flocculation Pending JPH04126503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30779290A JPH04126503A (en) 1990-05-25 1990-11-13 Method and device for flocculation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-135632 1990-05-25
JP13563290 1990-05-25
JP30779290A JPH04126503A (en) 1990-05-25 1990-11-13 Method and device for flocculation

Publications (1)

Publication Number Publication Date
JPH04126503A true JPH04126503A (en) 1992-04-27

Family

ID=26469440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30779290A Pending JPH04126503A (en) 1990-05-25 1990-11-13 Method and device for flocculation

Country Status (1)

Country Link
JP (1) JPH04126503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098287A (en) * 2009-11-06 2011-05-19 Amukon Kk Flocculation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116640A (en) * 1976-03-25 1977-09-30 Kobe Steel Ltd Settling and floating separator basin
JPS5343946A (en) * 1976-09-30 1978-04-20 Envirotech Corp Sludge concentrating apparatus
JPH0252010A (en) * 1987-06-25 1990-02-21 Kazuji Fukunaga Cohesion device and cohesion process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116640A (en) * 1976-03-25 1977-09-30 Kobe Steel Ltd Settling and floating separator basin
JPS5343946A (en) * 1976-09-30 1978-04-20 Envirotech Corp Sludge concentrating apparatus
JPH0252010A (en) * 1987-06-25 1990-02-21 Kazuji Fukunaga Cohesion device and cohesion process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098287A (en) * 2009-11-06 2011-05-19 Amukon Kk Flocculation apparatus

Similar Documents

Publication Publication Date Title
US7553418B2 (en) Method for water filtration
CA2061416C (en) Method and apparatus for clarifying liquid using a pulsating sludge bed and part of concentrated sludge
ES2404140T3 (en) Procedure and device for the regeneration of contaminated washing solutions
Hyde et al. Water clarification by flotation
KR101702345B1 (en) Apparatus and Method for Removing Algae
KR101020238B1 (en) Apparatus for treating wastewater using nano air flotation and method thereof
CN103108836A (en) Water purification using conveyor sweep
US3075645A (en) Water treatment in municipal and industrial water systems
US5935448A (en) Water purification with in situ production of dispersed flocculant
JP2011140003A (en) Turbid water treatment apparatus and turbid water treatment method
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
JPH04126503A (en) Method and device for flocculation
JP3944881B2 (en) Water purification method and water purification apparatus
JPH04166280A (en) Flotation cyclone device
KR101697357B1 (en) Filtration device including powerless mixing flocculation tank and desalination plant using the same
KR102120910B1 (en) Eco-friendly Economic Seawater Purifier
KR101702346B1 (en) Movable Apparatus and Method for Removing Floating Matter
JP2014217806A (en) Water purification method and apparatus
KR102109402B1 (en) Apparatus of Treating Effluent from Water Treatment Plant
KR101992302B1 (en) Dissolved air flotation device capable of controlling treatment level of wastewater
KR0184304B1 (en) Clarifying method of eutrophicated water
JPH0729119B2 (en) Solid-liquid separation method and apparatus for solid-liquid separation of dredging sludge
JP2021053602A (en) Method for treating polluted water
JP2558547B2 (en) Coagulation method and coagulation equipment
CN215480159U (en) Fur processing wastewater pretreatment device