JPH02286908A - Dynamic pressure gas bearing - Google Patents

Dynamic pressure gas bearing

Info

Publication number
JPH02286908A
JPH02286908A JP10984689A JP10984689A JPH02286908A JP H02286908 A JPH02286908 A JP H02286908A JP 10984689 A JP10984689 A JP 10984689A JP 10984689 A JP10984689 A JP 10984689A JP H02286908 A JPH02286908 A JP H02286908A
Authority
JP
Japan
Prior art keywords
foil
runner
gas film
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10984689A
Other languages
Japanese (ja)
Other versions
JP2684765B2 (en
Inventor
Masanao Ando
昌尚 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1109846A priority Critical patent/JP2684765B2/en
Publication of JPH02286908A publication Critical patent/JPH02286908A/en
Application granted granted Critical
Publication of JP2684765B2 publication Critical patent/JP2684765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To form a sufficient gas film by equipping a foil which has flexibility and is supported at the upper surfaces of plural support projections provided at predetermined intervals on a fixed member side and whose one end is stoppingly attached to the fixed member, and an initially wedge shaped space formed in the vicinity of the above stop-attachment portion. CONSTITUTION:When a runner 3 starts rotation in an arrow R direction, gas in contact with its lower surface is dragged by means of viscosity, and starts moving in the R direction together with the runner 3, and is forcedly pushed into an initially wedge shaped space formed between the runner 3 and a foil 5, and a thin gas film is formed at the whole perimeter of the upper surface of the foil 5. When time is passed since the start of rotation, the foil 5 pressed pushingly by the pressure of the gas film bends downward at spaces between adjoining support projections 4, and transforms into a waveshape, and as a result, wedge shaped spaces 7a are respectively formed at this side positions of respective support projections 4, and the pressure distribution of the gas film beings to have independent high pressure portions. Thus, the runner 3 is supported in a floating condition by means of the gas film formed between the runner 3 and the foil 5.

Description

【発明の詳細な説明】 A8発明の目的 (1)産業上の利用分野 本発明は、航空機のエアサイクルマシン、ヘリウム液化
装置の豚腸タービン、自動車のターボチャージャ等の高
速回転機械に使用される軸受に関し、特に、固定部材と
回転部材間に形成された気体膜により荷重を支持する動
圧気体軸受に関する。
Detailed description of the invention A8 Purpose of the invention (1) Industrial application field The present invention is used in high-speed rotating machines such as air cycle machines for aircraft, pig intestine turbines for helium liquefaction equipment, and turbochargers for automobiles. The present invention relates to bearings, and particularly to dynamic pressure gas bearings that support a load by a gas film formed between a fixed member and a rotating member.

(2)従来の技術 高速回転機械用に使用される軸受として、たとえば米国
特許第3635534号明細書(クラス308.197
2年特許)に示されているように、固定部材と回転部材
間に形成した楔状の空間により両部材間に薄い気体膜を
生じさせ、この気体膜の潤滑作用により荷重を支持する
動圧気体軸受が知られている。このような動圧気体軸受
はスラスト軸受またはジャーナル軸受に適用されている
(2) Prior art Bearings used for high-speed rotating machines are disclosed in, for example, US Pat. No. 3,635,534 (Class 308.197).
2 patent), a wedge-shaped space is formed between a stationary member and a rotating member to create a thin gas film between the two members, and the dynamic pressure gas supports the load through the lubricating action of this gas film. Bearings are known. Such hydrodynamic gas bearings are applied to thrust bearings or journal bearings.

第14図は、このような従来の動圧気体軸受の構造を示
すもので、いずれも荷重支持面の円周に沿う断面を直線
状に展開した状態を示している。
FIG. 14 shows the structure of such a conventional hydrodynamic gas bearing, in which a cross-section along the circumference of the load-supporting surface is developed linearly.

第14図(A)に示す第1従来例は、固定部材であるベ
ース01上に所定間隔で固着した複数の支持台02を備
えており、この支持台02上に3層に積層した補強部材
03の上面には、金属薄板等の可撓性材料で形成した複
数のフォイル04が止着されている。フォイル04は上
向きに傾斜した自由端04aを備えており、このフォイ
ル04の上面に対向して矢印R方向に回転する可動部材
としてのランナ05との間に、初期楔状空間06が形成
されている。
The first conventional example shown in FIG. 14(A) includes a plurality of supports 02 fixed at predetermined intervals on a base 01 which is a fixed member, and reinforcing members laminated in three layers on the supports 02. A plurality of foils 04 made of a flexible material such as a thin metal plate are fixed to the upper surface of the foil 03. The foil 04 has an upwardly inclined free end 04a, and an initial wedge-shaped space 06 is formed between the foil 04 and a runner 05, which is a movable member that rotates in the direction of arrow R, facing the upper surface of the foil 04. .

この第1従来例によれば、ランナ05が矢印R方向に回
転すると気体が初期楔状空間06に押込まれ、この初期
楔状空間06により形成される気体膜の圧力でランナ0
5が浮動状態で支持される。
According to this first conventional example, when the runner 05 rotates in the direction of arrow R, gas is forced into the initial wedge-shaped space 06, and the pressure of the gas film formed by this initial wedge-shaped space 06 causes the runner 0
5 is supported in a floating state.

これにより、ランナ05はベース01に接触することな
く回転することができる。
Thereby, the runner 05 can rotate without contacting the base 01.

第14図(B)に示す第2従来例は、ベースO1に設け
た複数の支持台02上に載置された帯状のフォイル04
を備えており、各支持台02の後部近傍において、ラン
ナ05に対向するフォイル04の上面に小さな窪み04
bが形成されている。
A second conventional example shown in FIG. 14(B) is a strip-shaped foil 04 placed on a plurality of supports 02 provided on a base O1.
Near the rear of each support stand 02, a small depression 04 is formed on the upper surface of the foil 04 facing the runner 05.
b is formed.

この第2従来例によれば、矢印R方向にランナ05が回
転すると、窪み04bに作用する気体圧力により該窪み
04bの部分でフォイル04が下方に屈曲する。したが
って、屈曲したフォイル04の最下点から後続の支持台
02の頂部にかけてランナ05との間に楔状空間が生じ
、この楔状空間に形成される気体膜の圧力により浮動状
態で支持されたランナ05はベース01と非接触で回転
することができる。
According to this second conventional example, when the runner 05 rotates in the direction of arrow R, the foil 04 is bent downward at the recess 04b due to the gas pressure acting on the recess 04b. Therefore, a wedge-shaped space is created between the lowest point of the bent foil 04 and the top of the following support stand 02, and the runner 05 is supported in a floating state by the pressure of the gas film formed in this wedge-shaped space. can rotate without contacting the base 01.

第14図(C)に示す第3従来例は、ベース01の上面
に突設した多数の微小突起07を備えており、一端をベ
ース01に止着した帯状のフォイル04が前記微小突起
07の上面に載置されている。微小突起07は円周方向
の複数箇所(例えば3箇所)においてランナ05の回転
方向Rに沿って次第に高さが増加するように形成されて
おり、この部分でランナ05とフォイル04間に初期楔
状空間06が形成される。したがって、この初期楔状空
間06およびそれより下流側(図中、右側)に形成され
る気体膜の圧力により浮動状態で支持されたランナ05
はベース01と非接触で回転することができる。
The third conventional example shown in FIG. 14(C) is equipped with a large number of microprotrusions 07 protruding from the upper surface of a base 01, and a strip-shaped foil 04 with one end fixed to the base 01 is attached to the microprotrusions 07. It is placed on the top. The microprotrusions 07 are formed at multiple locations (for example, 3 locations) in the circumferential direction so that the height gradually increases along the rotational direction R of the runner 05, and an initial wedge shape is formed between the runner 05 and the foil 04 at these locations. A space 06 is formed. Therefore, the runner 05 is supported in a floating state by the pressure of the gas film formed in this initial wedge-shaped space 06 and downstream thereof (on the right side in the figure).
can rotate without contacting the base 01.

(3)発明が解決しようとする課題 しかしながら、上記第1従来例の動圧気体軸受は、多数
の微細なフォイル04の自由端04aを傾斜状態に屈曲
させる加工が極めて面倒であるばかりか、回転開始時に
ランナ05に接触したフオイル04の自由端04aが偏
平状態に押圧されて初期樹状空間06が消滅してしまい
、充分な圧力上昇が得られないという問題がある。
(3) Problems to be Solved by the Invention However, in the hydrodynamic gas bearing of the first conventional example, not only is it extremely troublesome to bend the free ends 04a of the large number of fine foils 04 into an inclined state, but also There is a problem in that the free end 04a of the foil 04 that contacts the runner 05 at the start is pressed into a flat state and the initial dendritic space 06 disappears, making it impossible to obtain a sufficient pressure rise.

また、上記第2従来例の動圧気体軸受は、フォイル04
に形成した窪み04bが小さいため、この部分における
回転開始時の圧力上昇が不十分になり、充分な楔状空間
が形成されるまでフォイル04を屈曲させることが困難
である。これを防ぐためにフォイル04の板厚を小さく
設定すると、このフォイル04の剛性が不足して負荷容
量が低下するという問題がある。また、窪み04bに異
物が詰まりやすく、耐久性に欠けるという問題もある。
In addition, the hydrodynamic gas bearing of the second conventional example has a foil 04
Since the depression 04b formed in the foil 04b is small, the pressure rise in this part at the start of rotation is insufficient, and it is difficult to bend the foil 04 until a sufficient wedge-shaped space is formed. If the thickness of the foil 04 is set to be small in order to prevent this, there is a problem that the rigidity of the foil 04 is insufficient and the load capacity is reduced. Further, there is also the problem that the recess 04b is easily clogged with foreign matter, resulting in a lack of durability.

更に、上記第3従来例の動圧気体軸受は、フォイル04
が微小突起07間で下方に撓んで小さな凹凸が生じ、こ
のために負荷容量が低下するだけでなく、回転開始時お
よび回転停止時にランナ05下面のほぼ全域に摩擦力が
作用して耐久性が低下する問題がある。また、回転中に
作用する楔状空間が数個の初期樹状空間06だけである
ため、ランナ05が傾斜してコニカルな運動をした時に
充分な負荷容量が得られない問題がある。
Furthermore, the hydrodynamic gas bearing of the third conventional example has a foil 04
The runner is bent downward between the minute protrusions 07, creating small irregularities, which not only reduces the load capacity, but also causes frictional force to act on almost the entire lower surface of the runner 05 when starting and stopping rotation, reducing durability. There is a problem of deterioration. Furthermore, since the wedge-shaped spaces that act during rotation are only a few initial dendritic spaces 06, there is a problem that sufficient load capacity cannot be obtained when the runner 05 tilts and makes a conical movement.

本発明は、前述の事情に鑑みてなされたもので、回転開
始時および回転中に充分な気体膜を形成することが可能
であり、異物の詰まりゃ摩擦力に対する耐久性が高く、
しかも負荷容量の大きい動圧気体軸受を提供することを
課題とする。
The present invention was made in view of the above-mentioned circumstances, and it is possible to form a sufficient gas film at the start of rotation and during rotation, and has high durability against frictional force when clogged with foreign matter.
Moreover, it is an object of the present invention to provide a dynamic pressure gas bearing with a large load capacity.

B1発明の構成 (+)  11題を解決するための手段前記!If!題
を解決するために、本発明は、固定部材と回転部材とを
微小な間隔を介して対向させ、これら固定部材と回転部
材間に形成される気体膜の圧力により両部材間に作用す
る荷重を支持する動圧気体軸受において、前記固定部材
側に所定間隔で配設された複数の支持突起、前記複数の
支持突起の上面に支持されて該支持突起間を架橋すると
ともに、その一端が前記固定部材に止着された可撓性を
有するフォイルと、前記フォイルの土着部の近傍におい
て該フォイルと回転部材間に形成された初期樹状空間と
を備え、この初期樹状空間から回転部材とフォイルの間
隙に導入された気体の圧力により、フォイルが撓んで隣
接する支持突起間に複数の樹状空間を形成することを特
徴とする。
B1 Structure of the invention (+) Means for solving 11 problems mentioned above! If! In order to solve this problem, the present invention makes a fixed member and a rotating member face each other with a small gap therebetween, and reduces the load acting between the fixed member and the rotating member due to the pressure of the gas film formed between the fixed member and the rotating member. In the hydrodynamic gas bearing supporting the fixed member, a plurality of support protrusions are arranged at predetermined intervals on the fixed member side, the support protrusions are supported on the upper surfaces of the plurality of support protrusions to bridge between the support protrusions, and one end thereof is connected to the support protrusions. A flexible foil fixed to a fixed member, and an initial dendritic space formed between the foil and the rotating member in the vicinity of the native part of the foil, and the rotating member and the rotating member are separated from the initial dendritic space. It is characterized in that the foil is bent by the pressure of the gas introduced into the gap between the foils to form a plurality of dendritic spaces between adjacent support protrusions.

(2)作 用 前述の構成を備えた本発明によれば、回転部材の回転に
伴い、粘性により引摺られて移動する気体がフォイルと
の間に形成された初期樹状空間に押込まれると、この気
体の圧力はフォイルの上面に作用し、隣接した支持突起
間を架橋するフォイルを下方に撓ませる。これにより、
フォイルは波状に屈曲し、その上面に複数の樹状空間が
形成される。したがって、前記初期樹状空間と新たに形
成された楔状空間とにより、フォイルと回転部材間に気
体膜が形成され、その圧力で浮動状態で支持された回転
部材はフォイルと接触することなく回転することができ
る。
(2) Effect According to the present invention having the above-described configuration, as the rotating member rotates, when the gas dragged and moved by viscosity is pushed into the initial dendritic space formed between the foil and the rotating member. , this gas pressure acts on the top surface of the foil and causes the foil bridging between adjacent support projections to deflect downwardly. This results in
The foil is bent in a wave-like manner, and a plurality of dendritic spaces are formed on its upper surface. Therefore, a gas film is formed between the foil and the rotating member by the initial dendritic space and the newly formed wedge-shaped space, and the rotating member supported in a floating state rotates without contacting the foil due to the pressure. be able to.

(3)実施例 以下、図面に基づいて本発明の動圧気体軸受をスラスト
軸受に適用した実施例を説明する。なお、各実施例にお
いて対応する構成要素には同一の符号を付すことにより
重複する詳細な説明は省略する。
(3) Examples Hereinafter, examples in which the hydrodynamic gas bearing of the present invention is applied to a thrust bearing will be described based on the drawings. Note that the same reference numerals are given to corresponding components in each embodiment, and redundant detailed explanation will be omitted.

第1図〜第4図は本発明の第1実施例を示すもので、第
1図はその固定部材であるベースを回転部材であるラン
ナ側から見た平面図、第2図は第1図の円周方向に沿う
切断線■−Hによる断面図、第3図はその回転開始時に
おける圧力分布を示す図、第4図はその回転中における
圧力分布を示す図である。
1 to 4 show a first embodiment of the present invention. FIG. 1 is a plan view of the base, which is a fixed member, viewed from the runner, which is a rotating member, and FIG. FIG. 3 is a diagram showing the pressure distribution at the start of the rotation, and FIG. 4 is a diagram showing the pressure distribution during the rotation.

第1図および第2図に示すように、この動圧気体軸受B
は固定部材であるベース1の表面に固着したリング状の
支持台2を備えている。支持台2の中央部に形成した開
口部2a(第1図参照)を貫通する図示しない回転軸に
は、円盤状の回転部材である第2図に示すランナ3が一
体に形成されており、前記支持台2の上面とランナ3の
下面は所定の間隙を介して互いに対向している。
As shown in Figs. 1 and 2, this dynamic pressure gas bearing B
is equipped with a ring-shaped support base 2 fixed to the surface of a base 1, which is a fixed member. A runner 3 shown in FIG. 2, which is a disk-shaped rotating member, is integrally formed on a rotating shaft (not shown) that passes through an opening 2a (see FIG. 1) formed in the center of the support base 2. The upper surface of the support base 2 and the lower surface of the runner 3 face each other with a predetermined gap in between.

支持台2の表面には断面矩形状の複数(この実施例にお
いては8個)の支持突起4が放射状に形成されており、
この支持突起4の表面には可撓性を有する金属薄板等で
形成したリング状のフォイル5が載置されている。この
フォイル5は円周状の一部において切断されており、そ
の一方の端部において支持台2の表面にスポット溶接等
の手段で止着されている。したがって、この溶接部6と
隣接する支持突起4の間に位置するフォイル5は斜めに
上方に傾斜し、ランナ3との間に該ランナ3の回転方向
(矢印Rで示す)に向けて先細りの初期楔状空間7が形
成される。
A plurality of (eight in this embodiment) support protrusions 4 having a rectangular cross section are radially formed on the surface of the support base 2.
A ring-shaped foil 5 made of a flexible thin metal plate or the like is placed on the surface of the support protrusion 4 . This foil 5 is cut at a part of its circumference, and one end thereof is fixed to the surface of the support base 2 by means such as spot welding. Therefore, the foil 5 located between this welded part 6 and the adjacent support projection 4 is inclined obliquely upwards, and has a tapered shape between it and the runner 3 in the direction of rotation of the runner 3 (indicated by arrow R). An initial wedge-shaped space 7 is formed.

次に、前述の構成を備えた本発明の実施例の作用につい
て説明する。
Next, the operation of the embodiment of the present invention having the above-described configuration will be explained.

ランナ3が矢印R方向に回転を開始すると、その下面に
接触する気体が粘性により引摺られ、該ランナ3と共に
矢印R方向に移動を始める。ランナ3と共に移動する気
体は、該ランナ3とフォイル5との間に形成された初期
楔状空間7に強制的に押込まれ、フォイル5上面の全周
に薄い気体膜が形成される。上記ランナ3の回転開始時
直後には、フォイル5は全周にわたって平坦な状態にあ
り、その気体膜の圧力は第3A図に示す一定の分布とな
る。
When the runner 3 starts rotating in the direction of the arrow R, the gas in contact with its lower surface is dragged by viscosity, and the runner 3 begins to move in the direction of the arrow R. The gas moving together with the runner 3 is forced into the initial wedge-shaped space 7 formed between the runner 3 and the foil 5, and a thin gas film is formed all around the upper surface of the foil 5. Immediately after the runner 3 starts rotating, the foil 5 is in a flat state over its entire circumference, and the pressure of the gas film has a constant distribution as shown in FIG. 3A.

ランナ3の回転開始から時間が経過すると、気体膜の圧
力によって押圧されたフォイル5が隣接する支持突起4
の間において下方に撓み、波状に変形する。このフォイ
ル5の変形により各支持突起4の手前位置にそれぞれ楔
状空間7aが形成され、気体膜の圧力分布は第3B図に
示すような独立した高圧部を持つようになる。そして、
この圧力は気体膜の厚さが薄くなる支持突起4の上部に
おいて最も大きく、気体膜の厚さが厚くなる支持突起4
間に向けて小さくなる。
When time has elapsed from the start of rotation of the runner 3, the foil 5 pressed by the pressure of the gas film moves to the adjacent support protrusion 4.
In between, it bends downward and deforms into a wave shape. Due to this deformation of the foil 5, a wedge-shaped space 7a is formed in front of each support protrusion 4, and the pressure distribution of the gas film has an independent high-pressure portion as shown in FIG. 3B. and,
This pressure is greatest at the top of the support protrusion 4 where the gas film becomes thinner, and at the support protrusion 4 where the gas film becomes thicker.
It becomes smaller towards the middle.

このようにして、ランナ3はフォイル5との間に形成さ
れた気体膜により浮動状態で支持され、フォイル5と非
接触の状態で回転することができる。そして、ランナ3
がベース1に対して傾斜してコニカルな運動をすると、
ランナ3とフォイル5の間隔が部分的に小さくなり、そ
の部分の気体膜の圧力が増加する。これにより、傾斜し
たランナ3に復元力が生じ、安定した回転状態が保たれ
る。
In this way, the runner 3 is supported in a floating state by the gas film formed between it and the foil 5, and can rotate without contacting the foil 5. And runner 3
When is tilted with respect to base 1 and makes a conical movement,
The distance between the runner 3 and the foil 5 is partially reduced, and the pressure of the gas film in that area is increased. As a result, a restoring force is generated in the inclined runner 3, and a stable rotational state is maintained.

第4図および第5図は本発明の第2実施例を示すもので
ある。
4 and 5 show a second embodiment of the present invention.

この実施例は、フォイル5の下面に剛性のやや大きなア
ンダーフォイル8を重ね合わせた2個の半円状の積層体
を有している。この2個の積層体は、フォイル5とアン
ダーフォイル8を溶接部6aで溶着し、アンダーフォイ
ル8と支持台2を溶接部6bで溶着することにより、全
体としてリング状を成すように支持台2に止着されてい
る。
This embodiment has two semicircular laminates in which a slightly more rigid underfoil 8 is superimposed on the lower surface of the foil 5. These two laminates are formed by welding the foil 5 and the underfoil 8 at the welding part 6a, and by welding the underfoil 8 and the support base 2 at the welding part 6b, so that the support base 2 forms a ring shape as a whole. It is attached to.

この実施例によれば、ランナ3の回転開始時に2個の初
期楔状空間7の作用で気体膜が速やかに形成される。ま
た、アンダーフォイル8を積層したことにより、フォイ
ル5を単独で用いたものに比べて耐久性が大幅に高めら
れる。しかも、フォイル5とアンダーフォイル8は相対
的にスリップ可能であるため、その全体の厚さが増加し
ても容易に撓むことができ、ランナ3の回転中にフォイ
ル5が波状に変形して樹状空間7を形成する作用を妨げ
ることがない。
According to this embodiment, a gas film is quickly formed by the action of the two initial wedge-shaped spaces 7 when the runner 3 starts rotating. Furthermore, by laminating the under foil 8, the durability is significantly increased compared to the case where the foil 5 is used alone. Moreover, since the foil 5 and the underfoil 8 are relatively slippable, they can be easily deflected even when their overall thickness increases, and the foil 5 is deformed in a wave-like manner during the rotation of the runner 3. The action of forming the dendritic space 7 is not hindered.

第6図は本発明の第3実施例を示すものであって、フォ
イル5に当接する支持突起4の上部にランナ3の回転方
向Rの下流側(図中、右側)が高くなるように傾斜面4
aを形成した点に特徴を有している。
FIG. 6 shows a third embodiment of the present invention, in which the upper part of the support protrusion 4 that contacts the foil 5 is inclined so that the downstream side (the right side in the figure) in the rotational direction R of the runner 3 is higher. Side 4
It is characterized by the formation of a.

この実施例によれば、フォイル5が支持突起4の傾斜面
4aに案内されて初期楔状空間7の形状が規制されると
ともに、フォイル5が波状に変形した際にも、各支持突
起4の手前位置に適切な傾斜角を持った樹状空間7aが
形成される。そして、上記傾斜面4aの作用でフォイル
5が支持突起4との当接部で急激に折曲げられることが
防止されるため、その耐久性が向上する。
According to this embodiment, the foil 5 is guided by the inclined surface 4a of the support protrusion 4, and the shape of the initial wedge-shaped space 7 is regulated, and even when the foil 5 is deformed into a wave shape, the foil 5 is guided by the inclined surface 4a of the support protrusion 4. A dendritic space 7a having an appropriate inclination angle is formed at the position. Further, the action of the inclined surface 4a prevents the foil 5 from being sharply bent at the contact portion with the support protrusion 4, thereby improving its durability.

また、上述のように支持突起4の上面を傾斜させる代わ
りに、第7図に示す第4実施例のように支持突起4の手
前側を切り欠いて段部4bを形成したり、さらに、第8
図に示す第5実施例のように支持突起4の両側に段部4
bを形成してもよく、これにより前記第3実施例と同様
の効果を得ることができる。
Furthermore, instead of slanting the upper surface of the support protrusion 4 as described above, the front side of the support protrusion 4 may be cut out to form a stepped portion 4b as in the fourth embodiment shown in FIG. 8
As in the fifth embodiment shown in the figure, there are stepped portions 4 on both sides of the support protrusion 4.
b may be formed, whereby the same effect as in the third embodiment can be obtained.

第9図は本発明の第6実施例を示すものであり、この実
施例は支持台2の下面に複数の補助突起9を形成した点
に特徴を有している。この補助突起9は支持台2の上面
に形成した支持突起4の中間部に位置するように形成さ
れており、支持突起4に荷重が加わると隣接する補助突
起9間において支持台2が下方に撓むようになっている
FIG. 9 shows a sixth embodiment of the present invention, and this embodiment is characterized in that a plurality of auxiliary protrusions 9 are formed on the lower surface of the support base 2. As shown in FIG. This auxiliary protrusion 9 is formed to be located in the middle of the support protrusions 4 formed on the upper surface of the support base 2, and when a load is applied to the support protrusion 4, the support base 2 moves downward between the adjacent auxiliary protrusions 9. It is designed to bend.

したがって、製作上の誤差等により各支持突起4上方の
フォイル5とランナ3間に形成される間隙δが不均一に
なった場合、前記間隙δの小さい部分において空気膜の
圧力が過大になるが、この過大な圧力が作用した支持突
起4が下方に沈下することにより前記間隙δが増加し、
結果として間隙δを均一化させることができる。
Therefore, if the gap δ formed between the foil 5 and the runner 3 above each support protrusion 4 becomes uneven due to manufacturing errors, the pressure of the air film will become excessive in the portion where the gap δ is small. , the support protrusion 4 to which this excessive pressure is applied sinks downward, thereby increasing the gap δ,
As a result, the gap δ can be made uniform.

第10図は本発明の第7実施例を示すものであり、この
実施例は支持台2を支持突起4を有する上側支持台2b
と、補助突起9を有する下側支持台2cの2層構造とし
たものであり、上記第5実施例のものと同様の効果を得
ることができる。
FIG. 10 shows a seventh embodiment of the present invention, in which the support base 2 is connected to an upper support base 2b having a support protrusion 4.
It has a two-layer structure of a lower support base 2c having an auxiliary protrusion 9, and the same effect as that of the fifth embodiment can be obtained.

第11図は本発明の第8実施例を示すものであり、この
実施例はフォイル5の下面に複数の支持突起5aを形成
し、この支持突起5aを平板状の支持台2の上面に当接
させた点に特徴を有している。
FIG. 11 shows an eighth embodiment of the present invention, in which a plurality of support protrusions 5a are formed on the lower surface of the foil 5, and the support protrusions 5a are brought into contact with the upper surface of the flat plate-shaped support base 2. The points where they touch each other have characteristics.

この実施例によれば、脆弱なフォイル5が支持突起4に
直接摺接することがないので、その耐久性を向上させる
ことが可能となる。
According to this embodiment, since the fragile foil 5 does not come into direct sliding contact with the support protrusion 4, it is possible to improve its durability.

第12図は本発明の第9実施例を示すものであり、この
実施例はフォイル5の下面に剛性のやや大きなアンダー
フォイル8を積層し、このアンダーフォイル8の下面に
支持突起8aを一体に形成したものである。
FIG. 12 shows a ninth embodiment of the present invention, in which an underfoil 8 of slightly greater rigidity is laminated on the lower surface of the foil 5, and a support protrusion 8a is integrally formed on the lower surface of the underfoil 8. It was formed.

この実施例によれば、前述の第2実施例のものと同様に
、アンダーフォイル8の作用でフォイル5の耐久性を向
上させることができる。
According to this embodiment, the durability of the foil 5 can be improved by the action of the underfoil 8, as in the second embodiment described above.

第13図は本発明の第10実施例を示すものであり、こ
の実施例は支持台2を備えておらず、ベース1表面に直
接支持突起1aを形成した点に特徴を有している。
FIG. 13 shows a tenth embodiment of the present invention, and this embodiment is characterized in that it does not include a support stand 2 and that support protrusions 1a are formed directly on the surface of the base 1.

この実施例によれば、支持台2を省略したことにより部
品点数が減少し、その構造を簡素化することができる。
According to this embodiment, by omitting the support stand 2, the number of parts can be reduced and the structure can be simplified.

以上、本発明の実施例を詳述したが、本発明は、前記実
施例に限定されるものではなく、特許請求の範囲に記載
された本発明を逸脱することなく、種々の小設計変更を
行うことが可能である。
Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the embodiments described above, and various small design changes may be made without departing from the scope of the invention described in the claims. It is possible to do so.

例えば、この動圧気体軸受はスラスト軸受に限らず、ジ
ャーナル軸受に対しても適用可能である。
For example, this hydrodynamic gas bearing is applicable not only to thrust bearings but also to journal bearings.

この場合、回転軸外周面が円筒状固定部材の内周面に配
置されたフォイルにより支持されることとなる。
In this case, the outer circumferential surface of the rotating shaft is supported by a foil arranged on the inner circumferential surface of the cylindrical fixing member.

また、フォイル5の分割数は実施例の1個または2個に
限らず、3個以上としてもよい。
Further, the number of divisions of the foil 5 is not limited to one or two as in the embodiment, but may be three or more.

また、フォイル5の下面を支持する支持突起をばねで上
方に向けて付勢してもよく、このようにすれば、過大な
荷重が作用した場合前記ばねが圧縮されて支持突起が沈
下し、フォイル5とランナ3の間隙δが自動的に一定に
なり、均一な荷重分布を得ることが可能となる。
Further, the support protrusion supporting the lower surface of the foil 5 may be biased upward by a spring. In this way, when an excessive load is applied, the spring is compressed and the support protrusion sinks. The gap δ between the foil 5 and the runner 3 automatically becomes constant, making it possible to obtain a uniform load distribution.

C0発明の効果 前述の本発明の動圧気体軸受によれば、回転開始時にフ
ォイルとランチ間に初期樹状空間が確実に確保されるた
め、速やかに気体膜を形成することが可能となる。また
、回転中にはフォイルの撓みにより複数の樹状空間が形
成され、この樹状空間と前記初期樹状空間により形成さ
れる気体膜により充分な負荷容量を得ることができる。
Effects of the C0 Invention According to the hydrodynamic gas bearing of the present invention described above, since an initial dendritic space is reliably secured between the foil and the launch at the start of rotation, it is possible to quickly form a gas film. Further, during rotation, a plurality of dendritic spaces are formed by the deflection of the foil, and a sufficient load capacity can be obtained by the gas film formed by these dendritic spaces and the initial dendritic space.

そして、前記樹状空間はフォイルの円周上に多数の独立
した高圧部を構成するため、回転部材のコニカルな運動
に対し、充分な負荷容量を得ることができる。
Since the dendritic space constitutes a large number of independent high-pressure parts on the circumference of the foil, sufficient load capacity can be obtained against the conical movement of the rotating member.

更に、回転開始時および回転停止時の摺動部面積が小さ
く、しかも異物の詰まる溝がないので、その耐久性を向
上させることが可能となる。
Furthermore, since the area of the sliding portion at the start and stop of rotation is small, and there are no grooves that can become clogged with foreign matter, its durability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例による動圧気体軸受の平面
図、第2図は第1図の■−■線断面図、第3図(A)お
よび第3図(B)はその作用の説明図、第4図は本発明
の第2実施例による動圧気体軸受の平面図、第5図は第
4図のV−VIIA断面図、第6図〜第13図はそれぞ
れ本発明の第3実施例〜第10実施例を示す断面図、第
14図(A)、(B)、(C)は従来の動圧気体軸受を
示す断面図である。 l・・・ベース(固定部材)、1a・・・支持突起、3
・・・ランチ(回転部材)、4・・・支持突起、5・・
・フォイル、5a・・・支持突起、7・・・初朋楔状空
間、7a・・・樹状空間、8a・・・支持突起 第1図 特許出願人  株式会社 島津製作所
FIG. 1 is a plan view of a hydrodynamic gas bearing according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIGS. 3(A) and 3(B) are 4 is a plan view of a hydrodynamic gas bearing according to a second embodiment of the present invention, FIG. 5 is a sectional view taken along line V-VIIA in FIG. 4, and FIGS. FIGS. 14(A), 14(B), and 14(C) are sectional views showing conventional hydrodynamic gas bearings. l... Base (fixing member), 1a... Support protrusion, 3
... Launch (rotating member), 4... Support projection, 5...
・Foil, 5a...Support protrusion, 7...Hatsuho wedge-shaped space, 7a...Dendritic space, 8a...Support protrusion Figure 1 Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】 固定部材と回転部材とを微小な間隔を介して対向させ、
これら固定部材と回転部材間に形成される気体膜の圧力
により両部材間に作用する荷重を支持する動圧気体軸受
において、 前記固定部材側に所定間隔で配設された複数の支持突起
と、前記複数の支持突起の上面に支持されて該支持突起
間を架橋するとともに、その一端が前記固定部材に止着
された可撓性を有するフォイルと、前記フォイルの止着
部の近傍において該フォイルと回転部材間に形成された
初期楔状空間とを備え、この初期楔状空間から回転部材
とフォイルの間隙に導入された気体の圧力により、フォ
イルが撓んで隣接する支持突起間に複数の楔状空間を形
成することを特徴とする動圧気体軸受。
[Claims] A fixed member and a rotating member are opposed to each other with a small gap therebetween,
In a dynamic pressure gas bearing that supports a load acting between the fixed member and the rotating member due to the pressure of a gas film formed between the two members, a plurality of support protrusions arranged at predetermined intervals on the fixed member side; a flexible foil supported on the upper surfaces of the plurality of support protrusions to bridge between the support protrusions and fixed at one end to the fixing member; and an initial wedge-shaped space formed between the rotating member, and the foil is deflected by the pressure of the gas introduced from the initial wedge-shaped space into the gap between the rotating member and the foil to create a plurality of wedge-shaped spaces between adjacent support protrusions. A hydrodynamic gas bearing characterized by forming.
JP1109846A 1989-04-28 1989-04-28 Dynamic pressure gas bearing Expired - Fee Related JP2684765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1109846A JP2684765B2 (en) 1989-04-28 1989-04-28 Dynamic pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109846A JP2684765B2 (en) 1989-04-28 1989-04-28 Dynamic pressure gas bearing

Publications (2)

Publication Number Publication Date
JPH02286908A true JPH02286908A (en) 1990-11-27
JP2684765B2 JP2684765B2 (en) 1997-12-03

Family

ID=14520679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109846A Expired - Fee Related JP2684765B2 (en) 1989-04-28 1989-04-28 Dynamic pressure gas bearing

Country Status (1)

Country Link
JP (1) JP2684765B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331846A (en) * 1997-03-28 1998-12-15 Mohawk Innov Technol Inc Hydrodynamic fluid film bearing
JP2009174594A (en) * 2008-01-22 2009-08-06 Shimadzu Corp Dynamic pressure gas bearing
WO2015041233A1 (en) * 2013-09-19 2015-03-26 株式会社Ihi Thrust bearing
KR20170061505A (en) * 2015-11-26 2017-06-05 한온시스템 주식회사 Air foil bearing
US10221885B2 (en) 2013-09-19 2019-03-05 Ihi Corporation Thrust bearing
WO2022080807A1 (en) * 2020-10-15 2022-04-21 주식회사 티앤이코리아 Foil air bearing having herringbone pattern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967866B2 (en) 2007-04-23 2015-03-03 Hamilton Sundstrand Corporation Hydrodynamic bearing
KR100964883B1 (en) * 2009-10-07 2010-06-23 주식회사 뉴로스 Thrust foil air bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138324U (en) * 1984-08-13 1986-03-10 トヨタ自動車株式会社 Dynamic thrust gas bearing
JPS63195412A (en) * 1987-02-07 1988-08-12 Taiho Kogyo Co Ltd Leaf-type foil thrust bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138324U (en) * 1984-08-13 1986-03-10 トヨタ自動車株式会社 Dynamic thrust gas bearing
JPS63195412A (en) * 1987-02-07 1988-08-12 Taiho Kogyo Co Ltd Leaf-type foil thrust bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331846A (en) * 1997-03-28 1998-12-15 Mohawk Innov Technol Inc Hydrodynamic fluid film bearing
JP2009174594A (en) * 2008-01-22 2009-08-06 Shimadzu Corp Dynamic pressure gas bearing
WO2015041233A1 (en) * 2013-09-19 2015-03-26 株式会社Ihi Thrust bearing
JP2015059630A (en) * 2013-09-19 2015-03-30 株式会社Ihi Thrust bearing
US9903411B2 (en) 2013-09-19 2018-02-27 Ihi Corporation Thrust bearing
US10221885B2 (en) 2013-09-19 2019-03-05 Ihi Corporation Thrust bearing
KR20170061505A (en) * 2015-11-26 2017-06-05 한온시스템 주식회사 Air foil bearing
WO2022080807A1 (en) * 2020-10-15 2022-04-21 주식회사 티앤이코리아 Foil air bearing having herringbone pattern

Also Published As

Publication number Publication date
JP2684765B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US5110220A (en) Thrust bearing underspring
US6997613B2 (en) Foil bearing
US4099799A (en) Cantilever mounted resilient pad gas bearing
JPH10331847A (en) Hydrodynamic thrust bearing made of flexible foil
JP4973590B2 (en) Dynamic pressure gas bearing
US4871267A (en) Foil thrust bearing
KR101903865B1 (en) Thrust bearing
US5911511A (en) Tilting pad foil thrust and journal bearings
US4082375A (en) Dual wedge fluid thrust bearing including wave spring
US4682900A (en) Thrust bearing underspring
US4597677A (en) Leaf-type foil thrust bearing
US6261002B1 (en) Gas dynamic foil bearing
US4462700A (en) Hydrodynamic fluid film thrust bearing
US5911510A (en) Bi-directional foil bearings
JPH02286908A (en) Dynamic pressure gas bearing
EP0098741A1 (en) Fluid bearings
JP2014145388A (en) Thrust bearing
EP0821768B1 (en) Hydrodynamic air thrust bearing with offset bump foils
US4225196A (en) Hydrodynamic compliant thrust bearing
US5871284A (en) Foil thrust bearing set
US4348066A (en) Foil bearing mounting
US4795274A (en) Foil bearing
US20220120314A1 (en) Thrust foil bearing and method for manufacturing base plate of thrust foil bearing
JP6651397B2 (en) Foil bearing
US4776077A (en) Method of making a thrust bearing underspring

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees