JPH0238843A - Detection of hydrogen corrosion of equipment material - Google Patents

Detection of hydrogen corrosion of equipment material

Info

Publication number
JPH0238843A
JPH0238843A JP18921988A JP18921988A JPH0238843A JP H0238843 A JPH0238843 A JP H0238843A JP 18921988 A JP18921988 A JP 18921988A JP 18921988 A JP18921988 A JP 18921988A JP H0238843 A JPH0238843 A JP H0238843A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
electrolytic
electrolyte
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18921988A
Other languages
Japanese (ja)
Other versions
JPH0654289B2 (en
Inventor
Junichi Shimomura
下村 順一
Koji Kawano
浩二 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Idemitsu Engineering Co Ltd
Original Assignee
Idemitsu Engineering Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Engineering Co Ltd, Kawasaki Steel Corp filed Critical Idemitsu Engineering Co Ltd
Priority to JP18921988A priority Critical patent/JPH0654289B2/en
Publication of JPH0238843A publication Critical patent/JPH0238843A/en
Publication of JPH0654289B2 publication Critical patent/JPH0654289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect possible generation of a hydrogen corrosion caused in a pressure container and a piping by performing a forcible occlusion of hydrogen from the surface of an equipment material at an electrolytic current density/ electrolyzing time according to a specified electrolyte and the type of steel. CONSTITUTION:A forcible occlusion of hydrogen is performed from the surface of an equipment material by a electrolyte hydrogen charging method. In this case, the density of an electrolytic current varies with the combination of an electrolyte and the type of steel and an electrolyzing time of an electrolyte below 60 deg.C is set at one hour. This allows non-destructive detection of the generation of a hydrogen corrosion in the equipment material of a pressure container, piping and the like applied in a high temperature and high pressure hydrogen environment, thereby preventing an accident caused by degrading in quality.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、石油精製、石油化学、化学、石炭液化、石炭
ガス化等の工場における高温高圧水素環境で操業される
装置材料に発生する水素侵〈従来の技術〉 化学、石油゛精製、石油化学、石炭のガス化液化工場の
高温高圧水素環境で操業される装置の鋼製の圧力容器、
配管には、使用材料の化学組成、製造条件、操業条件に
よっては、長時間の操業により材料に水素侵食が発生し
て材質が劣化することがあり、安全操業上大きな問題と
なっている。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to hydrogen generated in equipment materials operated in high-temperature, high-pressure hydrogen environments in factories such as oil refining, petrochemical, chemical, coal liquefaction, and coal gasification. (Conventional technology) Steel pressure vessels for equipment operated in high-temperature, high-pressure hydrogen environments in chemical, petroleum refining, petrochemical, and coal gasification and liquefaction plants;
Depending on the chemical composition of the materials used, manufacturing conditions, and operating conditions, long-term operation of piping can cause hydrogen corrosion and deterioration of the material, which poses a major problem in terms of safe operation.

これは、ミクロには鋼中の炭化物と鋼中に浸入してきた
水素が反応して、粒界にメタンガス気泡を生ずる現象で
あり、マクロには、材料に特有の潜伏期の後に、急激に
靭性、延性等の機械的性質が劣化することが特徴である
Microscopically, this is a phenomenon in which carbides in the steel react with hydrogen that has penetrated into the steel, producing methane gas bubbles at the grain boundaries, and macroscopically, after an incubation period unique to the material, the toughness rapidly increases. It is characterized by deterioration of mechanical properties such as ductility.

高温高圧水素環境で操業される圧力容器、配管の材料に
はCr−MowIが使用されるが、その選定にあたって
は、通常、実操業における水素侵食に起因する事故等の
経験をもとに、鋼種毎に水素侵食の発生しない上限の温
度、水素圧力を規定したネルソン線図が参考にされてき
た。
Cr-MowI is used as a material for pressure vessels and piping operated in high-temperature, high-pressure hydrogen environments, but when selecting it, the steel type is usually selected based on the experience of accidents caused by hydrogen corrosion in actual operations. The Nelson diagram, which defines the upper limit temperature and hydrogen pressure at which hydrogen erosion does not occur, has been used as a reference.

しかし、最近の製鋼技術の発展に伴う不純物元素の低減
、水素侵食の研究の進展により、同一鋼種のCr−Mo
鋼であっても、著しく水素侵食感受性の異なる材料が製
造され始めた。  また、経済性の面からプラント類を
従来の経験を超えた長期間使用したいという気運にもか
かわらず、ネルソン線図では、安全運転のための上限の
温度5水素圧力が車−の曲線で規定されているのみで時
間の項がないこと等、不十分な点が多い。 このため、
旧来のネルソン線図によっていては、現行の材料、使用
期間等の変化に対応でき難くなっている。
However, due to the reduction of impurity elements accompanying the recent development of steelmaking technology and progress in research on hydrogen corrosion, Cr-Mo
Even steels began to be produced with significantly different susceptibility to hydrogen attack. In addition, despite the desire to use plants for a longer period of time than was previously possible from an economic standpoint, the Nelson diagram states that the upper limit of temperature and hydrogen pressure for safe operation is specified by the car curve. There are many insufficiencies, such as the fact that there is no time section. For this reason,
Using the old Nelson diagram, it is difficult to respond to changes in current materials, usage periods, etc.

以上の理由により、個々の装置毎に、水素侵食の発生の
有無を検知する技術の確立が求められている。
For the above reasons, there is a need to establish a technology for detecting the presence or absence of hydrogen erosion for each individual device.

従来、水素侵食の検知方法としては、特開昭62−22
3663号公報、特開昭61−25047号公報、特開
昭60−98365号公報および特開昭58−3994
5号公報に開示された技術が知られている。
Conventionally, a method for detecting hydrogen corrosion was disclosed in Japanese Patent Application Laid-open No. 62-22.
3663, JP 61-25047, JP 60-98365, and JP 58-3994.
A technique disclosed in Publication No. 5 is known.

〈発明が解決しようとする課題〉 上述した様に、装置材料の水素侵食の検知方法が提案さ
れている。 しかし、これらはいずれも比較的大がかり
な装置を必要としており、圧力容器、配管の検査現場で
使用するには簡便さに欠け、また経済的ではない。
<Problems to be Solved by the Invention> As described above, methods for detecting hydrogen corrosion of device materials have been proposed. However, all of these require relatively large-scale equipment, and are not convenient or economical to use in inspection sites for pressure vessels and piping.

加えて、例えば特開昭60−98365号公報に開示さ
れている方法を工場の圧力容器に適用しようとした場合
、ノズル付近のように複雑な形状の部位では測定できな
いことがあるという問題がある。
In addition, for example, when trying to apply the method disclosed in JP-A-60-98365 to a pressure vessel in a factory, there is a problem that measurement may not be possible in areas with complex shapes such as the vicinity of the nozzle. .

また、非破壊検査で多用されている超音波法は、装置材
料の水素侵食によって発生するメタン気泡の径が1μm
程度であるため、適用出来ない。
In addition, the ultrasonic method, which is often used in non-destructive testing, is capable of producing methane bubbles with a diameter of 1 μm due to hydrogen erosion of equipment materials.
It cannot be applied because of the degree of

そこで、簡便で経済的な、水素侵食の発生の有無を検知
する技術の確立が切望されている。
Therefore, there is a strong desire to establish a simple and economical technique for detecting the presence or absence of hydrogen erosion.

本発明は、上記の経済的、社会的要請に応じ、従来技術
の不十分な点を考慮してなされたもので、高温高圧水素
環境に長時間曝される圧力容器や配管に生じる水素侵食
の発生の有無を、?JO!に検知する方法を提供するこ
とを目的とする。
The present invention has been made in response to the above-mentioned economic and social demands and in consideration of the inadequacies of the conventional technology. Does it occur? JO! The purpose is to provide a method for detecting

なお、水素侵食の簡便な検知方法として、スンプ試料の
wl寮による方法も考えられるが、この方法は装置材料
の一部を削りとる必要があり、安全性の面から適切な方
法とは言い難い。
In addition, a simple method for detecting hydrogen erosion could be to use a sump sample as a WL dormitory, but this method requires scraping off a part of the device material, so it is difficult to say that it is an appropriate method from a safety standpoint. .

く課題を解決するための手段〉 水素侵食が発生している装置材料では、水素が飽和し、
また、メタン気泡が発生しているため、電解水素チャー
ジ法によって鋼中に水素を吸蔵させると、その水素は容
易にメタンガス中に遊離し、気泡の圧力を高め、装置材
料表面に膨れを生じさせる。 一方、水素侵食を受けて
いない装置材料では、水素は飽和してなく、また、メタ
ン気泡も存在しないため、吸蔵させた水素は容易には遊
離せず、従って装置材料表面に膨れは発生しない。 本
発明は、上記の知見から構成されたものである。
Measures to solve the problem〉 In equipment materials where hydrogen corrosion occurs, hydrogen becomes saturated and
In addition, since methane bubbles are generated, when hydrogen is stored in steel using the electrolytic hydrogen charging method, the hydrogen is easily liberated into methane gas, increasing the pressure of the bubbles and causing swelling on the surface of the equipment material. . On the other hand, in a device material that has not undergone hydrogen attack, hydrogen is not saturated and there are no methane bubbles, so the occluded hydrogen is not easily released, and therefore no blistering occurs on the surface of the device material. The present invention is based on the above findings.

即ち、本発明は、電解水素チャージ法により、60℃以
下の所定の電解液を用い、この電解液および鋼種に応じ
た電解電a密度および電解時間で装置材料の表面より強
制的に水素を吸蔵させ、装置表面の膨れの有無により、
水素侵食の発生の有無を知ることを特徴とする装置材料
の水素侵食の検出方法を提供するものである。
That is, the present invention uses an electrolytic hydrogen charging method to forcibly absorb hydrogen from the surface of the device material using a predetermined electrolytic solution at a temperature of 60° C. or lower, and at an electrolytic electrode density and electrolytic time depending on the electrolytic solution and the steel type. Depending on the presence or absence of bulges on the surface of the device,
The present invention provides a method for detecting hydrogen corrosion of equipment materials, which is characterized by determining whether or not hydrogen corrosion has occurred.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では、電解水素チャージ法により、装置材料の表
面より強制的に水素を吸蔵させる。
In the present invention, hydrogen is forcibly occluded from the surface of the device material by an electrolytic hydrogen charging method.

電解液は、通常使用されている電解液であればいずれで
もよいが、例えば、(NaOH+NaCN)l液、HC
I溶液、N aOH溶液、H2SOa 19液、(H2
S 04 + A St Os )溶液等を用いるとよ
い。
The electrolyte may be any commonly used electrolyte; for example, (NaOH+NaCN) 1 solution, HC
I solution, N aOH solution, H2SOa 19 solution, (H2
It is preferable to use a solution such as S 04 + A St Os ).

適切な電解電流密度は、電解液および鋼の種類によって
異なるが、電解液と鋼の組み合わせ毎の好ましい範囲を
第1表に示した。
Appropriate electrolysis current density varies depending on the type of electrolyte and steel, but Table 1 shows the preferred range for each combination of electrolyte and steel.

各々、第1表に示した範囲外では、鋼に吸蔵させる水素
量が不適切となる。
In each case, outside the ranges shown in Table 1, the amount of hydrogen to be stored in the steel becomes inappropriate.

電解液の温度は、60℃以下であればよい。The temperature of the electrolytic solution may be 60° C. or lower.

60℃超であると、鋼に吸蔵させる水素量が多すぎ、正
しい結果が得られない。
If the temperature exceeds 60°C, the amount of hydrogen stored in the steel is too large, making it impossible to obtain correct results.

電解時間は、1時間以上が好ましい、  1時間未満で
あると、鋼に吸蔵させる水素量が足りなく、正しい結果
が得られない。
The electrolysis time is preferably 1 hour or more; if it is less than 1 hour, the amount of hydrogen stored in the steel is insufficient and correct results cannot be obtained.

第 1 表(電解電流密度) 単位:mA/cm’ 〈実施例〉 本発明を、実施例により、具体的に説明する。Table 1 (electrolytic current density) Unit: mA/cm' <Example> The present invention will be specifically explained with reference to Examples.

(実施例1) 第2表に示した条件で水素a露され、140℃にて測定
したシャルピー吸収エネルギーが′fS2表に示した値
であるC −1/ 2 M o鋼の水素侵食材(メタン
気泡発生)および未侵食材(メタン気泡未発生)に、(
0,lNNaOH+0.INNaCN)i液を用い、第
2表に示した電解電流密度で、液温23℃で、水素を1
時間吸蔵させた。 その後、鋼材表面の膨れの発生の有
無を観察した。 結果は第2表に示した。
(Example 1) Hydrogen-eroded material of C-1/2 Mo steel (exposed to hydrogen a under the conditions shown in Table 2 and whose Charpy absorbed energy measured at 140°C is the value shown in Table 'fS2) (methane bubbles generated) and uneroded material (methane bubbles not generated).
0.1NNaOH+0. Using INNaCN)i solution, hydrogen was added at 1 liter at the electrolytic current density shown in Table 2 at a solution temperature of 23°C.
It stored time. Thereafter, the presence or absence of blisters on the surface of the steel material was observed. The results are shown in Table 2.

(実施例2) 第3表に示した条件で水素暴露され、0℃にて測定した
シャルピー吸収エネルギーが第3表に示した値である2
 −1/ 4 Cr −I M 。
(Example 2) Hydrogen exposure was performed under the conditions shown in Table 3, and the Charpy absorbed energy measured at 0°C was the value shown in Table 3.
-1/4Cr-IM.

鋼の水素侵食材および未侵食材に、(0,lNNaOH
+0.INNaCN)溶を夜を用い、第3表に示した電
解電流密度で、液温23℃で、水素を1時間吸蔵させた
。 その後、鋼材表面の膨れの発生の有無を観察した。
(0,lNNaOH
+0. Hydrogen was occluded for 1 hour at a solution temperature of 23° C. and at the electrolytic current density shown in Table 3 using a solution of INNaCN). Thereafter, the presence or absence of blisters on the surface of the steel material was observed.

 結果は第3表に示した。The results are shown in Table 3.

(実施例3) 第4表に示した条件で水素a露され、0℃にて測定した
シャルピー吸収エネルギーが第4表に示した値である2
・1/4Cr−IM。
(Example 3) Hydrogen a was exposed under the conditions shown in Table 4, and the Charpy absorbed energy measured at 0°C was the value shown in Table 4.
・1/4Cr-IM.

鋼の水素侵食材および未侵食材に、(ONH2So  
4 +1 00mg/  i A、20.  )i3 
ン(([を用い、第4表に示した電解電流密度で、液温
23℃で、水素を1時間吸蔵させた。 その後、鋼材表
面の膨れの発生の有無を観察した。 結果は第4表に示
した。
(ONH2So
4 +1 00mg/i A, 20. )i3
Hydrogen was absorbed for 1 hour at a liquid temperature of 23°C using the electrolytic current density shown in Table 4. After that, the presence or absence of blistering on the surface of the steel material was observed. The results are shown in Table 4. Shown in the table.

(実施例4) 第5表に示した条件で水素暴露され、120℃にて測定
したシャルピー吸収エネルギーが第5表に示した値であ
る1・1/4Cr−1/2 M Owlの水素侵食材お
よび未侵食材に、I NNaOH溶液を用い、第5表に
示した電解i流密環で、液温23℃で、水素を1時間吸
蔵させた。 その後、鋼材表面の膨れの発生の有無を[
察した。 結果は第5表に示した。
(Example 4) Hydrogen immersion of 1·1/4Cr-1/2 M Owl, which was exposed to hydrogen under the conditions shown in Table 5 and whose Charpy absorbed energy measured at 120°C was the value shown in Table 5. Hydrogen was occluded for 1 hour at a liquid temperature of 23° C. using an I N NaOH solution on the food material and uneroded material using the electrolytic flow tight ring shown in Table 5 at a liquid temperature of 23°C. After that, the presence or absence of blistering on the surface of the steel material [
I guessed it. The results are shown in Table 5.

(実施例5) 第6表に示した条件で水素暴露され、120℃にて測定
したシャルピー吸収エネルギーが第6表に示した値であ
るI Cr −1/ 2 M o鋼の水素侵食材に、0
 、 1 N H2S O4溶液を用い、第6表に示し
た電解電流密度で、液温23℃で、水素を1時間吸蔵さ
せた。 その後、鋼材表面の膨れの発生の有無を観察し
た。 結果は第6表に示した。
(Example 5) A hydrogen-eroded material of ICr-1/2Mo steel was exposed to hydrogen under the conditions shown in Table 6 and the Charpy absorbed energy measured at 120°C was the value shown in Table 6. ,0
, 1 N H2S O4 solution was used to store hydrogen at the electrolytic current density shown in Table 6 at a liquid temperature of 23° C. for 1 hour. Thereafter, the presence or absence of blisters on the surface of the steel material was observed. The results are shown in Table 6.

第2表〜第6表から明らかなように、水素未暴B(水素
暴露時間0.コントロール)に比べてシャルビー吸収エ
ネルギーが5kgf−m以上低下している水素侵食材で
は、第1表に示した電解電流密度で水素を1時間吸蔵さ
せると、鋼材表面に膨れが発生する。 しかし、電解電
流密度が第1表に示した値よりも小さいと、水素侵食材
であるにもかかわらず、鋼材表面に膨れは発生しない。
As is clear from Tables 2 to 6, the hydrogen-eroded materials shown in Table 1 have Charby absorbed energy lowered by 5 kgf-m or more compared to non-hydrogen exposed B (hydrogen exposure time 0 control). When hydrogen is occluded for one hour at a certain electrolytic current density, blistering occurs on the surface of the steel material. However, if the electrolytic current density is lower than the values shown in Table 1, no blistering will occur on the surface of the steel material, even though it is a hydrogen-eroded material.

一方、水素未暴露や、水素未暴露に比べてシャルピー吸
収エネルギーの低下が5kgf・m未満の水素未侵食材
では、第1表に示した電解電流密度で水素を1時間吸蔵
させても、鋼材表面に膨れは発生しない。 しかし、電
解電流密度が第1表に示した値よりも大きいと、水素未
侵食材であるにもかかわらず鋼材表面に膨わが発生する
ため、水素銹起割れとの区別がです、水素侵食の発生の
有無を検出できない。
On the other hand, for hydrogen-free materials that are not exposed to hydrogen or have a Charpy absorbed energy decrease of less than 5 kgf・m compared to materials that are not exposed to hydrogen, even if hydrogen is absorbed for 1 hour at the electrolytic current density shown in Table 1, the steel material No blistering occurs on the surface. However, if the electrolytic current density is larger than the value shown in Table 1, bulges will occur on the surface of the steel material even though it is a material that has not been eroded by hydrogen, so it is difficult to distinguish it from cracking caused by hydrogen corrosion. Unable to detect occurrence.

以上より、電解液および鋼の種類の組み合わせ毎に、適
切な電解電流密度、液温、時間で本発明の方法を行えば
、装置材料の水素侵食の発生の有無を、容易に検出する
ことができる。
From the above, if the method of the present invention is performed with appropriate electrolytic current density, liquid temperature, and time for each combination of electrolyte and steel type, it is possible to easily detect whether hydrogen corrosion has occurred in the equipment material. can.

〈発明の効果〉 本発明によれば、高温高圧水素環境で操業される圧力容
器、配管等の装置材料における水素侵食の発生を、非破
壊的に、簡便に検知することがでざる。 従って、材質
劣化に起因する事故を未然に防ぐことができる等の大き
な工業的価値を有する。
<Effects of the Invention> According to the present invention, it is possible to non-destructively and easily detect the occurrence of hydrogen corrosion in equipment materials such as pressure vessels and piping operated in a high-temperature, high-pressure hydrogen environment. Therefore, it has great industrial value, such as being able to prevent accidents caused by material deterioration.

Claims (1)

【特許請求の範囲】[Claims] (1)電解水素チャージ法により、60℃以下の所定の
電解液を用い、この電解液液および鋼種に応じた電解電
流密度および電解時間で装置材料の表面より強制的に水
素を吸蔵させ、装置表面の膨れの有無により、水素侵食
の発生の有無を知ることを特徴とする装置材料の水素侵
食の検出方法。
(1) Using the electrolytic hydrogen charging method, hydrogen is forcibly absorbed from the surface of the device material using a specified electrolytic solution at 60°C or less at an electrolytic current density and electrolytic time depending on the electrolytic solution and the steel type. A method for detecting hydrogen corrosion of equipment materials, characterized in that the presence or absence of hydrogen corrosion is determined by the presence or absence of surface blisters.
JP18921988A 1988-07-28 1988-07-28 Method for detecting hydrogen erosion of equipment materials Expired - Lifetime JPH0654289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18921988A JPH0654289B2 (en) 1988-07-28 1988-07-28 Method for detecting hydrogen erosion of equipment materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18921988A JPH0654289B2 (en) 1988-07-28 1988-07-28 Method for detecting hydrogen erosion of equipment materials

Publications (2)

Publication Number Publication Date
JPH0238843A true JPH0238843A (en) 1990-02-08
JPH0654289B2 JPH0654289B2 (en) 1994-07-20

Family

ID=16237559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18921988A Expired - Lifetime JPH0654289B2 (en) 1988-07-28 1988-07-28 Method for detecting hydrogen erosion of equipment materials

Country Status (1)

Country Link
JP (1) JPH0654289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552643B2 (en) 2006-12-08 2009-06-30 Centre For Nuclear Energy Research (CNER) Device and system for corrosion detection
JP2017122633A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement resistance

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
WO2011119958A1 (en) 2010-03-26 2011-09-29 Altair Engineering, Inc. Inside-out led bulb
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
WO2012058556A2 (en) 2010-10-29 2012-05-03 Altair Engineering, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
WO2013131002A1 (en) 2012-03-02 2013-09-06 Ilumisys, Inc. Electrical connector header for an led-based light
WO2014008463A1 (en) 2012-07-06 2014-01-09 Ilumisys, Inc. Power supply assembly for led-based light tube
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
JP2017504166A (en) 2014-01-22 2017-02-02 イルミシス, インコーポレイテッドiLumisys, Inc. LED-based lamp with LED addressed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552643B2 (en) 2006-12-08 2009-06-30 Centre For Nuclear Energy Research (CNER) Device and system for corrosion detection
JP2017122633A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement resistance

Also Published As

Publication number Publication date
JPH0654289B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JPH0238843A (en) Detection of hydrogen corrosion of equipment material
Liu et al. Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments
Biezma et al. Non-destructive techniques for the detection of sigma phase in duplex stainless steel: A comprehensive review
Liang et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution
Cao et al. Localized corrosion of corrosion resistant alloys in H2S-containing environments
Beavers et al. Mechanisms of high-pH and near-neutral-pH SCC of underground pipelines
CN107764721A (en) Metal material delayed crack sensitivity evaluation method
Hurst et al. Slow strain rate stress corrosion tests on A508-III and A533B steel in de-ionized and PWR water at 56K
Okonkwo et al. Effect of muscat oilfield brine on the stressed X-70 pipeline steel
Ford Current understanding of the mechanisms of stress corrosion and corrosion fatigue
Parkins Stress corrosion cracking
Zhao et al. CO2 corrosion behavior of simulated heat-affected zones for X80 pipeline steel
Haruna et al. The effect of potential on initiation and propagation of stress corrosion cracks for type 304l stainless steel in a chloride solution containing thiosulfate
Terrell Effect of cyclic frequency on the fatigue life of ASME SA-106-B piping steel in PWR environments
Hartt Fatigue of welded structural steel in sea water
Farmer et al. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers
Le et al. Slow strain rate and constant load tests of A 285 and A 516 steels in Bayer solutions
Zhao et al. Stress corrosion cracking of the fusion boundary for 304l/82 dissimilar metal weld joint in simulated primary water
Leinonen et al. Stress corrosion cracking susceptibility of nitrogen alloyed stainless steels in 50% CaCl2 solution
Wang et al. Prediction of corrosion defect critical size and corrosion failure assessment study of SGTs
Bali et al. Effect of low-temperature sensitization on intergranular stress corrosion cracking behavior of austenitic stainless steels in simulated boiling water reactor environment
Kwon et al. Effects of flow rate on crack growth in sensitized type 304 stainless steel in high-temperature aqueous solutions
Cicero et al. Development of a Theory of Critical Distances Based Methodology for Environmentally Assisted Cracking Analyses
Tukur et al. A Review on the Behavior of 308L Cladding Material and Their Corrosion in Nuclear Power Plants
Mizuno et al. Recent activities in ISIJ HLP research committee corrosion working group: Proposal of pH buffer test solution for fitness-for-purpose HIC evaluations